Elektrokemijska sinteza novih 1,3-benztiazinskih i 1,3benzoksazinskih soli s potencijalnim afinitetom prema DNK/RNK

Kovačec, Petra

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:655153

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-10

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI DIPLOMSKI STUDIJ

Petra Kovačec

DIPLOMSKI RAD

Zagreb, rujan 2022.

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI DIPLOMSKI STUDIJ

Petra Kovačec

ELEKTROKEMIJSKA SINTEZA NOVIH DERIVATA 1,3-BENZTIAZINSKIH I 1,3-BENZOKSAZINSKIH SOLI S POTENCIJALNIM AFINITETOM PREMA DNK/RNK

DIPLOMSKI RAD

Mentor rada: prof. dr. sc. Irena Škorić Komentor rada: dr. sc. Goran Kragol Članovi ispitnog povjerenstva: prof. dr. sc. Irena Škorić doc. dr. sc. Dragana Vuk dr. sc. Goran Kragol

Zagreb, rujan 2022.

SAŽETAK

Klasičnoj sintezi organskih spojeva unazad nekoliko desetljeća pridružuje se elektroorganska sinteza. Ona pruža mogućnost ekonomične, brze i ekološki prihvatljive proizvodnje organskih spojeva. Derivati 4H-1,3-benzoksazina i 4H-1,3-benztiazina te njihove soli zanimljive su strukture zbog potencijalnog farmakološkog djelovanja. Neki od njih do danas su sintetizirani elektrokemijskom sintezom, a ovaj je rad svojevrsni nastavak sinteze novih, do sada, nesintetiziranih derivata. Također, optimizirani su uvjeti navedenih reakcija, te su uspješno dobiveni i izolirani spojevi 4a i 4a', 4c, 4d, 4e, 5a i 5a'. Sinteza spojeva 4b i 5b provedena je u svrhu ponavljanja do sada već provedene sinteze poradi usporedbe uvjeta reakcija s dobivenim rezultatima. Nadalje, provedeno je aminiranje odabranih derivata 4H-1,3-benzoksazina i 4H-1,3- benztiazina u svrhu pomaka UV-spektra u vidljivo područje. Uspješno su sintetizirani i izolirani spojevi 9,10a i 10b, 11, 12, i 13. Također je uspješno provedeno aminiranje N-(4klorbenzil)benzamida koji ima u budućnosti potencijal prevođenja u ciklički oblik optimiziranjem uvjeta elektrokemijske ciklizacije. Svi su spojevi okarakterizirani ¹H NMR metodom te je u svim dobivenim uzorcima detektirana očekivana masa tekućinskom kromatografijom vrlo visokog učinka vezane na spektrometar masa (eng. UPLC-MS/UV).

Ključne riječi: 4H-1,3-benzoksazini, 4H-1,3-benztiazini, aminiranje, elektrokemijska sinteza

SUMMARY

Electrochemical synthesis of new derivates of 4*H*-1,3-benzoxazine and 4*H*-1,3benzothiazine salts with potential affinty for DNA/RNA

Electroorganic synthesis has been joining the classic synthesis of organic compounds for several decades. It provides the possibility of economical, fast and environmentally friendly production of organic compounds. Derivatives of 4H-1,3-benzoxazine and 4H-1,3-benzothiazine and their salts are interesting structures due to their potential pharmacological application. Some of them have been synthesized by electrochemical synthesis, and this work is the continuation of the synthesis of so far unsynthesized derivatives. Also, the conditions of the mentioned reactions were optimized, and compounds 4a and 4a', 4c, 4d, 4e, 5a and 5a' were successfully obtained and isolated. The synthesis of compounds 4b and 5b was carried out in order to repeat the synthesis already carried out so far in order to compare the reaction conditions with the obtained results. Furthermore, the amination of the selected derivatives 4H-1,3-benzoxazine and 4H-1,3-benzthiazine was carried out in order to shift the UV-spectrum into the visible region. Compounds 9, 10a and 10b, 11, 12, and 13 were successfully synthesized and isolated. The amination of N-(4-chlorobenzyl)benzamide, which has the potential to be converted into a cyclic form in the future by optimizing the conditions of electrochemical cyclization, was also successfully performed. All compounds were characterized by the ¹H-NMR method, and the expected mass was detected in all obtained samples, by performing the high-performance liquid chromatography attached to a mass spectrometer (eng. UPLC-MS/UV).

Key words: 4*H*-1,3-benzoxazines, 4*H*-1,3-benzothiazines, amination, electrochemical synthesis

Ovaj rad izrađen je u Selviti d.o.o. čijim zaposlenicima od srca zahvaljujem na pomoći, susretljivosti i ljubaznosti.

Posebno se zahvaljujem dr. sc. Goranu Kragolu na mentorstvu te na pruženoj prilici da uz njegovu pomoć i vodstvo steknem nova znanja, vještine i iskustva iz područja organske kemije. Hvala Vam na strpljenju, ugodnoj komunikaciji, iskrenosti i ljubaznosti.

Od srca zahvaljujem prof. dr. sc. Ireni Škorić na mentorstvu, svakom savjetu, toploj riječi podrške te na svom prenesenom i usađenom znanju tijekom mog školovanja na Fakultetu kemijskog inženjerstva i tehnologije.

Hvala Vam što ste mi pokazali što znači voljeti svoj posao i raditi ga srčano i predano.

Veliko hvala svim dragim osobama u mom životu koje mi pružate ljubav, snagu i podršku tijekom mog školovanja i cijelog života. Od srca Vam hvala što mi dajete snagu u teškim, a dijelite sa mnom sreću u lijepim trenucima.

Hvala Fakultetu kemijskog inženjerstva i tehnologije na stečenim znanjima i prijateljima.

Sadržaj

1.	UV	/OD	1			
2.	OP	PĆI DIO	2			
-	2.1.	ORGANSKA ELEKTROKEMIJA	2			
UN RA	2.2. 1 NAKI AZV(NEDAVNI NAPRETCI POSTIGNUTI U OKSIDATIVNOM R ¹ -H/R ² -H RSNOM SPAJANJU S FOTOKEMIJSKIM / ELEKTROKEMIJSKIM DJEM VODIKA	4			
	2.3. SPAJ 4 <i>H</i> –1	ELEKTROKEMIJSKO INTRAMOLEKULARNO DEHIDROGENATIV JANJE <i>N</i> –BENZIL(TIO)AMIDA: DIREKTNA I JEDNOSTAVNA SINTE J,3– BENZOKSAZINA I 4 <i>H</i> –1, 3–BENZTIAZINA	VNO ZA 20			
	2.4.	ANODNO METOKSILIRANJE I ACETOKSILIRANJE IMINA I IMID 29	ATA			
3.	RE	ZULTATI I RASPRAVA	33			
	3.1.	UVOD	33			
	3.2.	SINTEZA ACIL KLORIDA	34			
	3.3.	SINTEZA AMIDA	36			
	3.4.	SINTEZA TIOAMIDA	40			
[3.5. BEN	ELEKTROKEMIJSKA SINTEZA RAZLIČITIH DERIVATA 4 <i>H</i> -1,3- ZTIAZINA	46			
	3.6.	SINTEZA RAZLIČITIH 4H-1,3-BENZOKSAZINA	67			
	3.7.	AMINIRANJE	76			
4.	EK	SPERIMENTANLNI DIO	88			
2	4.1.	OPĆE NAPOMENE	88			
2	4.2.	SINTEZA ACIL KLORIDA	89			
4	4.3. 5	SINTEZA AMIDA	90			
4	4.4. 5	SINTEZA TIOAMIDA	94			
2	4.5. BEN	ELEKTROKEMIJSKA SINTEZA RAZLIČITIH DERIVATA 4 <i>H</i> -1,3- ZTIAZINA	98			
BE	4.6. I ENZC	ELEKTROKEMIJSKA SINTEZA RAZLIČITIH DERIVATA 4 <i>H</i> -1,3- DKSAZINA	102			
4	4.7.	AMINIRANJE	104			
4	4.8.	SINTEZA SOLI	106			
5.ZAKLJUČAK						
6. LITERATURA						
7. PRILOZI						

1. UVOD

Elektrokemijska sinteza organskih spojeva posljednjih je godina stavljena u središte interesa brojnih kemičara zbog svoje ekološke održivosti, jednostavnosti u smislu sofisticiranih uređaja s kojima je lako rukovati te kraćeg vremena provođenja elektroorganskih sinteza. Bilo da se radi o protočnim ili neprotočnim reaktorima, podijeljenim ili nepodijeljenim ćelijama, spektar ponude uređaja i mogućnosti za elektroorgansku sintezu sve je širi i raznovrsniji. Lepeza ponude proteže se od jednostavnih uređaja za provođenje reakcija na malim skalama, pa do uređaja koji mogu provoditi više testnih reakcija od jednom pri različitim uvjetima. Sve to govori u prilog činjenici da se uz konvencionalnu organsku sintezu, paralelno kontinuirano razvija i elektrokemijska organska sinteza.

Takav pristup korišten je, u ovom radu, za provođenje elektrokemijske ciklizacije organskih spojeva dobivenih konvencionalnim sintezama. Benzoksazini i benztiazini proučavani su i istraživani spojevi zbog svoje strukture koja pokazuje farmakološka svojstva te čiji derivati imaju potencijal korištenja kao lijekovi s mogućnošću interakcije s RNK i DNK, nukleinskim kiselinama koje su često mete vezanja raznih vrsta lijekova. Ovaj rad svoj naglasak stavlja na elektrokemijsku sintezu različitih derivata 4*H*-1,3-benzoksazina i 4*H*-1,3-benzitiazina s potencijalnim afinitetom prema RNK i DNK. Također provedene su reakcije aminiranja odabranih spojeva s ciljem pomaka UV-spektra u vidljivo područje. Osim toga, pokušana je reakcija elektrokemijske funkcionalizacije i prevođenje cikliziranih spojeva u soli. U nastavku se dan pregled dosadašnjih saznanja na polju elektrokemijske sinteze organskih spojeva, a kasnije dobiveni rezultati i naša saznanja u navednom području.

2. OPĆI DIO

2.1. ORGANSKA ELEKTROKEMIJA

U današnje vrijeme naglasak se stavlja na učinkovite i selektivne sinteze molekula koje svoju primjenu pronalaze u širokim spektrima djelatnosti kao što su na primjer agrokemija i farmaceutska industrija. Unazad nekoliko godina, elektrokemijska sinteza organskih molekula privlači pažnju mnogih znanstvenika te sve više razvija u smislu održive molekularne sinteze. Treba istaknuti neosporiv potencijal organske elektrosinteze za održivu sintezu i katalizu s naglaskom na selektivnost i sinergizam s fotokatalizom.¹ Važnost sinteze organskih molekula ogleda se u razvoju lijekova, medicinskoj kemiji, farmaceutskoj i kemijskoj industriji, sintezi raznih materijala i sl. Dakle, široka primjena organske sinteze zahtjeva i potrebu za novim pristupima istom. Do nedavno, najviše se pažnje posvećuje fotokemiji, umjetnoj inteligenciji, mehanokemiji te protočnim tehnologijama. Unazad nekoliko godina, elektrokemijska organska sinteza, koja je do sada najčešće zanemarivana, postaje od sve većeg interesa, prevladavajući tako neke od svojih nedostataka kao što je npr. tehnologija.¹ Danas su reaktori za elektrokemijsku organsku sintezu veoma sofisticirani te sigurni i praktični za rukovanje. Neke od prednosti elektrokemijske sinteze su dakako njena ekološka prihvatljivost, ekonomska isplativost te kraće vrijeme nekih organskih elektrosintetskih reakcija.¹ Ključni aspekt elektrokemijske organske sinteze je potpuna kontrola redoks događaja. Dakle, prijenos elektrona korisno je sredstvo za željene kemijske transformacije.²

Slika 1. Povijesni razvoj elektrokemijske sinteze²

Fotokemija i elektrokemija dva su moćna alata u organskoj sintezi. Unatoč preporodu oba istraživačka područja u posljednjih nekoliko godina, oba se susreću s određenim nedostatcima. Spajanje i međusobna sinergija ova dva sintetska područja organskih molekula nudi potencijal za prevladavanje nedostataka jednog kroz prednosti drugog. Zbog toga se mogu zamisliti i kreirati novi reakcijski putevi, koji su pojedinačnim metodama neostvarivi.³ Proučavanjem fotokatalize i elektrokemijske sinteze kroz proteklo desetljeće dolazi se do novih inovativnih transformacija za koje se je ranije mislilo da su nemoguće. Oba istraživačka područja dijele zajedničku karakteristiku, a to je korištenje elektrona kao reagensa za generiranje radikalnih međuprodukata pa se na taj način provode mnoge transformacije od fotoredoks katalize do elektrokemije i obrnuto. Fotoredoks kataliza može iskoristiti svoju prirodu redoks neutralnosti kako bi olakšala čiste redoks neutralne transformacije. Međutim, to zahtijeva stehiometrijsku količinu oksidansa/reducensa pri svakom slijedećem dodatku fotokatalizatora u čistim oksidacijsko-redukcijskim transformacijama. Ovaj nedostatak izbjegnut je u "zelenoj" elektrokemijskoj sintezi jer se oksidacija i redukcija odvijaju istovremeno na anodi odnosno katodi. Nasuprot tome, radikali koji su elektrokemijski generirani u izravnoj elektrolizi, vrlo se lako podvrgnuti prekomjernoj redukciji/oksidaciji, radikalnom homoumrežavanju i pasivizaciji elektroda zbog neučinkovitog prijenosa mase na površini elektrode i kroz masu otopine. Redoks medijatori koji potiču proces prijenosa elektrona zaobilaze navedene nedostatke elektrokemijske sinteze.

2.2. NEDAVNI NAPRETCI POSTIGNUTI U OKSIDATIVNOM R¹-H/R²-H UNAKRSNOM SPAJANJU S FOTOKEMIJSKIM / ELEKTROKEMIJSKIM RAZVOJEM VODIKA

2.2.1. UVOD

Fotokemijski / elektrokemijski katalizirano oksidativno R¹-H / R²-H unakrsno-spajanje popraćeno razvojem vodika od sve je većeg interesa za molekularnu sintezu. Želja o formiranju C-C / C-X veza iz lako dostupnih C-H / X-H može se lako ostvariti bez vanjskih kemijskih oksidansa omogućujući tako ekološki prihvatljiviji model za stvaranje kemijskih veza. Ova sintetička strategija uvelike bi mogla doprinijeti reakcijama u organskoj kemiji.⁴

R¹-H/R²-H unakrsno spajanje prepoznato je kao moćan alat za stvaranje C-C / C-X veza. U posljednjih nekoliko desetljeća mnogo se istraživanja i saznanja postiže u tom području. Ovakve vrste reakcija uvijek zahtijevaju postojanje vanjske pokretačke sile. Zbog toga se do sada uvijek koristi vanjsko oksidacijsko sredstvo što rezultira nastajanjem neželjenih nusprodukata. Formiranje C-C / C-X bez upotrebe vanjskog oksidacijskog sredstva omogućuje uštedu vremena, ali i kemikalija i opreme koje bi se koristile za pročišćavanje neželjenih nusprodukata koji nastaju. Nova strategija stvaranja takvih veza uz razvoj vodika veoma je atomski ekonomična, ali i termodinamički još uvijek nepovoljna zbog pozitivne Gibbsove energije, $\Delta G_{rxn} > 0$ (*Shema 1*).⁴

Shema 1. Oksidativno R¹-H / R²-H unakrsno spajanje s fotokemijskim / elektrokemijskim razvojem vodika⁴

Struja se pojavljuje kao dobra alternativa kemijskim oksidansima za poticanje, iniciranje i vođenje kemijske reakcije ($\Delta G_{rxn} < 0$, *Shema 1*). Anodna oksidacija zajedno s katodnom redukcijom protona naširoko se koristi u organskog sintezi.⁵⁻¹¹ Nasuprot tome, integracija fotokatalize i katalize s razvijanjem vodika pojavljuje se kao obećavajuća strategija za postizanje oksidativnog spajanja s razvijanjem vodika ($\Delta G_{rxn} < 0$, *Shema 1*).¹²⁻¹⁷

2.2.2. NASTAJANJE C-C VEZE

2.2.2.1. C-H / C-H homo-spajanje

Nastajanje C-C veza iz lako dostupnih C-H veza veoma je važno u organskoj kemiji. Kao što je ranije naglašeno, korištenje oksidacijskih sredstva, koji su često za okoliš štetne kemikalije, nastoji se zamijeniti elektroorganskom sintezom popraćenu razvijanjem vodika.

Za početak valja spomenuti bio(hetero)arene, molekule koje su sastavni dijelovi niza farmaceutskih molekula i prirodnih produkata. Najčešće prijavljivane metode za sintezu bio(hetero)arena zahtijevaju uporabu skupih prijelaznih metala te velike količine oksidacijskih sredstava što je u konačnici dalo niz nusprodukata koje je trebalo pročistiti. U korak s time, za sintezu bio(hetero)arena počinje se koristiti ekološki prihvatljivija strategija elektroorganske sinteze, za čije su početke na području bio(hetero)arena zaslužni Waldvogel i Yoshida.⁴ Nadalje, reakcije homo-spajanja fenolnih supstrata igraju važnu ulogu u nastajanju prirodnih produkata. Waldvogel i suradnici opisuju nekoliko metoda za učinkovito postizanje homo-spajanja fenolnih supstrata.¹⁸⁻²⁰ Važno je napomenuti da Waldvogel i suradnici razvijaju aktivnu anodu na bazi molibdena kako bi omogućili dehidrogenativno spajanje arila (*Shema 2*)¹⁸.

Shema 2. Dehidrogenativno spajanje arila

U heksafluoro-2-propanolu (HFIP), molibdenova anoda formira kompaktni, vodljivi i elektroaktivni sloj viševalentih vrsti molibdena koje su ili otopljene u elektrolitu ili su

zaostale na elektrodi kako bi se stvorio aktivni površinski sloj. Ovaj sustav mogao bi predstaviti Mo^V kao reagense za dehidrogenatvno spajanje arila i širok spektar supstrata koji se uspješno konvertiraju. Iste godine, Hanova grupa razvija efektivnu elektrokemijsku metodu za sintezu bioheteroarila za koju također nije potrebno vanjsko oksidacijsko sredstvo (*Shema 3*). Dobiva se niz bioaktivnih bioheteroarilnih spojeva oksidativnim C(*sp*²)–H homo-spajanjem imidazo [1,2-*a*] piridina.⁴

Shema 3. Regioselektivna izgradnja bioheteroarila

2.2.2.2. C-H / C-H unakrsno-spajanje

Nesimetrični biarili temeljne su strukture niza biološki aktivnih spojeva. Zbog toga je njihova sinteza unakrsnog-spajanja vrlo dobro istražena u suvremenoj organskoj kemiji. No, treba naglasiti da je u reakcijama elektroorganske sinteze postizanje unakrsnog-spajanja povrh homo-spajanja veliki izazov.⁴ Analogijom s metodom udruživanja kationa razvija se metoda udruživanja radikal kationa za sintezu nesimetričnih biarila iz neaktiviranih elektron–bogatih aromatskih spojeva.²¹⁻²³ Yoshida i suradnici 2012. godine opisuju metodu udruživanja radikal kationa za stvaranje C-C veza unakrsnim C-H / C-H spajanjem dvaju neaktiviranih organskih spojeva (*Shema 4*).⁴

Shema 4. Metoda udruživanja radikal kationa za unakrsno-spajanje dva neaktivirana aromatska spoja²³

Ovaj se postupak sastoji od dva uzastopna koraka. Prvi korak je stvaranje i nakupljanje aromatskog radikala pod oksidativnim uvjetima. Drugi korak uključuje spajanje ovako nastalih vrsta radikal kationa s drugim aromatskim spojem pod neoksidativnim uvjetima. Opisana transformacija ne samo da teče glatko u odsutnosti metalnih kompleksa i kemijskih oksidansa, nego se ujedno i eliminira neselektivna oksidacija početnih spojeva te prekomjerna oksidacija produkata.⁴ Nadalje, iste godine Waldvoegl i suradnici razvijaju elektrokemijsku metodu bez prisutnosti metala za unakrsno-spajanje fenola i arena korištenjem borom dopiranih dijamantnih anoda (BDD) u fluoriranim medijima.²⁴ Pri dodatku vode ili metanola elektrolitu drastično se povećava iskorištenje i selektivnost. Na ovaj su način također se dobivaju različiti biarili. Također jedino oksidacijsko sredstvo koje se koristi jesu sami elektroni, čime se izbjegava korištenje opasnih i štetnih kemikalija kao oksidacijskih sredstava.⁴ Dvije godine kasnije ista grupa znanstvenika opisuje direktno oksidativno unakrsno-spajanje dva fenola korištenjem BDD elektrode zbog iznimnih kemijskih svojstava.²⁵ Ovim istraživanjima naglašava se iznimna selektivnost, ekološka prihvatljivost i robusnost elektrokemijske konverzije.⁴ Rad Waldvogela i suradnika nastavlja se i dalje pa se tako razvija i metoda elektrokemijskog dehidrogenativnog C-C unakrsnog spajanja za dobivanje 2',2-diaminobiarila.⁴ Pri tome je utvrđeno da su HFIP i metanol bitni za visoku selektivnost dok nisu potrebne odlazeće skupine. Također, stakleni ugljik može značajno smanjiti oligomerizaciju reakcijskih supstrata.²⁶ Također, Waldvogel i suradnici razvijajui prvi primjer unakrsnog-spajanja tiofena s fenolima (Shema 5).²⁷ Višak fenola poželjan je kako bi se stvorio tetrailni 2,5bis(2-hidroksifenil)tiofen, dok je višak tiofena poželjan kako bi nastao jedinstven produkt nastao unakrsnim-spajanjem.

Shema 5. Unakrsno-spajanje tiofenovih derivata s fenolima²⁷

Ista grupa znanstvenika godinu dana kasnije objavljuje prvu metodu ariliranja u položaju 2 ili 3 benzo[b]tiofena elektrokemijskim putem čime se zaokružuje, ali istovremeno i otvara put daljnjim istraživanjima unakrsnog-spajanja.⁴

Reakcija dehidrogenativnog unakrsnog-spajanja jedan je od najmoćnijih alata za izgradnju C-C veza aktivacijom dviju različitih C-H veza. Kod klasičnih metoda za aktivaciju C-H veza potrebne su stehiometrijske količine oksidansa kako bi se uklonili elektroni i vodikovi atomi za stvaranje ugljikovih radikala i reaktivnih ionskih međuprodukata za nadolazeće transformacije. No, kako je već ranije naglašeno, korištenje oksidansa može biti ograničavajući faktor kod nekih vrsta reakcija, ali i štetno u smislu otrovnih kemikalija po okoliš i zdravlje. Zbog toga je zanimanje za aktivaciju C-H veza privukla fotokataliza u vidljivom dijelu spektra, ali isto tako i elektrokemijska sinteza bez uporabe vanjskih oksidansa.⁴

Wu i suradnici, 2013. godine, opisuju fotokatalitičku dehidrogenativnu reakciju unakrsnog-spajanja dviju različitih C-H veza prilikom čega se formira C-C veza uz oslobađanje vodika.²⁸ Pri tome nije bio potreban vanjski oksidans. Kao fotosenzibilizator i katalizator koristi se eozin Y i grafen potpomognut rutenijevim(IV) oksid nanokompozitom (G-RuO₂). Željeni produkt unakrsnog-spajanja dobiva se pod uvjetima vidljivog svjetla i sobne temperature. Valja spomenuti da se kombinacijom eozin Y i Co(dmgH)₂Cl₂ kompleksa može postići slična reakcija.⁴ Kasnije, 2014. godine, eozin Y koristi se kao fotosenzibilizator za iniciranje unakrsnog-spajanja amina s nukleofilima. Pri tome se Co(dmgH)₂Cl₂ kompleks koristi kao katalizator koji hvata elektrone i protone, eliminirajući ih tako sa supstrata i dajući vodik kao jedini nusprodukt.²⁹ Sličnom se strategijom dobivaju amini reduktivnim hidrogeniranjem nitroarena uz Co(dmgH)₂Cl₂ kompleks kao katalizator.³⁰ Također ista grupa znanstvenika opisuje korištenje Ru(bpy)₃(PF₆)₂ i Co(dmgH)₂pyCl kao fotosenzibilizatora i katalizatora za modifikaciju specifičnog mjesta derivata α -amino kiselina C-H funkcionalizacijom uz prisutnost vidljivog svjetla, a bez prisutnosti katalizatora.^{4,30} Nadalje C-H veza uz kisikov atom predstavlja puno veći izazov nego C-H veza uz dušikov atom.³¹ Pri tome je važno naglasiti da Wu i suradnici otkrivaju stvaranje C-C veza unakrsnim-spajanjem oksonijevih vrsta ili nukleofila pod neoksidacijskim uvjetima.³² Wu i Luo, 2017. godine, prijavljuju asimetrično dehidrogenativno unakrsno-spajanje tercijarninih amina u ketone potaknuto vidljivim svjetlom. To se potiče primarnim aminom kao katalizatorom, fotokatalizatorom te kobaltnim katalizatorom.³³ Takva kombinacija katalizatora omogućuje prevladavanje poteškoća kao što su izravna oksidacija supstrata te neželjeni nusprodukti koji su posljedica tipičnih oksidacijskih procesa.⁴ Također, Luo i suradnici razvijaju i katalitičko asimetrično oksidativno spajanje tercijarnih amina i jednostavnih

ketona u neoksidativnim uvjetima kombinacijom elektrokemijske oksidacije i katalize kiralnim primarnim aminima.^{4,34} Lei i suradnici, 2018. godine, izvješćuju o metodi katalitičke dehidrogenativnog alkeniliranja aromatskih spojeva pod vanjskim neoksidativnim uvjetima pri čemu se koristi dvostruki foto-/kobaloksim katalitički sustav.³⁵ Mehanizam reakcije može se objasniti nastajanjem arenijevog radikal kationa kao ključnog intermedijera koji nastaje prijenosom elektrona između pobuđenog stanja fotosenzibilizatora i elektronima bogatog arena. Na taj se način mogu dobiti različiti arilni alkeni u dobrim iskorištenjima s vodikom kao jednim nusproduktom reakcije.⁴ Treba napomenuti da se provode i studije korištenja heterogenih katalizatora u stvaranju C-C veze aktivacijom C-H veze. Jedan takav primjer je korištenje paladija hibridiziranog s titanijevim dioksidom kao heterogenog katalizatora koji promovira reakciju cijanometilacije aromatskih spojeva.³⁶

2.2.3. FORMIRANJE C-O, C-N I C-S VEZA

2.2.3.1. Formiranje C-O veze

Na početku treba spomenuti da 2012. godine Boydston i suradnici demonstriraju organsko-kataliziranu anodnu oksidaciju aldehida u estere pri čemu se formira C-O veza. Pri tome se mogu koristiti različiti aldehidni i alkoholni supstrati.⁴ Tung i suradnici, 2016. godine, razvijaju fotokatalitičko aminiranje i hidroksiiliranje benzena kako bi nastali anilin i fenol te vodik kao nusprodukt (*Shema 6*).³⁷ Pri tome se koristi QuCN⁺ kao fotokatalizator. U ovakvoj transformaciji, osim samog benzena, mogu sudjelovati i različito supstituirani benzeni kao što su arilni ketoni, benzojeva kiselina, bezamidi i arilni halidi. Mehanizam ove reakcije temelji se na tome da pobuđeni fotokatalizator oksidira benzen prijenosom jednog elektrona kako bi nastao benzenski radikal kation. Nakon toga nukleofilni reagens napada benzenski radikal kation kako bi nastao dienil radikal koji se pak može okisdirati kobalt (II) katalizatorom. To se događa prijenosom jednog elektrona da bi nastao dienil kation, nakon čega slijedi deprotoniranje kako bi nastao konačan produkt.

Shema 6. Fotokatalitička aminacija i hidroksilacija benzena³⁷

Ista strategija primjenjuje se 2017. godine na arilne etere putem direktne esterifikacije benzena s alkoholima. Lei i suradnici razvijaju fotokatalitičku anti-Markovnikovljevu oksidaciju β -aril stirena da bi sintetizirali karbonilne spojeve. Nadalje ista skupina znanstvenika razvija fotokatalitičko dehidrogenativno C-H / O-H i C-H / N-H unakrsno-spajanje između alkena s alkoholima i azolima.⁴

Elektroorganska sinteza pojavljuje se kao učinkovit alat za formiranje C-O veze iz dostupnih C-H / O-H veza. Ackermann i suradnici, 2017. godine, izvješćuju o elektrokemijskoj oksigenaciji C-H veze katalizirane kobaltom pri blagim uvjetima (*Shema 7*).³⁸ Jeftin kobaltov katalizator prvi se put primijenjuje u C-H funkcionalizaciji kataliziranoj prijelaznim metalima u uvjetima elektrolize. RCV se koristi kao anoda, katoda je napravljena od platine, a elektroliza se provodi uz konstantnu struju. U ovoj reakciji mogu sudjelovati različiti alkilni alkoholi s različitim funkcionalnim grupama. U cikličkom voltamogramu, kobalt (II) pokazuje znatno veći potencijal od supstrata što može ukazivati na to da je kobalt (II) oksidiran u kobalt(III) anodnom oksidacijom.⁴

Shema 7. Elektrokemijska C-H oksigenacija katalizirana kobaltom³⁸

Valja spomenuti da Neumann i suradnici objavljuju metodu za elektorkemijsko hidroksiliranje arena.³⁹ U elektrolitskim uvjetima, benzen i njegovi halogenirani derivati mogu se oksidirati u arilne formate korištenjem keggin polioksometalata s kobaltom (IV)

heteroatomom kao katalizatorom. Nadalje oni se mogu hidrolizirati u odgovarajuće fenole.⁴

2.2.3.2. Formiranje C-N veze

Također, značajni napretci postignuti su i u unakrsnom-spajanju pri formiranju C-N veze. Tu valja istaknuti unakrsno-spajanje $C(sp^2)$ –H / N-H popraćeno razvijanjem vodika.⁴ Little i Zeng razvijaju elektrokemijsku oksidativno aminiranje benzoksazola s alkil aminima. (*Shema 8*).⁴⁰ Katalitička količina *n*Bu₄NI koristi se kao redoks medijator zbog čega nije bilo potrebno koristiti oksidans ili katalizator prijelaznih metala. Korištena anoda napravljena je od staklenog ugljika, a katoda od željeza. Također, I⁻ može posredovati u indirektnoj elektrokemijskoj reakciji koja može biti uključena u transformaciju.⁴

Shema 8. Elektrokemijsko oksidativno aminiranje benzoksazola s alkil aminima⁴⁰

Kasnije se otkriva i strategija za protočni proces anodne oksidativnog aminiranja aldehida posredovan *N*-heterocikličkim karbenima.⁴¹ U ovom slučaju protočni režim ima važnu ulogu.⁴

Yoshida i suradnici imaju važnu ulogu u elektrokemijskom oksidativnom povezivanju aromatskih spojeva i primarnih amina koji na sebi imaju funkcionalnu grupu. Primarni alkilamini najprije daju heterocikle koji reagiraju s nastalim radikal kationom da bi nastali odgovarajući kationski intermedijeri.⁴² Oni reakcijom unakrsnog-spajanja daju željene produkte. Lei i suradnici, 2017. godine, razvijaju fotoinducirano selektivno oksidativno $C(sp^2)$ –H aminiranje heterocikličkih amina pri blagim uvjetima.⁴³ Važno je naglasiti da se ono odvija bez prisutnosti vanjskog oksidansa koristeći Co(dmgH)₂Cl₂ kao proton-redukcijski katalizator. Pri optimalnim uvjetima širok raspon metilarena može reagirati s pirazolom. Nedostatak je što i *ortho-* i *para-* položaj metilarena sudjeluju istovremeno u reakciji pa se ne ostvaruje kemoselektivnost.⁴ Isti katalitički sustav koristi se 2018. godine kako bi se postiglo selektivno aminiranje C3 položaja 2-

arilimidazolheterocikla.⁴⁴ Svoj rad Lei i suradnici nastavljaju otkrićem elektrokemijskog dehidrogenativnog C-H / N-H unakrsnog-spajanja između fenola i tiazina u nepodijeljenim elektrolitskim uvjetima.⁴⁵ Pri blagim uvjetima dobivaju se serije derivata triarilamina bez upotrebe katalizatora ili kemijskog oksidansa.⁴ Važno istraživanje koje otvara put ekonomičnoj, ali istovremeno i ekološki prihvatljivoj sintezi aromatskih amina koristeći jedno električnu energiju kao oksidans je ono Ackermanna i suradnika koji 2018. godine, otkrivaju elektrokemijsko C-H aminiranje katalizirano kobaltom.⁴ Osim *sp*² aminiranja, također se provode i istraživanja *sp*³ aminiranja. Zeng i Sun razvijaju elektrokemijsko oksidativno α -C(*sp*³)–H aminiranje ketona.⁴⁶ NH₄I koristi se pri tome kao redoks katalizator za aktivaciju ketona nakon čega slijedi nukleofilna supstitucija da bi se formirala C-N veza.⁴ Lei i suradnici objavljuju elektrooksidativnu C(*sp*³)–H aminaciju azola s tetrahidrofuranom (*Shema 9*).⁴⁷ Reakcija se može kontrolirati dodavanjem stehiometrijske količine inhibitora radikala.

$$R_{1} \underbrace{ \underbrace{ \begin{array}{c} H \\ N \\ X \end{array}}^{H}}_{X = C, N} + R_{2} - C(sp^{3}) - H \end{array} \xrightarrow{Pt (+) I Pt (-)} R_{1} \underbrace{ \begin{array}{c} R_{2} - C(sp^{3}) - H \\ R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{N = Podijeljena celija} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} H \\ X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c} R_{1} \underbrace{ H } \\X \end{array}}^{N}}_{X = C, N} + H_{2} \underbrace{ \begin{array}{c$$

Shema 9. Elektrokemijska C(sp³)–H aminacija⁴⁷

2.2.3.3. Formiranje C-S veze

Posljednjih godina, C-S veza privlači sve više interesa u znanstvenim krugovima zbog toga što je dio velikog broja biološki aktivnih molekula. Boydston i suradnici, 2014. godine, opisuju učinkovitu elektrosintetsku metodu za sintezu tioestera koristeći različite aldehide i supstrate tiola posredstvom NHC kao katalizatora (*Shema 10*).⁴⁸ Korištenjem 4-dimetilaminopiridina (DMAP) kao baze inhibira se stvaranje disulfida, dok se tioesteri dobivaju u dobrim iskorištenjima.⁴

Shema 10. Sinteza tioestera iz aldehida i supstrata i tiola⁴⁸

Kasnije, Lei i suradnici razvijaju elektrokatalitičko intermolekularno C-H / S-H unakrsno-spajanje bez prisutnosti okidansa.⁴⁹ Pri tome mogu sudjelovati elektron bogati areni i tiofenoli s dobrom učinkovitošću.⁴

2.2.4. ANULIRANJE

2.2.4.1. INTERMOLEKULARNO ANULIRANJE

2.2.4.1.1. [4+2] anuliranje

Već je ranije naglašeno da su heterociklički spojevi sastavni dio važnih prirodnih produkata, lijekova te biokativnih molekula. Intermolekularne i intramolekularne reakcije anuliranja sveprisutne i svestrane su metode za izgradnju peteročlanih i šesteročlanih heterocikličkih spojeva.⁴ Lei i suradnici razvijaju 2018. godine, fotokatalitičku dehirogenativnu [4+2] reakciju anuliranja između N-H ketimina i alkena da bi dobili derivate 3,4-dihidroizokinolina. Za to se koristi dvostruki katalitički sustav (*Shema 11*). ⁵⁰ Željeni se derivati dobiju lagano na sobnoj temperaturi i to s vrlo visokom regioselektivnošću i dijastereoseletivnošću.⁴ Nadalje se isti sustav primjenjuje za sintezu polisupstituranih aromata reakcijom derivata stirena i elektron-bogatih dienofila. Mehanizam reakcije može se objasniti generiranjem in-situ alkenskog radikal-kationa, a također se postiže velika reagioselektivnost.^{4,51}

Shema 11. Fotokatalitičko dehidrogenativno [4+2] anuliranje⁵⁰

Akermannova grupa znanstvenika, 2018. godine, razvija prvu elektrokemijsku kolbatkataliziranu C-H / N-H aktivaciju za [4+2] anuliranje koristeći interne alkene za spajanje.⁵² Na taj se način uspješno sintetiziraju različiti izokinolini.⁴ Istovremeno, ista grupa znanstvenika provodi spomenutu reakciju, ali s alenima s postignutom kemoselektivnošću, selektivnošću položaja i regiseletivnošću.⁴ Nadalje, Lei i suradnici izvješćuju o elektrooksidativnom C-H / N-H [4+2] anuliranju kataliziranom kobaltom između arilnih/vinilnih amida i etilena/etina.⁵³ Pri tome nastaju produkti u jako dobrim iskorištenjima. Temeljem preliminarnih mehanističkih studija pretpostavlja se da bi elektrokemijska oksidacija koordiniranog Co(II) kompleksa mogla biti ključni korak reakcijskog procesa.⁴ Također, Ackermman i suradnici razvijaju prvi primjer elektrokemijske aktivacije C-H veze pomoću slabe O-koordinacije koja uključuje rutenijev (0) intermedijer ključan za reakciju.⁵⁴ Lei i suradnici nadalje opisuju [4+2] anuliranje tercijarnih anilina i alkena za sintezu tetrahidrokinolina, dok Xu i suradnici izvješćuju o [4+2] anuliranju alkena s 1,2- i 1,3- diolima.⁴

2.2.4.1.2. [3+2] anuliranje

Lei i suradnici izvješćuju 2017. godine, o ekološki prihvatljivom i učinkovitom elektrooksidativnom [3+2] anuliranju između fenola i *N*-acetilindola da bi se postigla selektivna sinteza benzofuro[3,2]indola.⁵⁵ Kao elektrolit koristi se *n*Bu₄NBF₄, dok se kao kootapala koriste 1,1,1,3,3,3-heksafloroizopropilni alkohol i diklormetan (HFIP/CH₂Cl₂). Dobiveni produkti nastaju pri konstantnoj struji od 10 mA tijekom 1,8 h u nepodijeljenim ćelijama.⁴ Nešto kasnije, Xu i suradnici objavljuju metodu za elektrokemijsko dehidrogenativno anuliranje alkina katalizirano rutenijem (*Shema 12*).⁵⁶ Pri tome se dobivaju različiti indoli iz lako dostupnih derivata alkina i anilina. Reakcije su provode u nepodijeljenim ćelijama, vođenom mediju te su neosjetljive na zrak što ih čini vrlo jednostavnima i pristupačnima.⁴

Shema 12. Elektrokemijsko dehidrogenativno anuliranje alkina katalizirano rutenijem⁵⁶

2.2.4.1.3. [4+1] anuliranje

Ugljični monoksid jedan je od jako važnih polaznih spojeva za izgradnju karbonilnih spojeva.⁴ Lei i njegova grupa znanstvenika objavljuje elektrokemijsku oksidativnu C-H /N-H karbonilaciju kataliziranu kobaltom bez vanjskih oksidansa.⁵⁷ Mogu se dobiti razni intra- i intermolekularni karbonilacijski produkti koristeći ugljikov monoksid kao izvor ugljika u podijeljenim ćelijama. Mehanistički je za to poteban Co^{II} / Co^{III} / Co^I katalitički ciklus.⁴ Također valja spomenuti rad Ackermanna i suradnika koji 2018. godine izvješćuju o, do tada neviđenoj, iridijem kataliziranoj elektrooksidativnoj C-H aktivaciji unutar kooperativne redoks katalize, postavivši tako fazu za elektrooksidativno alkeniliranje kroz O-kordinaciju (Shema 13).⁵⁸ Takva aktivacija uključuje širok opseg različitih supstrata i pokazuje odličnu toleranciju na različite funkcionalne grupe. Detaljne mehanističke analize ukazuju na dobre učinke brze organometalne iridacije pomoću BIES (bazom potpomognut interni elektrofilni tip supstitucije) načina djelovanja i sinergističkog iridij (II / I) redoks katalitičkog režima. Time se omogućuje korištenje održive električne energije kao terminalnog oksidansa.⁴ Iste godine ista grupa znanstvenika izvješćuje o rodijem kataliziranom elektrokemijskom unakrsnodehidrogenativnom alkeniliranju kroz C-H aktivaciju.59 Željeni esterifikacijski produkti dobiju se pomoću slabo-koordinirane benzojeve kiseline i benzamida pri čemu se električna struja koristi kao terminalni oksidans, a kao jedini nusprodukt nastaje vodik.⁴

Shema 13. Elektrooksidativno C-H alkeniliranje⁵⁸

2.2.4.2. INTRAMOLEKULARNO ANULIRANJE

Derivati indola važni su strukturni dijelovi mnogih molekula. Zbog toga se puno pažnje posvećuje razvitku izravnih i učinkovitih sinteza takvih molekula. Xu i suradnici razvijaju odlične metode za formiranje derivata indola intramolekularnim anuliranjem korištenjem Cp₂Fe kao redoks katalizatora.⁴ Xu i suradnici 2016. godine razvijaju

elektrokemijsku sintezu visoko funkcionaliziranih indola i azaindola C-H / N-H funkcionalizacijom (hetero)-aril amina koristeći vezane alkine.⁶⁰ Reakcija se provodi bez oksidansa, plemeniti metal koristi se kao reagens, a kao redoks katalizator služi jeftin ferocen ([Cp₂Fe]). Ova metoda tolerira široki spektar funkcionalnih grupa te kao jedini teorijski nusprodukt nastaje vodik. Sintetička primjena navedene metodologije ogleda se u sintezi bioaktivnih prirodnih izokriptolepinskih spojeva.⁴ Nadalje, Xu i suradnici razvijaju elektrokemijsku kaskadnu ciklizaciju za formiranje tri prstena u jednom koraku koristeći Cp₂Fe kao katalizator.⁶¹ Ova strategija omogućuje učinkovitu sintezu policikličkih aromatskih ugljikovodika dopiranih dušikom koji svoju primjenu nalaze u znanosti o materijalima.⁴ Nadalje, izvješćuje se o strategiji za unakrsnodehidrogenativno spajanje $C(sp^3)$ -H i $C(sp^2)$ -H veza iz malonat amida korištenjem Cp₂Fe kao redoks katalizatora za sintezu C3-fluoriranih oksindola.⁶² U toj se transformaciji formiraju bazno- i temperaturno-osjetljivi fluorirani oksindoli pri uvjetima relativno niske temperature i kontinuiranog načina in situ generiranjem potrebnog oksidansa i baze.⁴ Xu nastavlja rad razvijanjem intramolekularnog C-H / N-H anuliranja putem adicije N-radikala. Godine 2016. razvija se prvi primjer u kojem amidinil radikali mogu nastati anodnim cijepanjem N-H veza.⁶³ Mehanističke studije pokazuju postojanje radikala u čijem je središtu dušik.⁴ Kasnije se opisuje elektrokemijska intramolekularna oksidativna aminacija tri- i tetrasupstituranih alkena bez metala i reagensa.⁶⁴ Ova elektrosintetska metoda ima dobru funkcionalnu toleranciju, a također ova metoda može se primijeniti na širok raspon supstrata karbamata, amida i urea.⁴ Waldvogel i suradnici, 2017. godine, razvijaju elektrokemijsko oksidativno instamolekularno anuliranje za sintezu N-N veze putem N-H / N-H unakrsnog spajanja.65 Mehanističke studije pokazuju da formiranje N-N veze uključuje diradikal kao intermedijer.⁴ Nadalje, ista skupina prijavljuje elektrokemijski–kataliziran pristup *N*-aril-fenantredin-6-onima kroz direktno stvaranje amidil radikala.⁶⁶ Ovaj protokol ostvaruje visoku strujnu učinkovitost i ne zahtjeva korištenje intermedijera. Na ovaj način dobivaju se različiti derivati N-arilfenantridin-6-oni s korisnim funkcionalnim skupinama te različitim supstitucijskim obrascima na anilinskom dijelu te bifenilnom entitetu u dobrim iskorištenjima. Također, moguć je up-scaling opisane metode.⁴ Dodatno, direktna $C(sp^3)$ -H funkcionalizacija predstavlja moćan i jednostavan protokol za konstruiranje ugljik-ugljik ili ugljik-heteroatom veze.⁶⁷ Konkretno govoreći, selektivno aminiranje $C(sp^3)$ -H i N-H unakrsnog-spajanja omogućuje učinkovitu sintezu zasićenih heterocikličkih spojeva koji sadrže dušik, a važni su sastavni dijelovi raznih

biološki aktivnih spojeva.^{68,69} Lei i suradnici objavljuju 2018. godine, elektrokemijske oksidativne Hofmann–Löffler–Freytag reakcije. Intramolekularno udaljeno inertno δ – $C(sp^3)$ –H aminiranje amida može se postići 1,5-Hofmann–Löffler–Freytag procesom u nepodijeljenoj ćeliji pod uvjetima konstantne elektrolizne struje.⁷⁰ Kao elektrolit koristi se terabutilamonijev acetat koji također sudjeluje u fromiranju intermolekularne vodikove veze s amidom te na taj način promovira cijepanje N-H veze. Ovom metodom postižu se razna benzilna i neaktivirana tercijarna, sekundarna i primarna $C(sp^3)$ –H aminiranja u dobrim iskorištenjima. Također, lako se provodi scale-up navedene reakcije.⁴ Lei i njegova grupa demonstriraju protokol elektrokatalitičke reakcije za postizanje intramolekularnog dehidrogenativnog anuliranja *N*-aril-enamina (*Shema 14*).⁷¹ Kao elektrolit koristi se kalijev jodid koji također sudjeluje u redoks procesu oksidativnog anuliranja. Dobivena su dobra iskorištenja bez upotrebe oksidansa i prijelaznih metala.⁴

Shema 14. Intramolekularna sinteza indola⁷¹

Dodatno, strategiju intramolekularnog anuliranja za sintezu indola bez oksidansa razvija Wu i njegova skupina.⁷² Na taj se način dobiva niz indola pri blagim reakcijskim uvjetima uz otpuštanje vodika. Mehanistički gledano, enamini se oksidiraju s Ir^{iv} koji potječe od $Ir(ppy)_3$ putem prijenosa jednog elektrona na Co(dmgH)₂(4–CO₂Mepy)Cl. Nakon toga slijedi intramolekularna radikalna adicija da bi nastali indoli pri sobnim uvjetima. Kompleks kobaloksima služi kao katalizator za hvatanje protona i eliminaciju elektrona iz supstrata za nastajanje vodika.⁴ Zhangova grupa izvještava, 2017. godine, o fotoinduciranom intramolekularnom dehidrogenativnom anuliranju 4*H*–kromen–4-ona za sintezu kompliciranih heteroaromata s fuzioniranim prstenovima bez prisutnosti prijelaznog metala.⁷³

Lei, Wu i Xu grupe razvijaju C–H / S–H intramolekularna anuliranja putem adicije Sradikala. Lei i Wu opisuju, 2015. godine, reakcije C–H funkcionalizacije / C -S formiranja za nastajanje benzotiazola bez prisutnosti vanjskog oksidansa.⁴ Potencijalno se može provesti i "scale-up" ove strategije za sintezu biološki aktivnih molekula koje nose strukturni skelet benzotiazola (*Shema 15*A).⁷⁴ Kasnije, Xu grupa razvija TEMPO (2,2,6,6– tetrametilpiperidin-1-il)oksil)–kataliziranu elektrokemijsku reakciju tiolacije C–H veze za sintezu benzotiazola i tiazolopiridina (*Shema 15B*).⁷⁵ Mehanističke studije pokazuju da se tioamidni supstrat oksidira kroz unutranju sferu prijenosa elektrona pomoću elektrokemijski generiranog TEMPO⁺ da bi nastao tioamidilni radikal. Nastali radikal podvrgava se homolitičkoj aromatskoj supstituciji kako bi se formirala ključna C–S veza.⁴ Nadalje, 2018. godine, objavljena je jedinstvena elektrokemijska metoda za sintezu benzotiazola i tiazolopiridina u kontinuiranom protoku.⁷⁶ Navedena strategija ne zahtjeva postojanje pomoćnog elektrolita te omogućuje da se reakcija provodi pri sobnoj temperaturi.⁴ Iste godine, Xu i suradnici opisuju elektrokemijsku reakciju C–H oksidacije za pripremu 4*H*–1, 3–benzoksazina putem adicije O–radikala (*Shema 15C*).⁷⁷ Ova se reakcija također može provesti u elektrokemijskom mikroreaktoru.⁴

Shema 15. Anuliranje pri sintezi tiazolopiridina i 4H-1,3-benzoksazina⁴

Početkom 2012. godine, elektrokemijska oksidativna metoda uspješno se primjenjuje za reakciju ciklizacije alkohola *N*-benzil-2-piperidina i 3-dialkilamino-1-fenilpropanola.⁷⁸ Korištenje jodidnih iona značajno povećava iskorištenja navedenih reakcija.⁴ Xu i Zang, 5 godina kasnije, razvijaju učinkovitu elektrokemijsku $C(sp^3)$ reakciju esterifikacije za sintezu bioaktivnih α -aciloksi laktona uz razvijanje vodika.⁷⁹ nBu₄NI djeluje kao medijator za promoviranje transformacije.⁴ Lei i suradnici, 2017.

godine, objavljuju prvu reakciju elektrooksidativne tandem ciklizacije alkina sa sulfinskim kiselinama da bi nastali sulfonirani indenoni bez prisutnosti oksidansa, u jednostavnim nepodijeljenim ćelijama, pod uvjetima konstantne struje.⁸⁰ Mehanističke studije indiciraju da reakcija vjerojatno uključuje radikalni proces, a da je sufonilni jod reakcijski intermedijer.⁴ Nakon toga, Lei i suradnici razvijaju elektrokemijsko dehidrogenativno C–S unakrsno–spajanje bez prisutnosti oksidansa i katalizatora.⁸¹ Anoda je napravljena od grafita, a katoda od platine. Različiti primijenjeni sekundarni amini s fenilnim izocijanatom daju dobra iskorištenja. Također, intramolekularno dehidrogenativno C–S unakrsno–spajanje može se postići koristeći *N*–aril-tioamide kao supstrate.⁴

2.3. ELEKTROKEMIJSKO INTRAMOLEKULARNO DEHIDROGENATIVNO SPAJANJE *N*-BENZIL(TIO)AMIDA: DIREKTNA I JEDNOSTAVNA SINTEZA 4*H*-1,3- BENZOKSAZINA I 4*H*-1, 3-BENZTIAZINA

2.3.1. UVODNI DIO

Posljednjih desetljeća veliku pozornost privlači nova metoda za stvaranje fuzioniranih heterocikličkih skeleta. Radi se o intramolekularnom dehidrogenativnom spajanju koristeći X–H (X = heteroatom) s C–H vezom. Različiti *N*–heterociklički spojevi mogu se pripremiti intramolekularnim C–N, C–O ili C–S formiranjem veza koristeći, pri tome, amide i tioamide kao supstrate. Organska elektrosinteza pokazuje se odličnom alternativom tradicionalnim termokemijskim metodama za navedeni tip reakcije jer je ekološki prihvatljiva u smislu izbjegavanja opasnih i otrovnih oksidacijskih reagensa. Međutim, ponekad pri ovakvim elektrokemijskim procesima dolazi do oksidativne degradacije produkta zbog njihovog nižeg oksidacijskog potencijala u odnosu na prekursore. To može uzrokovati manja iskorištenja i nečistoće.⁸² Postavlja se pitanje kako uravnotežiti pretvorbu reaktanta i degradaciju produkta. Xu i suradnici izvješćuju o izravnoj elektrolizi N-benzilamida za sintezu supstitituiranih 4H-1,3-benzoksazina, ali opseg supstrata ograničen je na benzil gem-dialkil-supstituirane N-benzilamide. U slučaju da supstrati imaju samo jedan ili ni jedan alkilni supstituent u benzilnom položaju, iskorištenja su mala ili produkt uopće ne nastaje. Pretpostavlja se da bi se ovaj problem mogao riješiti korištenjem blažih uvjeta elektrolize. U nastavku se izlažu rezultati elektrokemijske intramolekularne aromatske C-H oksigenacije N-benzilamida i Csulfurizacije N-benziltioamida s 4H–1,3–benzoksazinima i 4H–benztiazinima dobivenih u umjerenim do dobrim iskorištenjima pri sobnoj temperaturi.⁸² Elektrokemijska dehidrogenativna ciklizacija N-benzilamida provodi se s pločastom platinskom anodom i štapićastom grafitnom katodom u nepodijeljenoj ćeliji pri sobnoj temperaturi. Pri tome se uspješno potiskuje degradacija produkata, a 4H-1,3-benzoksazini dobivaju se neovisno o supstituentima u benzilnom položaju. Također, ova se metoda može primijeniti za dobivanje 4H-1,3-benzotiazina.⁸²

2.3.2. OPTIMIZACIJA REAKCIJSKIH UVJETA

Kao početni supstrat odabire se N-benzilbenzamid A1 kako bi se optimirali reakcijski uvjeti elektrokemijskog intramolekularnog dehidrogentaivnog spajanja. Elektroliza A1 najprije se provedi u otopini nBu4NClO4 (0.5 ekv) u CH3CN pri sobnoj temperaturi pod zrakom. Rezultati pokazuju da je reakcija osjetljiva na materijal elektroda. Kada se kao anoda i katoda koristi pločasta Pt elektroda (1 cm x 1 cm), produkt ne nastaje ni nakon 2 h reakcije, a sav početni materijal se raspadne nakon 4 h (Tablica 1, redni broj). Zamjenom platinske anode grafitnom ($\Phi = 6 \text{ mm x } 65 \text{ mm}$), uočava se nastajanje cikličkog produkta B1 koji se tijekom reakcije postepeno raspada. Nakon 2 h reakcije sav početni materijal nestane, a iskorištenje **B**₁ iznosi samo 47 % (*Tablica 1, redni broj 2*). Zamjenom elektroda iz C(+) - Pt(-) u Pt(+) - C(-), raspad **B**₁ može se značajno smanjiti pri čemu iskorištenje istog iznosi 78%.⁸² Kada se umjesto grafitnog štapića koristi RCV anoda, iskorištenje A2 iznosi 75 % (Tablica 1, redni broj 3). Nešto manje iskorištenje dobiva se kod C(+) - C(-) sustava elektroda, no za ostvarenje toga reakcija se treba provoditi duže, 4h (Tablica 1, redni broj 4). Ako se CH₃CN zamijeni otapalom druge polarnosti, kao što je dioksan, DMSO ili DMF iskorištenja B_1 iznose samo 21 - 35%(Tablica 1, redni broj 5-7). THF i EtOAc nisu prikladna otapala za navedenu vrstu reakcije zbog netopljivosti elektrolita (Tablica 1, redni broj 8-9). Također neprikladnim za ovu reakciju pokazuje se smjesa CH₃CN i H₂O jer se dobivaju premala iskorištenja **B**₁ (Tablica 1, redni broj 10). Također, za navedenu se reakciju testiraju ostali različiti komercijalno dostupni elektroliti kao što su nBu4NOAC, nBu4Br, Et4BF4, Et4NOTs (Tablica 1, redni broj 11-14), no kao najbolji elektrolit stoji nBu₄NClO₄. Povećanjem konstantne struje na 12 mA ili smanjenjem na 8 mA smanjuje se iskorištenje B1 (Tablica *1, redni broj* 15 - 16).⁸² Prema navedenom, korištenje Pt(+) – C(-) elektrodnog sustava, CH₃CN kao otapala te *n*Bu₄NClO₄ kao elektrolita daje najbolje iskorištenje.

O N	anoda	anoda - katoda, nepodijeljena celija 10 mA						
Н	r	.t, otapalo, elektro	lit	0-				
A ₁ B ₁								
Redni broj	Anoda -	Otapalo	Elektrolit (0.5	Iskorištenje				
	katoda		ekv)	$B_1 / \%^{[b]}$				
1	Pt (+) – Pt (-)	CH ₃ CN	nBu ₄ NClO ₄	0				
2	C (+) – Pt (-)	CH ₃ CN	nBu ₄ NclO ₄	47				
3	Pt (+) – C (-)	CH ₃ CN	nBu4NclO4	78 (75) ^[c]				
4	C (+) – C (-)	CH ₃ CN	nBu ₄ NclO ₄	73				
5	Pt (+) – C (-)	Dioksan	nBu4NclO4	35				
6	Pt (+) – C (-)	DMSO	nBu ₄ NclO ₄	27				
7	Pt (+) – C (-)	DMF	nBu4NclO4	21				
8	Pt (+) – C (-)	THF	nBu ₄ NclO ₄	U tragovima				
9	Pt (+) – C (-)	EtOAc	nBu4NclO4	0				
10	Pt (+) – C (-)	CH ₃ CN –	nBu ₄ NclO ₄	61				
		$H_2O = 4:1,$						
		\mathbf{v}/\mathbf{v}						
11	Pt (+) – C (-)	CH ₃ CN	<i>n</i> Bu ₄ NOAc	43				
12	Pt (+) – C (-)	CH ₃ CN	<i>n</i> Bu ₄ NBr	55				
13	Pt (+) – C (-)	CH ₃ CN	Et ₄ BF ₄	37				
14	Pt (+) – C (-)	CH ₃ CN	Et ₄ NOTs	62				
15	Pt (+) – C (-)	CH ₃ CN	nBu4NclO4	58 ^[d]				
16	Pt (+) – C (-)	CH ₃ CN	nBu ₄ NclO ₄	63 ^[e]				
^[a] Reakcijski uvjeti: reakcija na skali od 0.2 mmol u nepodijeljenoj ćeliji, konstantna								
struja = 10 mA, sobna temperatura, 2.0 h, ^[b] izolirano iskorištenje, ^[c] s RCV katodom,								
^[d] konstantna struja = 12 mA, ^[e] konstantna struja = 8 mA								

Tablica 1. Optimizacija uvjeta sinteze spoja $\mathbf{B}\mathbf{1}^{[a]}$

2.3.3. SINTEZA 4H–1,3-BENZOKSAZINA

Nadalje se pri optimiziranim reakcijskim uvjetima istražuje opseg supstrata koji se koriste pri sintezi 4H-1,3-benzoksazina te su u Tablici 2 prikazani rezultati shodno tome. Za supstrate s elektron-odvlačećim i elektron-donorskim skupinama supstituranim na benzoilnom dijelu A1 spoja, odgovarajući se produkti dobivaju u srednjim do dobrim iskorištenjima (Tablica 2, B₂ - B₄). Također, postoji tolerancija na furilnu grupu u ovoj vrsti reakcije pri čemu se željeni produkt dobiva u iskorištenju od 73% u slučaju kada se koristi štapićasta grafitna anoda i pločasta platinska katoda (Tablica 2, B₅). Nbenzilmetilakriloilamidni supstrat ostvaruje iskorištenje od 70% (Tablica 2, B₆). Alifatski amidi ne pokazuju se kao odgovarajući supstrati te reakcija vodi nastanku komplekse smjese za nestabilnost odgovarajućih kompleksnih produkata (Tablica 2, B7). Za supstrat s metilnom grupom supstituiranom na benzilnom dijelu A1, reakcija se odvija glatko te se dobiva produkt u iskorištenju od 70% pri korištenju štapićaste grafitne anode i pločaste platinske katode, dok se pri zamjeni elektroda dobije kompleksna smjesa (Tablica 2, B₈). Fluoridni supstrat daje srednja iskorištenja, dok se kloridni supstrat ne pokazuje prikladnim (Tablica 2, B₉, B₉).⁸² Ova je elektrosintetska metoda također kompatibilna za sintezu 1*H*-nafto[1,2-*e*][1,3]oksazina koji predstavlja temeljnu strukturu niza spojeva koji pokazuju antifugalno i antimikrobno djelovanje (Tablica 2, B10).83 Benzilni mono- supstituirani ili gem-supstituirani N-benzil-amidi također daju odgovarajuće produkte u zadovoljavajućim iskorištenjima (Tablica 2, $\mathbf{B}_{11} - \mathbf{B}_{16}$). Supstrati s različitim supstituentima na arilnim prstenovima N-(1-feniletil)benzamida daju odgovarajuće produkte u dobrim iskorištenjima (*Tablica 2*, $\mathbf{B}_{17} - \mathbf{B}_{19}$).⁸²

Tablica 2. Sinteza 4H-1,3-benzoksazina [a],[b]

^[a]Reakcijski uvjeti: reakcija provedena na skali od 0,2 mmol u nepodijeljenoj ćeliji, Pt pločasta anoda (1 x 1 cm), grafitna štapićasta katoda (Φ 6 mm x 65 mm), konstantna struja = 10 mA, sobna temperatura, 2,0 h, ^[b] izolirano iskorištenje, ^[c] s štapićastom grafitnom anodom i Pt pločastom katodom

2.3.4. SINTEZA 4H-1,3-BENZOTIAZINA

Spomenute vrste reakcija primjenjuju se zatim na sintezu 4H–1,3–benzotiazina. Kao početni spoj koristi se N–benzilbenzotiamid **C** pri optimiziranim elektrolitičkim uvjetima. 2–fenil–4H–1,3–benzotiazin **D**₁ dobiva se u očekivanom iskorištenju od 81% (*Tablica 3*, **D**₁). Benzilni monosupstituirani i *gem*–supstituirani N–benzilbenzotioamidi brzo se cikliziraju kako bi dali odgovarajuće produkte u dobrim iskorištenjima (*Tablica 3*, **D**₂–**D**₆). Također, supstrati s 4-NO₂, 4-Me i 4–Cl supstituentima na benzoilnom dijelu polaznog spoja **C** daju željene produkte (*Tablica 3*, **D**₇ – **D**₉). Nadalje, supstrati s metilnom grupom ili –F atomom supstituiranom na benzilnom dijelu polaznog spoja **C** daju odgovarajuće produkte u zadovoljavajućem iskorištenju (*Tablica 3*, **D**₁₀ – **D**₁₁). Također, ovom se metodom može pripremiti i 1*H*–naftol[1,2][1,3]tiazin u dobrom iskorištenju (*Tablica 3*, **D**₁₂).⁸²

Tablica 3. Sinteza 4H-1,3-benzotiazina [a],[b]

2.3.5. PRETPOSTAVLJENI MEHANIZAM ELEKTROSINTEZE

Iako se detaljni mehanizam reakcije još treba razjasniti, mogući mehanizam prikazan je, prema literaturi⁸⁴, na *Shemi 16*. Pri elektrolitskim uvjetima, benzilni se dio supstrata **A** ili **C** oksidira s ciljem generiranja radikal-kationa **Z**, koji podvrgnut ciklizaciji i deprotoniranju daje intermedijer, radikal **Y**. Konačno se radikal **Y** oksidira te rearomatizira dajući produkt **B** ili **D**.

Shema 16. Mogući mehanizam elektrosinteze 4H–1,3-benzoksazina i 4H–1,3benzotiazina

U konačnici se provodi reakcija hidrolize spoja A₁ koja slijedi reakciju elektrolize nakon 2 h (*Shema 17*). Hidroliza se provodi pomoću razrijeđene 1.0 M otopine HCl–a i acetona. Ciklički produkt **B**₁ nestaje u manje od minute te pri tome nastaje N–(2–hidroksibenzil)benzamid **E** koji se izolira u iskorištenju od 65%. U usporedbi s konvencionalnim metodama za sintezu spoja **E**, ovaj postupak omogućava puno viša iskorištenja te smanjuje broj reakcijskih koraka na samo dva. Zbog toga se može zaključiti da je ovo praktičan pristup sintezi derivata 1–amidoalkil–2–fenola.⁸²

Shema 17. Reakcija elektrolize N-benzilbenzamida slijeđena reakcijom hidrolize

2.4. ANODNO METOKSILIRANJE I ACETOKSILIRANJE IMINA I IMIDATA

Kao nastavak anodnih α -supstitucitucijskih reakcija amina i karbamata, opisuje se anodna supstitucija u α -položaju dušikovog atoma u iminima. Detaljan opis anodne oksidacije je slijedeći⁸⁵: nukleofili, kao na primjer voda, u otapalu reagira s radikal kationom koji nastaje iz dvostruke veze imina kako bi se prouzročilo cijepanje C–N veze. Poznato je da imini nastali iz benzofenona i glicinskih estera reagiraju s *N*bromosukcinimidom u NaOAc-DMF otopini dajući odgovarajuće α -acetoksi derivate.⁸⁶ Nadalje se opisuje prvi primjer uspješne anodne α -metoksiliranja i α -acetoksiliranja imina i imidata.⁸⁷

Sustav 2-oksazolinskog prstena ima ogroman potencijal.⁸⁸ Najprije se anodna metoksilacija cikličkog imidata, kao što je na primjer 2-fenil-2-oksazolin, provodi pri različitim uvjetima s ciljem optimizacije istih (*Tablica 4*). Elektroliza se provodi pri konstantnoj struji u nepodijeljenoj ćeliji. Kao što je prikazano u *Tablici 4*, provodi se se anodno metoksiliranje te se metoksi- skupina većinski uvodi u α -položaj atoma dušika. Kad se koristi neutralni pomoćni elektrolit, kao na primjer Et₄NBF₄, dobivaju se mala iskorištenja te su potrebne velike količine struje da bi reakcija bila potpuna (*Tablica 4*, *redni broj 1 -3*). Nasuprot tome, kad se koristi kiseli elektrolit, kao na primjer Et₄NF·4HF, istovremeno se povećava i dobiveno iskorištenje i učinkovitost struje (*Tablica 4, redni broj 4*). Najbolji rezultati dobivaju se kad se istovremeno koristi Et₄NBF₄ i (NH₄)₂SO₄ (*Tablica 4, redni broj 5*).⁸⁷ Detaljna uloga (NH₄)₂SO₄ nije jasna, no ono što se pretpostavlja jest to da prisutnost (NH₄)₂SO₄ drži elektrolitsku otopinu gotovo neutralnom čime se potiskuje simultana oksidacija katodno generiranih metoksidnih iona tijekom elektrolize.⁸⁷
	Ph	N OMe							
E ₁ F ₁									
Redni broj	Temperatura	Anoda	Elektrolit	Struja	Iskorištenje				
				(F/mol)	(%) ^[a]				
1	rt	Pt	Et ₄ NBF ₄	12	40				
2	0°C	Pt	Et ₄ NBF ₄	15	41				
3	rt	Grafit	Et ₄ NBF ₄	15	41				
4	rt	Pt	Et ₄ NF · 4HF	5	69				
5	rt	Pt	$Et_4NBF_4 + (NH_4)_2SO_4^{[b]}$	5	80				
^[a] Izolirana i	^[a] Izolirana iskorištenja								
^[b] 3 ekvivalenta (NH ₄) ₂ SO ₄ (suspenzija)									

Tablica 4. Anodno metoksiliranje 2-fenil-2-oksazolina (E1)

Nadalje se provodi anodno metoksiliranje različitih 2-supstituiranih-2-oksazolina pri optimiziranim uvjetima kao što je prikazano u Tablici 5. Reakcija metoksiliranja provodi se lagano te se dobivaju odgovarajući α-metoksilirani produkti u dobrim iskorištenjima. Iznimka su 2-(metoksifenil)-2-oksazolin (E3) i 2-nonil-2-oksazolin (E7). Željena se reakcija ne nastavlja zato što se *p*-metoksifenilni dio lakše oksidira nego iminski dio.⁸⁹ Pri anodnom metoksiliranju E2, dobiva se smjesa stereoizomera s umjerenom stereoselektivnošću (trans / cis = 4,8). U slučaju 2-(p-nitrofenil)-2-oksazolina (E₆), formiraju se polimerizirani produkti pod istim uvjetima koju su ranije navedeni. Nitro skupina E6 posjeduje pozitivniji redukcijski potencijal od metanola pa se E6 reducira na katodi dajući polimerne produkte. Međutim, valja naglasiti da se anodno metoksiliranje E6 uspješno provodi u podijeljenoj ćeliji. U tom se slučaju anolitu dodaje piridin kako bi vezao kiselinu.⁸⁷ Nadalje, u slučaju 2-nonil-2-oksazolina (E7), ne nastaje metoksilirani produkt, ali nastaju značajne količine dekanske kiseline. U tom se slučaju metanol pretežno oksidira na anodi zbog puno većeg oksidacijskog potencijala E7 u odnosu na metanol (2.8 vs. SCE). Zbog toga se čini da anodno generirane kiseline uzrokuju raspad E₇.⁸⁷

Tablica 5. Anodna metoksilacija E

	R N_		-2e⁻, -H⁺ N_OMe					
$R_1 \rightarrow (P_1 - P_2) = 0 \rightarrow R_2$			$Et_4NBF_4 - (NH_4)_2SO_4/MeOH$ $O R_2$ nepodijeljena ćelija					
E F								
2	- Oksazolin		E_p^{ox} (V vs SCE) ^[a]	Struja (F/mol) Iskorištenje (%				
Redni	R ₁	R ₂						
broj								
E ₁	Ph	Н	2,3	5	F ₁ 80			
E ₂	Ph	Me	2,3	6	F ₂ 80 (trans			
					/cis)=4,8 ^[c]			
Ез	4-MeOC ₆ H ₄	Н	1,9	5	-			
E4	4-ClC ₆ H ₄	Н	2,3	7	F ₄ 80			
E 5	4-MeC ₆ H ₄	Н	2,1	6	F 5 80			
E 6	4-NO ₂ C ₆ H ₄	Н	2,4	7	F6 80			
E 7	ⁿ C ₉ H ₁₉	Н	2,8	10	[e]			
^[a] Vršni oksidacijski potencijal izmjeren s CV koristeći Pt elektrodu u 0,1 M Et ₄ NBF ₄ –								
MeCN (0,1 V/s)								
^[b] Izolirana iskorištenja								
^[c] Kompleksna smjesa								
^[d] Korištena podijeljena ćelija								
^[e] C ₉ H ₁₉ COOH dobiven u iskorištenju od 24%								

1,3-oksazoli nalaze se u raznim prirodnim spojevima.⁹⁰ Metoksilirani produkti **F** pomoću kiselog katalizatora konvertiraju se u **G** u dobrim iskorištenjima (*Tablica 6*). Najbolje rezultate pri tome daje korištenje $BF_3 \cdot OEt_2$ kao kiselog katalizatora u toluenu pod refluksom. Nasuprot tome, slabe kiseline kao što su *p*-toluensulfoska i kamforsulfonska kiselina daju slaba iskorištenja.⁹¹

$R_1 \xrightarrow{N}_{O} \xrightarrow{-2e^{-},}_{R_2} \xrightarrow{-2e^{-},}_{Met}$	-H⁺ DH	$\begin{bmatrix} OMe \\ R_2 \end{bmatrix} \frac{- MeOH}{BF_3 \cdot OEt_2 (ka)}$ refulx	$\frac{1}{1 \text{ h}} \qquad R_1 \xrightarrow{N} R_1$
Redni broj	R ₁	R ₂	Iskorištenje (%) ^[a]
1	Ph	Н	61
2	Ph	Me	42
3	4-ClC ₆ H ₄	Н	55
4	$4-NO_2C_6H_4$	Н	53
^[a] Izolirana iskorišter	nja iz 2-oksazolina A	1	1

Tablica 6. Sinteze 1,3-oksazola G iz 2-oksazolina A

3. REZULTATI I RASPRAVA

3.1. UVOD

Benzoksazini i benztiazini proučavani su i istraživani spojevi zbog svoje strukture koja ima potencijalno farmakološka svojstva. Ovaj rad svoj naglasak stavlja na elektrokemijsku sintezu različitih derivata 4H-1,3-benzoksazina i 4H-1,3-benzitiazina s potencijalnim afinitetom prema RNK i DNK, nukleinskim kiselinama koje su često mete vezanja raznih vrsta lijekova. Na položaju 2 benzitazinske/benzoksazinske jezgre nalazi se fenilna skupina. Provedene su elektrokemijske reakcije sinteze različito supstituiranih 2-fenil-4H-1,3-benzoksazina i 2-fenil-4H-1,3-benzitiazina iz odgovarajućih amida i tioamida kao prekursora. Najprije su iz različito supstituirane benzojeve kiseline dobiveni odgovarajući acil-kloridi. Nadalje, reakcijom acil-klorida s različito supstituiranim benzilnim aminima dobiveni su željeni amidi. Amidi su prevedeni u odgovarajuće tioamide reakcijom s Lawessonovim reagensom. U konačnici su optimizirane i provedene reakcije elektrokemijske ciklizacije pri čemu nastaju 2-fenil-4H-1,3-benzoksazini odnosno 2-fenil-4H-1,3-benzitiazini. Kao zadnji korak, provedene su reakcije aminiranja i elektrokemijske funkcionalizacije halogeniranih derivata 2fenil-4H-1,3-benzoksazina odnosno 2-fenil-4H-1,3-benzitiazina te je isprobana priprava metilnih soli 4H-1,3-benztiazina.

3.2. SINTEZA ACIL KLORIDA

Potrebni acil kloridi sintetizirani su iz odgovarajućih supstituiranih benzojevih kiselina pomoću oksalil-klorida kao izvora klora, katalitičke količine DMF-a te koristeći diklormetan kao otapalo. Reakcijska se smjesa miješala 20 h -72 h na sobnoj temperaturi.

3.2.1. SINTEZA 4-KLORBENZOIL KLORIDA

4-klorobenzoil klorid sintetiziran je četiri puta na skali od 1 g prema gore opisanoj metodi. Najprije je 4-klorbenzojeva kiselina otopljena u diklormetanu, te je zatim nastala otopina ohlađena na 0°C, nakon čega su dodani oksalil klorid i DMF (*Shema 18*).

Shema 18. Sinteza 4-klorbenzoil klorida (1a)

Smjesa se miješala na magnetnoj miješalici 20 h na sobnoj temperaturi. Tijek reakcije praćen je pomoću UPLC-MS kromatografije. Uzorak za UPLC-MS otopljen je u metanolu, čime iz željenog produkta nastaje ester, metil-4-klorbenzoat, koji se može detektirati pomoću UPLC-MS. Ukoliko UPLC-MS pokazuje smjesu estera i kiseline dodane su nove količine oksalil klorida i DMF te se nastala smjesa miješala na magnetnoj miješalici sve dok UPLC-MS nije pokazao prisutnost samo estera odnosno potpunu konverziju. Otapalo je upareno na rotacijskom uparivaču te je dobiven produkt u obliku uljaste prozirne tekućine koja je korištena u sljedećim reakcijama. Snimljen je ¹H-NMR (*Prilog 1*) koji odgovara strukturi željenog produkta **1a**. Iskorištenje opisane reakcije je u pravilu kvantitativno.

3.2.2. SINTEZA BENZOIL-KLORIDA

Nadalje je sintetiziran benzoil-klorid (1b) iz benzojeve kiseline.

Shema 19. Sinteza benzoil-klorida (1b)

Benzoil-klorid sintetiziran je dva puta na skali od 1 g prema gore opisanoj metodi. Tijek reakcije praćen je pomoću UPLC-MS kromatografije na način opisan u pripravi **1a**. Iskorištenje prve reakcije je bilo 78% dok je u drugoj reakciji iskorištenje bilo nešto veće od 100%. U oba slučaja čistoća dobivenih produkata je bila dovoljna za upotrebu u sljedećoj reakciji bez daljnjeg pročišćavanja.

3.3. SINTEZA AMIDA

Iz pripravljenih acil-klorida **1a** i **1b** reakcijom amidacije s različito supstituiranim benzilnim aminima dobiveni su amidi uz prisutstvo *N*,*N*-diizopropiletilamina (DIPEA) kao baze te koristeći diklormetan kao otapalo.

3.3.1. SINTEZA 4-KLOR-N-(3-KLORBENZIL)BENZAMIDA

Shema 20. Sinteza 4-klor-N-(3-klorbenzil)benzamida (2a)

Najprije je 4-klorbenzoil-klorid (1a) otopljen u diklormetanu, te su nastaloj otopini dodani 3-klorbenzilamin i DIPEA. Reakcijska smjesa se miješala na magnetnoj miješalici 20 h, nakon čega je snimljen UPLC-MS koji pokazuje samo jedan signal, onaj željenog produkta 2a. Otapalo je upareno na rotacijskom uparivaču. Snimljen je ¹H-NMR u kojem se mogu uočiti signali na 3.1 ppm i 3.6 ppm u alifatskom području koji ukazuju na prisutnost hidrokloridne soli DIPEA-e pa je stoga ostatak nakon uparavanja pročišćen ekstrakcijom. Nakon otapanja dobivenog produkta u etilacetatu, prisutne soli su ekstrahirane s zasićenim otopinama NaHCO₃ (1x) i NaCl (2x). Organski sloj je zatim sušen 10 minuta na Na₂SO₄. Otapalo je upareno te je ponovno snimljen ¹H-NMR u kojem je jasno vidljivo da su se nestali smetajući signali u alifatskom području (*Prilog 2*). Željeni produkt je dobiven u obliku bijele krutine. Iskorištenje ove reakcije je nešto veće od 100%. Ponovljena reakcija dobivanja 4-klor-*N*-(3-klorbenzil)benzamida (2a) napravljena je po opisanom postupku, ali je iskorištenje reakcije bilo 71,27%. U oba slučaja čistoća dobivenih produkata je bila dovoljna za upotrebu u sljedećoj reakciji bez daljnjeg pročišćavanja.

3.3.2. SINTEZA N-BENZILBENZAMIDA

Provedena je, zatim, sinteza *N*-benzilbenzamida (**2b**) (*Shema 21*). Priprava Nbenzilamida (**2b**) je planirana zbog sinteze standarda za potrebe evaluiranja uvjeta elektrokemijske reakacije.

Shema 21. Sinteza N-benzilbenzamida (2b)

Sinteza *N*-benzilamida (**2b**) provedena je na način opisan kod priprave **2a**. Nakon obrade reakcijske smjese, snimljen je UPLC-MS koji pokazuje signal željenog produkta **2b**, no također i nove neidentificirane signale. Stoga je reakcijska smjesa pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-20 % etil-acetata) kao eluens. Snimljen je UPLC-MS nakon provedene kolonske kromatografije koji pokazuje samo signal željenog *N*-benzilbenzamida (**2b**). Dobivena je bijela krutina **2b** u iskorištenju od 80,25%.

3.3.3. SINTEZA 4-KLOR-N-(4-KLOROBENZIL)BENZAMIDA

Nadalje je provedena sinteza 4-klor-N-(4-klorobenzil)benzamida (2c) (Shema 22).

Shema 22. sinteza 4-klor-N-(4-klorbenzil)benzamida (2c)

Sinteza 4-klor-*N*-(4-klorbenzil)benzamida (**2c**) provedena je na način opisan kod priprave **2b**. Nakon obrade reakcijska smjesa je pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu diklormetan/metanol (0-3% metanola) kao eluens. UPLC-MS izolirane frakcije nakon provedene kolonske kromatografije pokazuje samo signal željenog 4-klor-*N*-(4-klorbenzil)benzamida (**2c**). Dobivena je bijela krutina **2c** u iskorištenju od 87,05%.

3.3.4. SINTEZA N-(4-KLORBENZIL)BENZAMIDA

Nadalje je provedena sinteza N-(4-klorbenzil)benzamida (2d) (Shema 23).

Shema 23. Sinteza N-(4-klorbenzil)benzamida (2d)

Reakcijom benzoilklorida (1b) i 4-klorobenzil amina na prethodno opisani način dobiven je N-(4-klorbenzil)benzamid (2d). Nakon obrade reakcijska smjesa je pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu diklormetan/metanol (0-3% metanola) kao eluens. UPLC-MS izolirane frakcije nakon provedene kolonske kromatografije pokazuje samo signal željenog N-(4klorbenzil)benzamida (2d). Dobivena je bijela krutina iskorištenju od 76,51%.

3.3.5. 4-KLOR-N-(4-CIJANOBENZIL)BENZAMIDA

Nadalje je provedena sinteza 4-klor-N-(4-cijanobenzil)benzamida (2e) (Shema 24).

Shema 24. Sinteza 4-klor-N-(4-cijanobenzil)benzamida (2e)

4-klor-*N*-(4-cijanobenzil)benzamid (**2e**) dobiven je reakcijom 4-klorobenzoil klorida **1a** i 4-cijanobenzil amina na prethodno opisani način. Nakon provedene ekstrakcije, snimljen je UPLC-MS koji pokazuje samo signal željenog produkta **2e.** Snimljen je ¹H-NMR koji odgovara strukturi željenog produkta te također pokazuje dobru čistoću produkta (*Prilog 3*). Dobivena je smeđa krutina **2e** u iskorištenju od 87,63%.

3.4. SINTEZA TIOAMIDA

Iz pripravljenih amida **2a-2e** pomoću Lawessonovog reagensa sintetizirani su odgovarajući tioamidi. Najprije su provedene testne reakcije u svrhu optimizacije reakcijskih uvjeta. Reakcije sinteze provedene su na treskalici na 110°C u prisustvu 1 ekvivalenta Lawessonovog reagensa. Svi su nastali tioamidi najprije pročišćeni ekstrakcijom te dodatno automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-10% etil-aceteta) kao eluens.

3.4.1. SINTEZA 4-KLOR-N-(3-KLORBENZIL)BENZTIOAMIDA

Prvo je sintetiziran 4-klor-*N*-(3-klorbenzil)benztioamid (**3a**) (*Shema 25*). Najprije su provedene četiri testne reakcije na manjoj skali (*Tablica 7*). Odabir optimalnog sintetskog puta za sintezu tioamida **3a** kasnije je služio kao metoda za sintezu ostalih tioamida.

Shema 25. Sinteza 4-klor-N-(3-klorbenzil)benztioamida (3a)

Br.	Uvjeti	Temp./°c	Komentar/zapažanje
	Mikrovalna sinteza		
1	1 ekv. Lawessonovog	150 °C	• udio 2a = 31%
	reagensa, 70 min		• udio $3a = 51\%$
	+		
	1 ekv. Lawessonovog	150 °C	• udio $2a = 28\%$
	reagensa, 35 min		udio 3a = 38%
2	2 ekv. Lawessonovog	150 °C	• udio $2a = 33\%$
	reagensa, 35 min		• udio $3a = 33\%$
	Sinteza na treskalici		
3	1 ekv. Lawessonovog	110 °C	• udio $2a = 8\%$
	reagensa, 72 h		• udio 3a = 43%

Tablica 7. Uvjeti sinteze 4-klor-N-(3-klorbenzil)benztioamida (3a) na manjoj skali

*Udjeli su određivani pomoću UPLC-UV-a na valnoj duljini od 200-400 nm

U svim reakcijama nije postignuta potpuna konverzija u željeni produkt **3a**, ali u odnosu na eksperimente provedene u mikrovalnom reaktoru, postignuta konverzija je veća prilikom sinteze u treskalici na nižoj temperaturi uz duže vrijeme zagrijavanja. Zbog toga je ovaj način sinteze odabran za sintezu tioamida na većoj skali.

3.4.1.1. Sinteza 3a na većoj skali

Najprije je 200 mg 4-klor-*N*-(3-klorbenzil)benzamida (**2a**) otopljeno u toluenu u reakcijskoj bočici, te je nastaloj otopini dodan 1 ekvivalent Lawessonovog reagensa. Reakcijska smjesa je grijana na treskalici na 110°C tijekom 24 h. UPLC-MS nakon 2 h provedbe reakcije se nije značajno razlikovao od onog snimljenog nakon 24 h reakcije te je pokazivao očekivani signal produkta **3a**, no također i signal početnog amida **2a** (konverzija = 38%). Dodatkom nove količine Lawessonovog reagensa i daljnjim grijanjem (1 h) nije se dogodila nikakva promjena u signalima reaktanta i produkta. Reakcija je prekinuta, otapalo je upareno te ostatak otopljen u diklormetanu i opran s NaHCO₃ (1x) i s NaCl (2x). Pokušaj pročišćavanja automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu diklormetan/metanol (0-3% metanola) kao eluens nije dao željeno razdvajanje. Stoga je brza kolonska kromatografija na silikagelu ponovljena koristeći smjesu cikloheksan/etil-acetat (0-25% etil acetata) kao eluens. Željeni 4-klor-*N*-(3-klorbenzil)benztioamida (**3a**) je na taj način uspješno

izoliran. Snimljen je UPLS-MS izolirane frakcije koji je pokazao samo signal željenog produkta **3a**. Također je snimljen i ¹H-NMR pročišćenog produkta **3a** u deuteriranom kloroformu (*Prilog 4*). U alifatskom području postoji samo 1 signal protona -CH₂ skupine na 5 ppm što ukazuje na to da u smjesi nema 4-klor-*N*-(3-klorbenzil)benzamida (**2a**).

Željeni produkt **3a** dobiven je u obliku žute krutine. Dobivena masa **3a** iznosi 217 mg što daje iskorištenje od 85,53%.

Nadalje su provedene još tri takve sinteze 4-klor-*N*-(3-klorbenzil)benztioamida (**3a**) na skali od 400 mg. One su također provedene na treskalici na 110°C tijekom 24 h. Reakcije su praćene UPLC-MS-om te su pokazivale identične rezultate kao i prethodno opisana. Svaka je reakcijska smjesa pročišćenja ekstrakcijom i kolonskom kromatografijom na gore opisan način. Dobivena iskorištenja iznose 92,90%, 88,65% i 75,89%.

3.4.2. SINTEZA N-BENZILBENZTIOAMIDA

Sinteza *N*-benzilbenztioamida (**3b**) provedena je dva puta na skali od 400 mg pri istim, gore opisanim, optimiziranim reakcijskim uvjetima (*Shema 26*).

Shema 26. Sinteza N-benzilbenztioamida (3b)

Reakcijska smjesa je, nakon obrade ekstrakcijom i uparavanja, pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-10% etil-acetata) kao eluens. Nakon provedbe kolonske kromatografije, snimljen je UPLC-MS koji je pokazao samo signal željenog produkta **3b**. Također je snimljen i ¹H-NMR pročišćenog produkta **3b**.Spektar je snimljen u DMSO-u (*Prilog 5*). U alifatskom području postoji samo 1 signal protona -CH₂ skupine na 5 ppm što ukazuje na to da nema u smjesi *N*-benzilbenzamida (**2b**).

Dobiveni pročišćeni *N*-benzilbenztioamid (**3b**) je žuta krutina u iskorištenju od 76,74%. Ponovljena sinteza *N*-benzilbenzamida (**3b**) na istoj skali i na isti način daje iskorištenje od 89,77%.

3.4.3. SINTEZA 4-KLOR-N-(4-KLORBENZIL)BENZTIOAMIDA

Sinteza 4-klor-*N*-(4-klorbenzil)benztioamida (**3c**) (*Shema 27*) provedena je dva puta na skali od 400 mg pri istim, gore opisanim, optimiziranim reakcijskim uvjetima.

Shema 27. Sinteza 4-klor-N-(4-klorbenzil)benztioamida (3c)

Reakcijska smjesa je, nakon obrade ekstrakcijom i uparavanja, pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-10% etil-acetata) kao eluens. Nakon provedbe kolonske kromatografije, snimljen je UPLS-MS izolirane frakcije koji je pokazao samo signal željenog produkta (**3c**). Dobiveni pročišćeni 4-klor-*N*-(4-klorbenzil)benztioamid **3c** je žuta krutina dobivena u iskorištenju od 78,49%.

3.4.4. SINTEZA N-(4-KLORBENZIL)BENZTIOAMIDA

Sinteza *N*-(4-klorbenzil) benztioamida (**3d**) provedena je dva puta na skali od 400 mg pri istim reakcijskim uvjetima (*Shema 28*).

Shema 28. Sinteza N-(4-klorbenzil)benztioamida (3d)

Reakcijska smjesa je, nakon obrade ekstrakcijom i uparavanja, pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-10% etil-acetata) kao eluens. Dobiveni pročišćeni *N*-(4-klorbenzil)benztioamid (**3d**) je dobiven kao žuta krutina u iskorištenju od 83,56%. Ponovljenom sintezom na istoj skali i na isti način dobivena je masa produkta **3d** u iskorištenju od 91,31 %.

3.4.5. SINTEZA 4-KLOR-*N*-(4 CIJANOBENZILBENZIL)-BENZ-TIOAMIDA

Sinteza 4-klor-*N*-(4-cijanobenzilbenzil)benztioamida (**3e**) provedena je također dva puta na skali od 400 mg (*Shema 29*).

Shema 29. Sinteza 4-klor-N-(4-cijanobenzilbenzil)benztioamida (3e)

Za razliku od prethodno opisanih sinteza benztioamida, sinteza 4-klor-*N*-(4cijanobenzilbenzil)benztioamida **3e** je dala loša iskorištenja. Nakon 24 h reakcije na 110 °C u treskalici UPLC-MS pokazao je signal produkta **3e**, ali je konverzija bila svega oko 35%. Zbog toga je dodan još 1 ekvivalent Lawessonovog reagensa. Nakon ponovljenog grijanja na treskalici na 110°C tijekom 24 h UPLC-MS nije pokazao povećanu konverziju. Obradom reakcijske smjese te pročišćavanjem brzom kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-15% etilacetata) kao eluens dobivena je narančasta uljasta tekućina u iskorištenju od 15,09%. Eksperiment je ponovljen pri istim reakcijskim uvjetima. Reakcijska smjesa obrađena je nakon 24 h provedbe reakcije. Nakon brze kolonske kromatografije, dobivena je narančasta uljasta tekućina u nešto većem iskorištenju od 28,77%. Slabije iskorištenje se vjerojatno može objasniti mogućom reakcijom cijano skupine s Lawessonovim reagensom.⁹²

3.5. ELEKTROKEMIJSKA SINTEZA RAZLIČITIH DERIVATA 4*H*-1,3-BENZTIAZINA

Različiti 4*H*-1,3-benztiazini i 4*H*-1,3-benzoksazini sintetizirani su elektrokemijskim putem u nepodijeljenoj ćeliji koristeći acetonitril kao otapalo, te *n*-butilamonijev perklorat kao elektrolit.⁸² Uvjeti elektrokemijske reakcije optimizirani su provedbom reakcije elektrokemijske ciklizacije 4-klor-*N*-(3-klorbenzil)benztioamida (**3a**) pri različitim uvjetima konstantne struje, a zatim pri različitim uvjetima konstantnog napona. Također, mijenjana je količina početnog tioamida, volumen otapala te koncentracija početnog spoja. Nadalje su mijenjane i elektrode, vrijeme provedbe elektrokemijske reakcije te količina perklorata. Na kraju su utvrđeni najbolji uvjeti elektrokemijske reakcije te je pri njima željeni ciklički produkt sintetiziran na većoj skali. Slični reakcijski uvjeti primijenjeni su u sintezi ostalih derivata.

3.5.1. SINTEZA BENZO[e][1,3]TIAZINA KLORFENIL)-4H-BENZO[e][1,3]TIAZINA 6-KLOR-2-(4-KLORFENIL)-4H-BENZO[e][1,3]TIAZINA

Najprije je isprobana i optimizirana elektrokemijska ciklizacija 4-klor-*N*-(3 klorbenzil)benztioamida (**3a**) (*Shema 30*).

Shema 30. Sinteza 8-klor-2-(4-klorfenil)-4H-benzo[e][1,3]tiazina (4a) odnosno 6-klor-2-(4-klorfenil)-4-H-benzo[e][1,3]tiazina (4a')

Sve optimizacijske reakcije i reakcije sinteze praćene su UPLC-MS-om. UPLC-MS pokazao je nastajanje samo jednog produkta odgovarajuće molarne mase (m/z = 294,06 [M+H]⁺) iako je pretpostavljeno nastajanje dva različita izomera (*Shema 30*). Tek je

snimljeni ¹H-NMR izoliranog produkta pokazao smjesu dva različito supstituirana produkta nastala elektrokemijskom ciklizacijom. Također je tijekom reakcije elektrokemijske ciklizacije primijećeno nastajanje 4-klor-N-(3-klorbenzil)benzamida (**2a**) koji vjerojatno nastaje iz 4-klor-N-(3-klorbenzil)benztioamida (**3a**). Iz **2a** tada u elektrokemijskim uvjetima dolazi do ciklizacije u 4-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]oksazin (**5a**) odnosno 6-klor-2-(4-klorfenil)-4-*H*-benzo[*e*][1,3]oksazin (**5a**).

Shema 31. Pretpostavljeni tijek nastajanja nusprodukata 2a te 5a i 5a'

Cilj optimizacije navedene reakcije je dobiti što izraženiji signal željenog produkta ciklizacije 8-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4a**) odnosno 6-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4a'**) u odnosu na ostale signale. Tijek reakcije odnosno kinetika nastajanja produkata i nusprodukata praćena je pomoću UPLC-MS metode. *Tablica 8* prikazuje različite reakcijske uvjete primijenjene za sintezu 8-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4a**) odnosno 6-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4a**) odnosno 6-klor-2-(4-klorfenil)-4*H*-benzo[

Br.	AN – KAT,	I/U	t	m (2a)	ClO ₄ -		Udio pre	ema UPLC	-UV*, %	
	POVRŠINA			/V		t	3 a	2a	4a, 4a'	5a, 5a'
1	Pt(+)-C(-)	10 mA	2 h	20 mg /	0,5 eq	1 h	9	10	29	10
	$1,04 \text{ cm}^2$			5 mL		2 h	4	2	9	14
2	C(+) - Pt(-)	10 mA	1 h	20 mg /	0,5 eq	30 min	25	14	53	1
	$1,04 \text{ cm}^2$			5 mL		1 h	5	9	26	18
3	Pt(+) − C(-)	10 mA	45 min	20 mg /	0,5 eq	15 min	45	8	36	-
	1.04 cm^2			5 mL		30 min 50 min	29 13	13 13	41 31	2 8
4	Pt(+) − C(-)	10 mA	1 h	20 mg /	0,5 eq	19 min	37	8	32	-
	$1,04 \text{ cm}^2$			5 mL		35 min	36	15	22	-
5	Pt(+) - C(-)	5 mA	25 min	30 mg /	0,4 eq	15 min 5mA	90	-	-	-
	$1,04 \text{ cm}^2$	10 mA	15 min	6 mL		15 min 10 mA	76	11	-	-
6	Pt(+) – C(-)	10 mA	30 min	20 mg /	1,0 eq	15 min	84	4	6	-
	$1,04 \text{ cm}^2$			5 mL		30 min	-	-	-	-
7	Pt(+) − C(-)	10 mA	1 h	17 mg /	0,5 eq	15 min	73	-	10	-
	$1,04 \text{ cm}^2$			5 mL		30 min	66 50	16	3	-
						43 mm 1 h	45	20	_	_
8	C(+) - C(-)	10 mA	2 h	17 mg /	0.5 eq	15 min	37	19	41	-
	1.04 cm^2			5 mL		30 min	1	26	53	2
	1,0 1 0111			U III		$45 \min_{2h}$	4	27	42	9
9	C(+) - C(-)	10 mA	30 min	20 mg /	0.5 ea	$\frac{2 \text{ n}}{15 \text{ min}}$	30	20	47	-
-	1.04 cm^2	10 111 1	20 11111	5 mI	0,0 04	30 min	5	23	60	3
	1,04 cm ²			5 mL		35 min	2	24	58	5
10				50 /	0.5	$5 \min$	58	4	30	-
	C(+) - C(-)	20 mA	45 min	50 mg /	0,5 eq	10 min 15 min	38 25	8 14	44 44	- 4
	$1,04 \text{ cm}^2$			5 1112		20 min	9	21	42	8
	-					25 min	6	21	40	10
						30 min	2	17	33	14
11	C(+) $C(-)$	5 m A	1 h	20 mg /	0.5.00	45 min 15 min	-	13	26	20
11	C(1) = C(-)	JIIIA	1 11	20 mg/	0,5 64	30 min	25	43	31	_
	$1,04 \text{ cm}^2$			5 mL		45 min	4	46	47	-
						1 h	3	50	34	3
12	C(+) - C(-)	10 mA	30 min	50 mg /	0,5 eq	15 min	84	16	-	-
	$1,04 \text{ cm}^2$			5 mL		30 min	62	32	4	-
13	C(+) - C(-)	10 mA	30 min	20 mg /	0,5 eq	15 min	42	16	40	-
	$1,04 \text{ cm}^2$			5 mL		30 min	14	19	54	4

Tablica 8. Optimiranje uvjeta reakcije za sintezu u 8-klor-2-(4-klorfenil)-4*H*-benzo[e][1,3]tiazina (4a) odnosno 6-klor-2-(4-klorfenil)-4*H*-benzo[e][1,3]tiazina (4a').

Br.	AN – KAT,	I/U	t	m (2a)	ClO ₄ -		Udio pre	ma UPLC-	-UV*, %	
	POVRŠINA			/ V		t	3a	2a	4a, 4a'	5a, 5a'
						Ľ		20	,	54, 54
14		10 mA	1h			15 min	93	7	-	-
						30 min	85	14	-	-
	C(+) - C(-)			100 mg		45 min 1 h	/0 65	31	_	-
				100 mg	0,5 eq	1 11	05	51		
	$2,64 \text{ cm}^2$	25 mA	1h	/ 10 mL	· 1	15 min	26	46	22	-
						30 min	14	51	23	6
						45 min	7	53	16	13
15	C(1) $C(2)$	10 V	20	20	0.5	l h	4	49	8	20
15	C(+) = C(-)	10 V	30 min	20 mg /	0,5 eq	15 min 30 min	12	21	29	8 21
	$1,04 \text{ cm}^2$			5 mL		50 mm		21	20	21
16	C(+) - C(-)	7,5 V	30 min	20 mg /	0,5 eq	15 min	25	17	50	-
	1.04 cm^2			5 mL		30 min	3	27	45	5
17		6.5.11	20 .	20 /	0.5	20	20	10	47	
17	C(+) - C(-)	6,5 V	30 min	20 mg /	0,5 eq	20 min	29	19	4/	-
	$1,04 \text{ cm}^2$			5 mL		50 11111	15	23	55	-
18	C(+) - C(-)	6,5 v	30 min	9 mg /	0,5 eq	15 min	17	13	66	-
	1.04 cm^2			5 mL		30 min	5	19	59	4
10		6.7.37	20 .	5 IIIL	0.5	15 .	10	11	65	
19	C(+) - C(-)	6,5 V	30 min	9 mg /	0,5 eq	15 min	13	11	65 60	- 5
	$1,04 \text{ cm}^2$			5 mL		50 mm	0	15	00	5
20	C(+) – C(-)	6,5 V	15 min	10 mg /	0,5 eq	5 min	54	7	34	-
	2.4 cm^2			10 mL		10 min	34	8	51	-
	2,1 0111					15 min	20	12	56	-
21						<u>30 min</u>	54	15	33	4
21		65 V	30 min	5 mg /	0.5 ea	10 min	32	9	50	-
	C(+) - C(-)	0,0	0011111	5 mL	0,0 04	15 min	14	11	70	-
	$1,04 \text{ cm}^2$					20 min	7	11	74	-
						30 min	4	12	62	3
22	C(+) - C(-)	6,5 V	30 min	10 mg /	0,5 eq	15	15	~1	(2)	2
	$2,4 \text{ cm}^2$			10 mL		15 min	15	<1	62	3
23	C(+) - C(-)	6,5 V	20 min	20 mg /	0,5 eq	10 min	55	11	30	-
	2,64 cm ²			20 mL		20 min	22	13	53	-

*Udjeli su određivani pomoću UPLC-UV-a na valnoj duljini od 254 nm

Reakcije sinteze 8-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4a**) odnosno 6-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4a'**) **1 - 14** provedene su pri uvjetima konstantne struje, a kao početan spoj koristi se 4-klor-*N*-(3 klorbenzil)benztioamid **3a**.

Početni uvjeti za optimizaciju elektrokemijske sinteze preuzeti su iz ref 82. Pri sintezi **1** kao anoda koristi se platinska, a kao katoda grafitna pločica. Reakcija se odvija na zraku, pri konstantnoj struji od 10 mA tijekom 2 h. UPLC-MS nakon 1 h pokazuje većinski signal produkta **4a**, ali također i signal reaktanta **3a** (omjer ~3:1) Nakon 2 h, UPLC-MS pokazuje manji signal produkta **4a**, signal reaktanta **3a**, ali također i signale 4-klor-*N*-(3-

klorbenzil)benzamida (**2a**) te 4-klor-2-(4-klorfenil)-4*H*-benzo[e][1,3]oksazina (**5a**) odnosno 6-klor-2-(4-klorfenil)-4-benzo[e][1,3]oksazina (**5a'**). Očito je da produženjem reakcije nakon 1 h dolazi do nastajanja neželjenih nusprodukata.

Reakcija 2 provedena je pri istim uvjetima kao i 1 osim što su zamijenjene elektrode. Kao anoda koristi se grafitna, a kao katoda platinska pločica. Reakcija se provodila 1 h te je svakih 30 min praćena UPLC-MS-om. Signali nusprodukta 2a i 5a nakon 1h provedbe reakcije 2 su izraženiji nego nakon 2 h provedbe reakcije 1. Zaključuje se da je bolje kad se kao anoda koristi platinska, a kao katoda grafitna pločica.

Reakcija sinteze **3**, provedena je pri istim uvjetima kao i **1**, ali u kraćem trajanju te s češćim provjerama. Reakcija se provodila 45 min te je svakih 15 min praćena UPLC-MS-om. UPLC-MS nakon 15 min pokazuje signal produkta **4a**, ali također i većinski signal reaktanta **3a**. Nakon 30 min signal produkta **4a** je izraženiji od signala reaktanta **3a**. Nakon 45 min UPLC-MS pokazuje uz signal produkta **4a**, također i signale nusprodukata (signale **2a** i **5a**).

Reakcija sinteze **4** provedena je pri istim uvjetima, osim što je ona provedena pod argonom. Reakcija se provodila 1 h te je svakih 15 min praćena UPLC-MS-om. Iz prikazanih rezultata se može zaključiti da sinteza **4**, zbog većeg udjela reaktanta **3a**, nije bolja od sinteze **1**.

Pri sintezi **5** reakcija se odvija na zraku. Reakcija se provodila 25 min pri konstantnoj struji od 5 mA pri čemu nije došlo do reakcije ciklizacije odnosno UPLC-MS pokazuje prisutnost samo početnog tioamida **3a**. Reakcija se zatim nastavila na povećanoj konstantnoj struji od 10 mA tijekom 25 min. Nakon 15 min reakcije na 10 mA, UPLC-MS pokazuje signal reaktanta **3a**, ali također i signal **2a**. Zaključeno je da struja od 5 mA nije dostatna za reakciju ciklizacije.

Povećanjem količine elektrolita (reakcija 6) produkt nastaje puno sporije je te stoga zaključeno da je bolje koristiti 0,5 ekvivalenata *n*-Bu₄NClO₄.

Reakcija sinteze 7 provedena pri istim uvjetima kao i 1 pokazala je slabu konverziju što je pripisano djelomično potrošenoj Pt elektrodi. Budući je primijećeno da se Pt-elektroda troši brže od C-elektrode probana je reakcija ciklizacije pri čemu su korištene C-elektrode i kao anoda i kao katoda (reakcija 8). Nakon pola sata signal produkta 4a je najizraženiji te je u tome trenutku reakcija ostvarila najbolju konverziju reaktanta 3a u produkt 4a. Do

sada ovo se pokazalo najboljom sintezom cikličkog produkta **4a**, te **se** može zaključiti da je sustav elektroda ugljik-ugljik pogodniji od sustava elektroda platina-ugljik.

Reakcija sinteze **9** ponovljena je pri istim uvjetima kao reakcija sinteze **8**, te je dala još bolje rezultate nakon 30 minuta u smislu konverzije reaktanta **3a** u produkt **4a**.

Reakcija **10** provedena je s 50 mg početnog spoja **3a**, te je primijenjena struja iznosila 20 mA. Reakcija se provodila 45 min te je praćena UPLC-MS-om svakih 5 min. UPLC-MS najbolju konverziju reaktanta **3a** u produkt **4a** pokazuje nakon 15 minuta te je tada ujedno signal produkta naizraženiji.

Smanjenje jakosti struje u reakciji **11**, u odnosu na reakciju **9** dovodi do značajnog povećavanja signala za **2a** tijekom provedbe reakcije. Nakon 45 minuta gotovo je jednako izražen kao i signal produkta **4a**.

Reakcija sinteze 12 provedena je s povećanom koncentracijom od 50 mg početnog spoja 3a. UPLC-MS pokazuje jako slabo izražen signal produkta 4a nakon 30 min, dok se nakon 15 min isti ne vidi. Zaključuje se da struja od 10 mA nije dostatna za ciklizaciju 50 mg početnog spoja 3a u produkt 4a.

Radi provjere utjecaja potrošenosti elektroda na tijek reakcije provedena je reakcija **13** koja je potpuno ista kao i reakcija **9**. Signal produkta nakon 30 minuta, u usporedbi s istim nakon 30 minuta u reakciji sinteze **9**, je malo slabije izražen, no ta razlika nije značajna.

Pokušana je sinteza na skali od 100 mg 4-klor-*N*-(3-klorbenzil)benztioamida **3a** (reakcija **14**) u dvostruko koncentriranijoj otopini. Površina elektroda uronjenih u elektrolit iznosi 0,8 cm x 3,3 cm. Reakcija se provodila 1 h pri konstantnoj struji od 10 mA. UPLC-MS nakon 1 h ne pokazuje pokazuje signal što znači da struja od 10 mA nije dostatna za ciklizaciju 100 mg početnog spoja **3a** u produkt **4a** te je nakon toga struja pojačana na 25 mA te reakcija nastavljena još 1 h. UPLC-MS pokazuje signal produkta **4a** nakon 15 min na 25 mA, ali je daleko najizraženiji signal spoja **2a**. Nakon 45 min signal produkta **4a** je značajno manje izražen te se pojavljuje i signal **5a**.

Reakcije **15** do **23** provedene su u uvjetima konstantnog napona. Reakcija **15** provedena je pri konstantnom naponu od 10 V. UPLC-MS pokazuje signal produkta **4a** nakon 15 min, ali dominantan signal je od spoja **2a**. Nakon 30 min, signal produkta **4a** se smanjio,

no njemu, gotovo ekvivalentan signal je od spoja **5a.** Zaključeno je da je napon od 10 V previsok

Reakcija 16, provedena je pri istim uvjetima kao i 15, osim što primijenjeni konstantni napon iznosio 7,5 V. UPLC-MS najbolju konverziju reaktanta 3a u produkt 4a pokazuje nakon 15 min. No, nakon 15 min također se uočava i signal 2a. Nakon 30 min najizraženiji je signal 5a što ukazuje na to da je primijenjeni konstantan napon od 7,5 V također previsok.

Daljnje smanjenje napona na 6,5 V (reakcija 17) pokazalo je vrlo obećavajući rezultat. UPLC-MS najbolju konverziju reaktanta 3a u produkt 4a pokazuje nakon 30 min, no ona je i nakon 15 min jako dobra. Ni nakon 30 min se ne uočava signal 2a. To ukazuje da napon od 6,5 V je dovoljno velik za dobivanje željenog produkta 4a, a opet nedovoljno velik da bi nastajali nusprodukti.

Reakcije 18 i 19, provedene su pri istim uvjetima kao i 17, osim što je smanjena koncentracija početnog tioamida 3a na 9 mg. Rezultati su bili isti za obje reakcije. UPLC-MS najbolju konverziju reaktanta 3a u produkt 4a pokazuje nakon 15 min, te je signal produkta 4a tada dominantan. Ni nakon 30 min ne se uočava i signal 2a te se ne primjećuje raspad produkta 4a. Ova izvedba elektrokemijske ciklizacije do sada je pokazala najbolje rezultate – željeni ciklički produkt 4a nastaje već nakon 15 min, ne dolazi do raspada istog, a ni signal 2a nije prevelik.

Reakcija **20** provedena je pri istim uvjetima kao i **17**, osim što je dodano 10 mg početnog spoja **3a** u 10 mL acetonitrila. UPLC-MS najbolju konverziju reaktanta **3a** u produkt **4a** pokazuje nakon 15 min, te je signal produkta **4a** tada dominantan. Signal **2a** pojavljuje se nakon 30 min, no nije značajno izražen.

Reakcija 21 provedena je pri istim uvjetima kao i 17, osim što je dodano 5 mg početnog spoja 3a. Reakcija je provedena radi pokušaja praćenja kinetike nastajanja produkata. UPLC-MS pokazuje signal nastajanja produkta 4a već nakon 5 min, a najbolju konverziju reaktanta 3a u produkt 4a nakon 20 min, te je signal produkta 4a tada dominantan. Nakon 25 min ne uočava se signal 2a. Signal 2a pojavljuje se nakon 30 min, no nije značajno izražen. *Slika 2* prikazuje konverzije spojeva 3a, 2a, 4a i 5a ovisno o vremenu provedbe reakcije. Najbolji omjer produkata odnosno nusprodukata uočava se nakon 20 min provedbe reakcije.

Slika 2. Udjeli spojeva 3a, 2a, 4a i 5a ovisno o vremenu provedbe reakcije 21.

Ova izvedba elektrokemijske ciklizacije pokazala je najbolje rezultate – željeni ciklički produkt **4a** nastaje već nakon 5 min, ne dolazi do raspada istog, a ni signal **2a** nije prevelik. Slijedeća slika prikazuje kinetiku reakcije željenog produkta **4a** za reakcije **10** i **21** s obzirom na konverziju produkta **4a** tijekom različitih vremena provedbe reakcije.

Slika 3. Kinetika reakcije željenog produkta **4a** za reakciju **10** i **21** s obzirom na udio produkta **4a** tijekom različitih vremena provedbe reakcije.

Iz *Slike 3* zaključuje se da rad pri konstantnom naponu od 6,5 V ostvaruje puno bolje konverzije u odnosu na rad pri konstantnoj struji od 20 mA.

Nadalje je reakcija **22** provedena pri potpuno istim uvjetima kao i **20**. u svrhu potvrde ponovljivosti dobivenih rezultata. Rezultati su bili isti kao i pri sintezi **20**.

Za kraj optimizacije, provedena je reakcija **23**, koja je provedena pri istim uvjetima osim što je dodano 20 mg početnog spoja **3a** u 20 mL acetonitrila. Reakcija se provodila 20 min te je praćena UPLC-MS-om svakih 10 min. UPLC-MS pokazuje najbolju konverziju reaktanta **3a** u produkt **4a** nakon 20 min, te je signal produkta **4a** tada dominantan. Nakon 20 min se ne uočava signal **2a**. Konverzija je nešto manja nego pri do sada najboljoj sintezi **21**, no i razlika nije prevelika te se ovi uvjeti mogu smatrati dobrim načinom sinteze željenog cikličkog produkta **4a**.

Nadalje je provedena sinteza cikličkog produkta **4a** na većoj skali. Uvjeti sinteze **23** odabrani su za provođenje reakcije. Identična se reakcija provodila 5 puta te su reakcijske smjese, po završetku reakcija, spojene te zajedno obrađene. U svakoj reakcijskoj bočici otopljeno je 20 mg 4-klor-*N*-(3 klorbenzil)benztioamida **3a** u 20 mL acetonitrila te je nastaloj otopini dodano 0,5 ekvivalenata *n*-Bu₄NClO₄. Kao anoda i katoda koriste se grafitne pločice. Reakcije se provode pri konstantnom naponu od 6,5 V tijekom 30 min. UPLC-MS-ovi za svih 5 reakcija pokazali su identičan rezultat. Udjeli spojeva **3a**, **2a** i **4a** nakon 30 min provedbe svih pet reakcija prikazane su na *Slici 4*.

Slika 4. Udjeli spojeva 3a, 2a i 4a nakon 30 min provedbe svih pet reakcija

Nakon 30 min vidljiv je dominantan signal produkta **4a** potvrđen njegovom molarnom masom od $m/z = 294,06 \text{ [M+H]}^+$. Također su vidljivi slabo izraženi signali početnog reaktanta **3a** i spoja **2a**. Reakcijske smjese spojene su u jednu te je nastala smjesa

pročišćena ekstrakcijom s NaHCO₃ i s NaCl te zatim osušena na Na₂SO₄. Zatim je reakcijska smjesa pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-10% etil-acetata) kao eluens. Iako UPLC reakcijske smjese pokazuje samo jedan signal željenog produkta, na koloni su ipak odvojena i izolirana dva moguća izomera nastalog produkta **4a** i **4a'**. Snimljeni UPLS-MS-ovi su isti za oba odvojena izomera, bilo da su snimljeni u baznom ili kiselom mediju. Tek je snimanjem ¹H-NMR spektara obje razdvojene frakcije potvrđeno nastajanje dva različita derivata 8-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazin (**4a**) odnosno 6-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazin (**4a**) pokazuje dva 4 dubleta i 1 dublet dubleta.

Slika 5. Aromatski dio ¹H-NMR spektra 8-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazin (4a)

S druge strane, aromatski dio ¹H-NMR spektra (*Slika 6*) 6-kloro-2-(4-klorfenil)-4*H*-benzo[e][1,3]tiazin (4a') pokazuje 4 dubleta i 1 singlet.

Slika 6. Aromatski dio ¹H-NMR spektra 6-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazin (4a')

Također je snimljen i dvodimezijski COSY-spektar spojeva **4a** i **4a'** pomoću kojeg su identificirani svi atomi vodika te potvrđene strukture oba izomera. Dobivena je bijela kristalna krutina **4a** čija dobivena masa iznosi 10 mg te bijela kristalna krutina **4a'** čija masa iznosi 13 mg što daje ukupno iskorištenje od 23,0%.

Ova je reakcija ponovljena na identičan način. Dobivena je bijela kristalna krutina **4a** čija dobivena masa iznosi 11 mg te bijela kristalna krutina **4a**' čija masa iznosi 14 mg što daje ukupno iskorištenje od 25,0%.

U sljedećoj ponovljenoj reakciji dva izomera nisu odvojena na koloni te je dobivena smjesa produkata **4a** i **4a'**. Dobivena je bijela kristalna krutina u iskorištenju od 32,0% te je kao takva korištena u daljnjoj sintezi.

3.5.2. SINTEZA 2-FENIL-4H-BENZO[e][1,3]TIAZINA

Nadalje je provedena sinteza 2-fenil-4*H*-benzo[*e*][1,3]tiazina (**4b**) (*Shema 32*) koja je isključivo imala svrhu usporedbe elektrokemijske izvedbe reakcije korištene pri ovom istraživanju s objavljenim uvjetima u referenci 82.

Shema 32. Sinteza 2-fenil-4*H*-benzo[*e*][1,3]tiazina (4b)

Najprije je provedena testna reakcija čiji je tijek praćen UPLC-MS tijekom 2 h. UPLC-MS pokazao je nastajanje produkta, odgovarajuće molarne mase od m/z = 226,10 $[M+H]^+$. Reakcija je provedena pri konstantnom naponu od 6,5 V. *Slika 7* prikazuje kinetiku reakcije s obzirom na konverziju reaktanta **3b** odnosno produkta **4b**.

Slika 7. Kinetika reakcije s obzirom na udio reaktanta 3b odnosno produkta 4b.

Ne uočavaju se značajne promjene u udjelu produkta **4b** nakon 30 min i 2 h, no promjene u udjelu reaktanta **3b** su značajnije. Zbog toga je odlučeno da se reakcija sinteze na većoj skali provodi 1 h pri 6,5 V. Treba napomenuti da se pri sintezi spoja **4b** u referenci 82 koristi Pt-elektroda, a reakcijsko vrijeme je 2 sata.

Nadalje je provedena sinteza cikličkog produkta **4b** na većoj skali. Identična se reakcija provodila 5 puta te su reakcijske smjese, po završetku reakcija, spojene u jednu. Reakcija se provodila na 20 mg *N*-benzilbenztioamida (**3b**) otopljenog u 20 mL acetonitrila i 0,5 ekvivalenata *n*Bu₄NClO₄. Kao anoda i katoda koriste se grafitne pločice. Reakcije se provode pri konstantnom naponu od 6,5 V tijekom 1 h. UPLC-MS-ovi za svih 5 reakcija pokazali su identičan rezultat. Reakcijske smjese spojene su u jednu te je nastala smjesa pročišćena ekstrakcijom s NaHCO₃ i s NaCl te zatim osušena na na Na₂SO₄. Dodatno je je reakcijska smjesa pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-10% etil-acetata) kao eluens. Snimljeni UPLC i ¹H-NMR (*Prilog 11*) potvrđuju uspješnu izolaciju željenog produkta **4b**. Također je snimljen i COSY-spektar spojeva **4b** čime je dodatno potvrđena struktura produkta. Dobiveno je narančasto ulje **4b** čije iskorištenje iznosi 34,0%. Ova je reakcija ponovljena još dva puta na identičan način. Dobivena su narančasta ulja s iskorištenjima od 18% i 38%.

3.5.3. SINTEZA 7-KLOR-2-(4-KLORFENIL)-4H-BENZO[e]-[1,3]TIAZINA

Nadalje je provedena sinteza 7-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4c**) (*Shema* 33).

Shema 33. Sinteza 7-klor-2-(4-klorfenil)-4H-benzo[e][1,3]tiazina (4c)

Najprije je provedena testna reakcija čiji je tijek praćen UPLC-MS tijekom 2 h. UPLC-MS pokazao je nastajanje produkta, odgovarajuće molarne mase od m/z = 294,04 $[M+H]^+$. Treba napomenuti da je ciklizacijom moguće nastajanje samo jednog produkta. Reakcija je provedena pri konstantnom naponu od 6,5 V. *Slika 8* prikazuje kinetiku reakcije s obzirom na konverziju reaktanta **3c** odnosno produkta **4c** tijekom 2 h provedbe reakcije.

Slika 8. Kinetika reakcije s obzirom na udio reaktanta **3c** odnosno produkta **4c** tijekom 2 h provedbe reakcije

Nakon 1 h najbolja je konverzija reaktanta **3c** u produkt **4c**, dok nakon 30 min još uvijek ima više reaktanta **3c**. Zbog toga je odlučeno da se reakcija sinteze na većoj skali provodi 1 h pri 6,5 V.

Reakcija sinteze **4c** na većoj skali provodila se po identičnom principu kao i sinteza **4b**. Snimljen je UPLC-MS za svaku od pet provedenih reakcija nakon 1 h. Rezultati su prikazani na *Slici 9*.

Slika 9. Udjeli spojeva 3c i 4c nakon 1 h provedbe svih pet reakcija

Reakcijske smjese spojene su u jednu te je ukupna reakcijska smjesa pročišćena na identičan način kao i **4b**, osim što je za brzu kolonsku kromatografiju na silikagelu korištena smjesa cikloheksan/etil-acetat (0-15% etil-acetata) kao eluens. Snimljeni UPLC i ¹H-NMR potvrđuju uspješnu izolaciju željenog produkta **4c**. Aromatsko područje ¹H-NMR spektra pokazuje 4 dubleta i 1 singlet koji daju aromatski protoni (*Slika 10*). Također je i snimljen COSY-spektar **4c** čime je potvrđena struktura produkta. Dobivena je bijela krutina **4c** s iskorištenjem od 24,0%.

Slika 10. Aromatsko područje ¹H-NMR spektra 7-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4c**)

3.5.4. SINTEZA 7-KLOR-2-FENIL-4H-BENZO[e][1,3]TIAZINA

Nadalje je provedena sinteza 7-klor-2-fenil-4*H*-benzo[*e*][1,3]tiazina (**4d**) (*Shema 34*).

Shema 34. Sinteza 7-klor-2-fenil-4H-benzo[e][1,3]tiazina (4d)

Najprije je provedena testna reakcija čiji je tijek praćen UPLC-MS-om tijekom 1 h. UPLC-MS pokazao je nastajanje produkta odgovarajuće molarne mase od m/z = 260,04 [M+H]⁺. Reakcija je provedena pri konstantnom naponu od 6,5 V. *Slika 11* prikazuje kinetiku reakcije s obzirom na konverziju reaktanta **3d** odnosno produkta **4d** tijekom 1h provedbe reakcije.

Slika 11. Kinetika reakcija s obzirom na udio reaktanta **3d** odnosno produkta **4d** tijekom 1 h provedbe reakcije

Nakon 1 h najbolja je konverzija reaktanta **3d** u produkt **4d**. Nakon 1 h reaktanta **3d** gotovo da više uopće nema. Zbog toga je odlučeno da se reakcija sinteze na većoj skali provodi 1 h pri 6,5 V.

Sinteza i čišćenje produkta **4d** na većoj skali provodilo se po identičnom principu kao i sinteza **4b**. Snimljeni UPLC i ¹H-NMR potvrđuju uspješnu izolaciju željenog produkta **4d**. Aromatsko područje ¹H-NMR spektra pokazuje 1 triplet, 1 dublet dubleta, 3 dubleta i 1 singlet koji daju aromatski protoni (*Slika 12*). Također je snimljen i COSY-spektar spojeva **4d** čime je potvrđena struktura produkta.

Slika 12. Aromatsko područje ¹H-NMR spektra 7-klor-2-fenil-*4H*-benzo[*e*][1,3]tiazina (4d)

Dobiveno je narančasto ulje **4d** s iskorištenjem od 24,0%. Po istom su principu provedene još tri sinteze **4d** koje su dale iskorištenja od 16,0%, 19,0% i 18,0 %.

3.5.5. SINTEZA 2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]TIAZIN-7-KARBONITRILA

Naposljetku je sintetiziran i posljednji tiazinski derivat 2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazin-7-karbonitril (**4e**) (*Shema 35*).

Shema 35. Sinteza 2-(4-klorfenil)-4H-benzo[e][1,3]tiazin-7-karbonitrila (4e)

Najprije je provedena testna reakcija čiji je tijek praćen UPLC-MS tijekom 1 h i 30 min. UPLC-MS pokazao je nastajanje produkta, odgovarajuće molarne mase od m/z = 285,05 $[M+H]^+$. Reakcija je provedena pri konstantnom naponu od 6,5 V. *Slika 13* prikazuje kinetiku reakcije s obzirom na konverziju reaktanta **3e** odnosno produkta **4e** tijekom 90 min provedbe reakcije.

Slika 13. Kinetika reakcija s obzirom na udio reaktanta **3e** odnosno produkta **4e** tijekom 1 h i 30 min provedbe reakcije

Nakon 1 h i 30 min uočava se najbolja konverzija reaktanta **3e** u produkt **4e**. S obzirom da nema značajno velike razlike u konverziji između 1 h i 1 h i 30 min provedbe reakcije, a zbog brže provedbe reakcije sinteze odlučeno je reakciju provoditi 1 h pri 6,5 V.

Reakcija sinteze **4e** na većoj skali provodila se po identičnom principu kao i sinteza **4b**. Reakcijske smjese spojene su u jednu te je ukupna reakcijska smjesa pročišćena na identičan način kao i **4b**, osim što je za brzu kolonsku kromatografiju na silikagelu korištena smjesa cikloheksan/etil-acetat (0-15% etil-acetata) kao eluens. Snimljeni UPLC i ¹H-NMR potvrđuju uspješnu izolaciju željenog produkta **4e**. Aromatsko područje ¹H-NMR spektra pokazuje 4 dubleta i 1 singlet koji daju aromatski protoni (*Slika 14*). Također je snimljen i COSY-spektar spojeva **4e** čime je identificiran svaki atom vodika. Dobivena je bijela krutina **4e** s iskorištenjem od svega 9,0%.

Slika 14. Aromatsko područje ¹H-NMR spektra 2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazin-7-karbonitrila (**4e**)
Tablica 9 ukazuje da pri danim uvjetima, od 6,5 V, koristeći C(+) - C(-) sustav elektroda, acetonitril kao otapalo te nBu₄NClO₄ kao elektrolit najbolje iskorištenje daje sinteza 2-fenil-4*H*-benzo[*e*][1,3]tiazina (**4b**). Također se dobrom pokazala sinteza 8-kloro-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina odnosno 6-kloro-2-(4-klorfenil)-4-*H*-benzo[*e*][1,3]tiazina (**4a**) koja je željeni produkt dala već nakon 15 minuta u vrlo dobroj konverziji. Najlošije iskorištenje dobiveno je pri sintezi 2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazin-7-karbonitrila (**4e**).

OZNAKA	SPOJ	NAJBOLJE
		ISKORIŠTENJE
4a	CI N CI	32%
4b	S N	38%
4c	CI N	24%
4d	CI S N	19%
4e		9%

Tablica 9. Konačni rezultati sinteze [1,3]benztiazinskih derivata

3.6. SINTEZA RAZLIČITIH 4H-1,3-BENZOKSAZINA

Prema istom principu kao 4*H*-1,3-benztiazini, isprobana je sinteza 4*H*-1,3-benzoksazina. Najprije su provedene testne reakcije za svaki derivat 4*H*-1,3-benzoksazina pri 6,5 V koristeći C(+) - C(-) sustav elektroda. Za razliku od sinteze benztiazinskih derivata, sinteze benzoksazinskih derivata u danim uvjetima su bile samo djelomično uspješne. U *Tablici 10* prikazani su rezultati testnih reakcija za različite derivate 4*H*-1,3benzoksazina (*Shema 36*).

Shema 36. Sinteza različitih 4H-1,3-benzoksazina

Pri uvjetima konstantnog napona od 6,5 V koristeći C(+) - C(-) sustav elektroda, te nBu4NClO4 kao elektrolit i acetonitril kao otapalo uspješno su sintetizirani 8-klor-2-(4klorfenil)-4*H*-benzo[*e*][1,3]oksazin (5a)odnosno 6-klor-2-(4-klorfenil)-4Hbenzo[e][1,3]oksazin (5a') te 2-fenil-4H-benzo[e][1,3]oksazina (5b). Sinteze 7-klor-2-(4-klorfenil)-4H benzo[e][1,3]oksazina (5c), 7-klor-2-fenil-4H-benzo[e][1,3]oksazina (5d) i 2-(4-klorfenil) 4H-benzo[e][1,3]oksazin-7-karbonitrila (5e) pri navedenim uvjetima nisu bile uspješne, što ne znači da ne bi bile pri nekim drugim uvjetima konstantnog napona, konstantne struje ili drugog sustava elektroda. Pri testnoj reakciji sinteze 5a odnosno 5a', UPLC-MS pokazao je nastajanje jednog produkta, odgovarajuće molarne mase od $m/z = 278,06 \, [M+H]^+$ iako je pretpostavljeno nastajanje dva različita izomera. Tek je snimljeni ¹H-NMR izoliranog produkta sintetziranog na većoj skali pokazao smjesu dva različito supstituirana produkta nastala elektrokemijskom ciklizacijom, zbog mogućnosti dvije različite pozicije klora pri zatvaranju prstena. Pri testnoj reakciji sinteze 5b, UPLC-MS pokazao je nastajanje željenog produkta, odgovarajuće molarne mase od $m/z = 210,12 \text{ [M+H]}^+$.

R 1	R ₂	R3	Željeni produkt	Rezultat
-H	-C1	-C1	$ \begin{array}{c} CI \\ CI \\ N \\ 5a \end{array} $ $ \begin{array}{c} CI \\ CI \\ CI \\ Sa' \end{array} $ $ \begin{array}{c} CI \\ CI \\ Sa' \end{array} $	Nastaje željeni produkt
				Nastaje željeni
		**		produkt
-H	-H	-H	5b	
			Cl	
-C1	-H	-Cl		Sinteza ne ide
			5c	
-Cl	-H	-H	Cl N 5d	Sinteza ne ide
-CN	-H	-C1	NC O CI NC Se	Sinteza ne ide

Tablica 10. Rezultati testnih reakcija za različite derivate 4H-1,3-benzoksazina

3.6.1. SINTEZA 8-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]OKSAZINA ODNOSNO 6-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]OKSAZINA

Testna reakcija sinteze **5a** odnosno **5a'** provedena je pri uvjetima konstantnog napona od 6,5 V koristeći C(+) - C(-) sustav elektroda te je praćena s UPLC-MS tijekom 45 min (*Shema 37*).

Shema 37. Sinteza 8-klor-2-(4-klorfenil)-4H-benzo[e][1,3]oksazina (**5a**) odnosno 6klor-2-(4-klorfenil)-4-H-benzo[e][1,3]oksazina (**5a'**)

Slika 15 prikazuje kinetiku reakcije željenog produkta **5a** odnosno **5a'** s obzirom na konverziju reaktanta **2a** odnosno produkta **5a** tijekom različitih vremena provedbe reakcije.

Slika 15. Kinetika reakcije željenog produkta **5a** odnosno **5a'** s obzirom na udio reaktanta **2a** to jest produkta **5a** odnosno **5a'**

Također, na slijedećoj slici prikazan je dijagram konverzije reaktanta **2a** to jest produkta **5a** odnosno **5a'** tijekom reakcije kako bi se dodatno predočio tijek nastajanja produkta **5a** odnosno **5a'** to jest smanjenja reaktanta **2e**.

Slika 16. Udio reaktanta **2a** to jest produkta **5a** odnosno **5a'** tijekom 45 min provedbe reakcije

Reakcija sinteze **5a** odnosno **5a'** na većoj skali provodila se po identičnom principu kao i sinteza 4*H*-1,3-benztiazina. Identična se reakcija provodila 5 puta te su reakcijske smjese, po završetku reakcija, spojene u jednu. Planirano vrijeme provođenja reakcije bilo je 1 h, no na temelju UPLC-MS rezultata nakon 1 h odlučeno je da će se reakcija provoditi 1 h i 30 min zbog bolje konverzije reaktanta **2a** u produkt **5a** odnosno **5a'**.

Kao i u slučaju benztiazinskih analoga **4a** i **4a'**, brzom kolonskom kromatografijom odvojena su 2 različita izomera nastalog produkta **5a** i **5a'**. Snimljeni su UPLS-MS-ovi koji su isti za oba odvojena izomera, bilo da su snimljeni u baznom ili kiselom mediju. Također je snimljen i ¹H-NMR koji je potvrdio da su zapravo dobivena dva različita derivata – 8-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]oksazin (**5a**) odnosno 6-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]oksazin (**5a**) pokazuje dva 4 dubleta i 1 dublet dubleta koje daju aromatski protoni. Aromatski dio ¹H-NMR spektra (*Slika 18*) 6-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]oksazina (**5a**) pokazuje 4 dubleta i 1 singlet koje daju

aromatski protoni. Dobivena je bijela kristalna krutina **5a** čija dobivena masa iznosi 2 mg te žuta krutina **5a**' čija masa iznosi 20 mg što daje ukupno iskorištenje od 11,0%.

Slika 17. Aromatski dio ¹H-NMR spektra (*Slika 30*) 8-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]oksazina (**5a**)

Slika 18. Aromatski dio ¹H-NMR spektra (*Slika 31*) 6-klor-2-(4-klorfenil)-4*H*benzo[*e*][1,3]oksazina (**5a**')

3.6.2. SINTEZA 2-FENIL-4*H*-BENZO[*e*][1,3]OKSAZINA

Nadalje je provedena sinteza 2-fenil-4*H*-benzo[*e*][1,3]oksazina (**5b**) (*Shema 38*).

Shema 38. Sinteza 2-fenil-4*H*-benzo[*e*][1,3]oksazina (5b)

Najprije su provedene tri optimizacijske reakcije pri različitim uvjetima kako bi se odabrali oni najbolji za provedbu sinteze na većoj skali. Uvjeti i rezultati su prikazani u slijedećoj tablici (*Tablica 11*).

Tablica 11. Različiti optimizacijski uvjeti za sintezu 5b

Reakcija	Elektrode/	Struja/	Vrijeme	3a/CH ₃ CN	nBu ₄ NClO ₄	Komentar
	površina	napon				
1	C(+)-C(-)	6,5 V	2 h	30 mg /	0,5 eq	-najbolja konverzija 2b u
	0,8 x 3,0 cm			10 mL		5b nakon 2 h
2	C(+)-C(-)	15 mA	2 h	10 mg /	0,5 eq	-najbolja konverzija 2b u
	0,8 x 3,0 cm			10 mL		5b nakon 1 h
						-raspad nakon 2 h
3	C(+)-C(-)	10 V	2 h	20 mg /	0,5 eq	-najbolja konverzija 2b u
	0,8 x 3,0 cm			10 mL		5b nakon 1,5 h
						-raspad nakon 2 h

Reakcija 1 praćena je UPLC-MS-om kroz 2 h pri konstantnom naponu od 6,5 V te je kinetika reakcija s obzirom na konverziju reaktanta 2b odnosno produkta 5b prikazana na *Slici 19*. Najbolja konverzija reaktanta 2b u produkt 5b događa se nakon 2 h reakcije.

Slika 19. Kinetika reakcije obzirom na udio reaktanta **2b** odnosno produkta **5b** pri konstantnom naponu od 6,5 V tijekom 2 h

Reakcija **2** praćena je UPLC-MS-om kroz 2 h pri željenoj konstantnoj struji od 15 mA te je kinetika reakcija s obzirom na konverziju reaktanta **2b** odnosno produkta **5b** prikazana na *Slici 20*. Treba naglasiti da željena struja nije postignuta. Maksimalna struja na početku reakcije iznosila je iznosila 12 mA te se tijekom 2 h reakcije smanjila na 10 mA. Najbolja konverzija reaktanta **2b** u produkt **5b** događa se nakon 1 h reakcije. Nakon 2 h reakcije produkt **5b** počeo se raspadati. Navedeni uvjeti sinteze **2** lošiji su od **1**.

Slika 20. Kinetika reakcije obzirom na udio reaktanta **2b** odnosno produkta **5b** pri konstantnoj struji 12 mA – 10 mA tijekom 2 h

Reakcija **3** praćena je UPLC-MS-om kroz 2 h pri konstantnom naponu od 10 V te je kinetika reakcija s obzirom na konverziju reaktanta **2b** odnosno produkta **5b** prikazana na *Slici 21*. Najbolja konverzija reaktanta **2b** u produkt **5b** događa se nakon 1 h reakcije. Nakon 2 h reakcije pojavljuje se mnoštvo novih signala što nije poželjno.

Slika 21. Kinetika reakcije obzirom na udio reaktanta **2b** odnosno produkta **5b** pri konstantnom naponu od 10 V

Zaključno, najveća konverzija reaktanta **2b** u produkt **5b** postignuta je pri uvjetima reakcije **1** (*Tablica 11*) te su stoga navedeni uvjeti odabrani za sintezu na većoj skali.

Identična se reakcija provodila 5 puta te su reakcijske smjese, po završetku reakcija, spojene u jednu. Planirano vrijeme provođenja reakcije bilo je 1 h, no na temelju UPLC-MS rezultata nakon 1 h odlučeno je da će se reakcija provoditi 1 h i 30 min zbog bolje konverzije reaktanta **2b** u produkt **5b** (*Slika 21*).

Automatiziranom brzom kolonskom kromatografijom izoliran je željeni produkt **5b**. Snimljeni UPLS-MS potvrdio je masu željenog produkta **5b** od 210,14 [M+H]⁺. Također je snimljen i ¹H-NMR. Aromatski dio ¹H-NMR spektra (*Slika 22*) 2-fenil-4*H*benzo[*e*][1,3]oksazina (**5b**) pokazuje dva 3 dubleta, 1 triplet te 3 dubleta dubleta / tripleta koje daju aromatski protoni. Tri dubleta dubleta / tripleta preklopljeni su signali zbog sličnih pomaka te se ne može sa sigurnošću reći radi li se o dubletima dubleta ili o tripletima. Navedena je sinteza ponovljena dva puta te su dobivene u oba slučaja bijele kristalne krutine **5b** u iskorištenju od 4,0%.

Slika 22. Aromatski dio ¹H-NMR spektra 2-fenil-4*H*-benzo[*e*][1,3]oksazina (**5b**)

3.7. AMINIRANJE

S ciljem pomaka UV-spektra novosintetiziranih spojeva, provedeno je aminiranje odabranih derivata 4*H*-1,3-benztiazina odnosno 4*H*-1,3-benzoksazina. Uvjet za aminiranje bio je da na derivatu postoji barem jedan klor kao supstituent, kako bi došlo do zamjene klora amino-skupinom. Najprije su isprobani benzilni amini, no kasnije je utvrđeno da se reakcija puno bolje odvija s derivatom anilina zbog čega su daljnje reakcije aminiranja nastavljene s njim. Testne reakcije praćene su UPLC-MSom, dok su reakcije konačnih sinteza također i praćene ¹H-NMRom kako bi se utvrdilo ima li u reakcijskoj smjesi neizreagiranog amina.

3.7.1. AMINIRANJE BENZO[e][1,3]TIAZINA METOKSIBENZILAMINOM 7-KLOR-2-FENIL-4*H*-(4d) S 4-

Najprije je isprobana reakcija aminiranja 7-klor-2-fenil-4*H*-benzo[*e*][1,3]tiazina (**4d**) (*Shema 39*) s 4-metoksibenzilaminom. Različiti uvjeti optimizacije navedene reakcije prikazani su u *Tablici 12*.

Shema 39. Aminiranje 7-klor-2-fenil-4H-benzo[e][1,3]tiazina (4d)

Tablica 12. Različiti uvjeti optimizacije reakcije aminiranja 7-klor-2-fenil-4*H*benzo[*e*][1,3]tiazina (**4d**)

Vrsta	Uvjeti	Komentar
reakcije		
Supstitucija	Mikrovalna	-mali signal produkta 6 nakon 30
	sinteza	min, dominantan signal reaktanta 4d
	140 °C	-nakon 2 h i 30 min mnogo novih
		signala, dominantan signal reaktanta
Buchwald-	Treskalica	Nakon 3 h na 80 °C i preko noći na
Hartwigovo	80 - 120 °C	120 °C
aminiranje	XantPhos	UPLC-MS ne pokazuje masu
	Cs ₂ CO ₃	željenog produkta 6
	Pd(dba)3	
	Dioksan/voda	
Buchwald-	Mikrovalna	Nakon 30 min na 180 °C nije nastao
Hartwigovo	180 °C	željeni produkt 6
aminiranje	XantPhos	
	Cs_2CO_3	
	Pd(dba)3	
	Dioksan/voda	
	Vrsta reakcije Supstitucija Buchwald- Hartwigovo aminiranje Buchwald- Hartwigovo aminiranje	VrstaUvjetireakcijeSupstitucijaMikrovalnaSupstitucijaMikrovalnasinteza140 °C140 °CBuchwald-TreskalicaHartwigovo80 - 120 °CaminiranjeXantPhosCs2CO3Pd(dba)3Dioksan/vodaBuchwald-I80 °CaminiranjeXantPhosCs2CO3Pd(dba)3Dioksan/vodaHartwigovo180 °CaminiranjeXantPhosPd(dba)3Cs2CO3Pd(dba)3Dioksan/voda

Reakcija 1 jedina je na UPCL-MS-u pokazala signal produkta i njemu odgovarajuću masu od $m/z = 361,30 \text{ [M+H]}^+$, no intenzitet signala je bio neznatan za provedbu izolacije produkta 6 u značajnoj količini. Također, Buchwald-Hartwigove reakcije aminiranja pri različitim uvjetima nisu dale željeni produkt.

3.7.2. AMINIRANJE N-(4-KLORBENZIL)BENZAMIDA (2d) S 4-METOKSIBENZILAMINOM I 4-METOKSIANILINOM

Budući da inicijalno probano Buchwald-Hartwigovo aminiranje 4d nije dalo željene rezultate odlučeno je provesti optimizacijske reakcije Buchwald-Harwigovog aminiranja N-(4-klorbenzil)benzamida (2d) s 4-metoksibenzilaminom (*Shema 40*). Različiti uvjeti

optimizacije navedene reakcije prikazani su u *Tablici 13*. Međutim, u svim isprobanim uvjetima nije došlo do nastajanja željenog produkta.

Shema 40. Aminiranje N-(4-klorbenzil)benzamida (2d) s 4-metoksibenzilaminom

Optimizacijske reakcije sinteze željenog produkta 7 provedene su Buchwald-Hartwigovim aminiranjem na treskalici pri 120 °C. Pri tome su korišteni različiti ligandi (XantPhos, Xphos, BrettPhos) koji vezivanjem na paladij(II) tvore djelotvorni katalizatorski sustav u kojem se paladij nalazi u Pd(0) obliku. Ovisno o korištenom ligandu, dodaje se voda koja služi za predaktivaciju. Tako je za pri korištenju XantPhosa i BrettPhosa potrebna voda, dok za Xphos nije. Nadalje su korištene različite baze (Cs₂CO₃, K₂CO₃, KotBu) te različiti izvori paladija kao katalizatora (Pd(dba)₃, Pd(OAc)₂). Kao otapalo korišten je dioksan te su sve reakcijske smjese propuhane dušikom. Različite kombinacije navedenih liganada, baza i paladija kao katalizatora nisu ni u jednom slučaju dale željeni produkt **7**. *Tablica 13*. Različiti uvjeti optimizacije reakcije Buchwald-Hartwigovog aminiranja *N*-(4-klorbenzil)benzamida (**2d**) s 4-metoksibenzilaminom

Reakcija	Uvjeti	Komentar
1	Treskalica, 120 °C,	Nije nastao produkt 7 ni nakon 1 h
	XantPhos, KotBu, Pd(dba)3	
	Dioksan – voda	
2	Treskalica, 120 °C,	Nije nastao produkt 7 ni nakon 1 h
	XantPhos, K ₂ CO ₃ , Pd(dba) ₃	
	Dioksan – voda	
3	Treskalica, 120 °C,	Nije nastao produkt 7 ni nakon 1 h
	XantPhos, KOtBu, Pd(dba)3	
	Dioksan – voda	
4	Treskalica, 120 °C,	Nije nastao produkt 7 ni nakon 1 h
	XantPhos, KOtBu, Pd(OAc) ₂	
	Dioksan – voda	
5	Treskalica, 120 °C,	Nije nastao produkt 7 ni nakon 18 h
	XPhos, Cs ₂ CO ₃ , Pd(OAc) ₂	
	Dioksan	
6	Treskalica, 120 °C,	Nije nastao produkt 7 ni nakon 3 h ni
	BrettPhos, Cs ₂ CO ₃ , Pd(OAc) ₂	nakon noći
	Dioksan – voda	

Budući da Buchwald-Hartwigovo aminiranje s 4-metoksibenzilaminom nije pokazalo zadovoljavajuće rezultate, odlučeno je isprobati aminiranje s 4-metoksianilinom koji je slabiji nukleofil i kiseliji od benzilamina (*Shema 41*).

Shema 41. Aminiranje N-(4-klorbenzil)benzamida (2d) s 4-metoksianilinom

Najprije je provedena optimizacijska reakcija na treskalici na 110 °C tijekom 18 h. Nakon 18 h sav reaktant **2d** je izreagirao. Kao ligand koristio se gotov katalizatorski sustav XPhosa i paladija, kao baza Cs_2CO_3 te dioksan kao otapalo. UPLC-MS pokazao je i potvrdio molarnu masu željenog produkta **8** od m/z = 332,23 [M+H]⁺, a struktura je također potvrđena i ¹H NMRom.

Provedena je također i sinteza na većoj skali po istom postupku. Reakcijska je smjesa je pročišćena brzom kolonskom kromatografijom na silikagelu koristeći smjesu DCM/ DCM:MeOH:NH4OH (90:9:0,5) (0-15%) kao eluens. Nakon toga snimljen je ¹H-NMR koji, uz signale željenog produkta, pokazuje i signale početnog amina (zaokruženi i crvenom strelicom prikazani na *Slika 23*). Trituracijom s dietil-eterom početni amin je uklonjen te je željeni spoj uspješno pročišćen što je i potvrđeno ¹H-NMRom (*Prilog 18*). Uspješno je dobivena žuta krutina **8** u iskorištenju od 44%.

Slika 23. ¹H-NMR spektar reakcijske smjese reakcije sinteze **8** nakon provedene kolonske kromatorgrafije na silikagelu

3.7.3.AMINIRANJE7-KLOR-2-FENIL-4H-BENZO[e][1,3]TIAZINA (4d) S 4-METOKSIANILINOM

Nadalje je isprobana reakcija aminiranja 7-klor-2-fenil-4*H*-benzo[e][1,3]tiazina (**4d**) s 4metoksianilinom. Buchwald-Hartwigovom reakcijom (gotov katalizatorski sustav XPhosa i paladija, Cs₂CO₃, dioksan) na treskalici na 110°C (*Shema 42*).

Shema 42. Aminiranje 7-klor-2-fenil-4H-benzo[e][1,3]tiazina (4d) s 4-metoksianilinom

UPLC-MS pokazao je nastajanje produkta **9** i njemu odgovarajuću masu od m/z = 347,23 $[M+H]^+$, ali nepotpunu konverziju. Nakon provedbe reakcije pri istim uvjetima preko noći rezultat UPLC-MS-a pokazao je isti rezultat kao i nakon 2 h. Dodatkom 4-metoksianilina reakcijskoj smjesi ništa se nije promijenilo Reakcijska je smjesa zatim zagrijana na 180°C na pješčanoj kupelji preko noći, a UPLC-MS pokazao je isti rezultat kao i nakon 2h.

Nakon pozitivnog ishoda testne reakcije, napravljena je reakcija aminiranja 7-klor-2fenil-4H-benzo[*e*][1,3]tiazina (**4d**) s 4-metoksianilinom na većoj skali. Pri tome se koristio gotov katalizatorski sustav XPhosa i paladija, Cs₂CO₃, dioksan te se reakcija provodila na treskalici na 110°C tijekom 22 h. U odnosu na reakciju opisanu gore (*Shema* 40) dodana je veća količina Xphosa i 4-metoksianilina. UPLC-MS pokazao je dominatan signal produkta **9** molarne mase m/z = 346,20 [M+H]⁺. Reakcijska je smjesa pročišćena automatiziranom brzom kolonskom kromatografijom na silikagelu koristeći smjesu DCM/ DCM:MeOH:NH₄OH (90:9:0,5) (0-10%) kao eluens. Snimljeni ¹H-NMR pokazao je prisutnost spočetnog amina te je odlučeno smjesu pročistiti preparativnim HPLCom. Snimljeni ¹H-NMR čistog produkta potvrđuje strukturu željenog produkta **9** (*Prilog 19*). U alifatskom području pojavljuju se protoni -CH₃ skupine. Dobivena je narančasta krutina **9** u iskorištenju od 16%.

3.7.4. AMINIRANJE SMJESE 8-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]TIAZINA ODNOSNO 6-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]TIAZINA (4A) S 4-METOKSIANILINOM

Nadalje je provedeno aminiranje smjese 8-klor-2-(4-klorfenil)-4*H*-benzo[e][1,3]tiazina odnosno 6-klor-2-(4-klorfenil)-4-*H*-benzo[e][1,3]tiazina (**4A**) (*Shema 43*).

Shema 43. Aminiranje smjese 8-klor-2-(4-klorfenil)-4H-benzo[e][1,3]tiazina i 6-klor-2-(4-klorfenil)-4-H-benzo[e][1,3]tiazina (4A)

UPLC-MS-om reakcijske smjese utvrđena je supstitucija oba klora (molarna masa $m/z = 467,27 \text{ [M+H]}^+$). Uvjeti testne reakcije (katalizatorski sustav XPhosa i paladija, Cs₂CO₃, na treskalici na 110°C tijekom 2 h) pokazali su se odgovarajućima za sintezu na većoj skali. Reakcijska je smjesa pročišćena brzom kolonskom kromatografijom na silikagelu koristeći smjesu DCM/ DCM:MeOH:NH4OH (90:9:0,5) (0-10%) kao eluens. Izomeri *N*-(4-metoksifenil)-2-(4-((4-metoksifenil)amino)fenil)-4*H*-benzo[*e*][1,3]-tiazin-8-amin (**10a**) i *N*-(4-metoksifenil)-2-(4-((4-metoksifenil)amino)fenil)-4*H*-benzo[*e*][1,3]-tiazin-6-amin (**10b**) nisu odvojeni na koloni te su razdvojeni preparativnim HPLCom. Dobiveno je 13,5 mg narančaste krutine **10a** i 14,9 mg narančaste krutine **10b**. Strukture su potvrđene ¹H-NMR spektrima. Aromatski djelovi ¹H-NMR spektara spojeva **10a** i **10b** pokazuje dva signala -NH skupine (zaokruženo) što znači da se amin vezao na oba klora (*Slika 24* i *Slika 25*).

Slika 24. Aromatski dio ¹H-NMR spektra *N*-(4-metoksifenil)-2-(4-((4-metoksifenil)amino)fenil)-4*H*-benzo[*e*][1,3]-tiazin-8-amin (**10a**)

Slika 25. Aromatski dio ¹H-NMR spektra *N*-(4-metoksifenil)-2-(4-((4-metoksifenil)amino)fenil)-4*H*-benzo[*e*][1,3]-tiazin-6-amin (**10b**)

3.7.5. AMINIRANJE 7-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]TIAZINA (4c) S 4-METOKSIANILINOM

Po istom postupku kao i aminiranje smjese 8-kloro-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina odnosno 6-kloro-2-(4-klorfenil)-4-*H*-benzo[*e*][1,3]tiazina (**4A**) (*Shema 43*), provedeno je aminiranje 7-klor-2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazina (**4c**) s istim uspjehom (*Shema 44*).

Shema 44. Aminiranje 7-klor-2-(4-klorfenil)-4H-benzo[e][1,3]tiazina (4c)

UPLC-MS potvrdio je supstituciju oba klora s 4-metoksianilinom te nastajanje željenog produkta. N-(4-metoksifenil)-2-(4-((4-metoksifenil)amino)fenil)-4Hbenzo[e][1,3]tiazin-7-amina (11). Reakcijska je smjesa nakon obrade pročišćena brzom kolonskom kromatografijom na silikagelu koristeći smjesu DCM/ DCM:MeOH:NH4OH (90:9:0,5) (0-10%) kao eluens. Onečišćene izolirane frakcije željenog produkta 11 su nadalje pročišćene pomoću preparativnog HPLCa. Dobiveno je 0,4 mg 11.

3.7.6.AMINIRANJE2-(4-KLORFENIL)-4H-BENZO[e][1,3]TIAZIN-7-KARBONITRILA (4e)

Također je provedeno i aminiranje 2-(4-klorfenil)-4*H*-benzo[*e*][1,3]tiazin-7-karbonitrila (**4e**) (*Shema 45*).

Shema 45. Aminiranje 2-(4-klorfenil)-4H-benzo[e][1,3]tiazin-7-karbonitrila (4e)

Reakcija je provedena uz katalizatorski sustav XPhosa i paladija, Cs_2CO_3 , te dioksan na treskalici na 110°C. Nakon 4 h reakcije UPLC-MS pokazao je signal produkta **12** (molarna masa m/z = 372,25 [M+H]⁺) te konverziju od ~50%. S ciljem postizanja veće konverzije, reakcija je ostavljena preko noći na istim uvjetima. Nakon noći UPLC-MS je pokazao raspad produkta te produkt nije bilo moguće izolirati.

3.7.7. AMINIRANJE 8-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]OKSAZINA (5a) S 4-METOKSIANILINOM

Po istom postupku kao i aminiranje smjese 8-klor-2-(4-klorfenil)-4*H*benzo[e][1,3]tiazina odnosno 6-klor-2-(4-klorfenil)-4-*H*-benzo[e][1,3]tiazina (**4A**) (*Shema 44*), provedeno je aminiranje 8-klor-2-(4-klorfenil)-4*H*-benzo[e][1,3]oksazina (**5a**) s istim uspjehom (*Shema 46*).

Shema 46. Aminiranje 8-kloro-2-(4-klorfenil)-4H-benzo[e][1,3]oksazina (5a)

Reakcijska je smjesa nakon obrade pročišćena brzom kolonskom kromatografijom na silikagelu koristeći smjesu DCM/ DCM:MeOH:NH4OH (90:9:0,5) (0-10%) kao eluens. Onečišćene izolirane frakcije željenog produkta **13** su nadalje pročišćene pomoću preparativnog HPLCa. Snimljeni ¹H-NMR potvrđuje strukturu željenog produkta **13** (*Slika 26*). U alifatskom području pojavljuju se protoni -CH₃ skupine Dobiveno je 4 mg narančaste krutine **13**.

Slika 26. Alifatski dio ¹H-NMR spektra *N*-(4-metoksifenil)2-(4-((4-metoksifenil)amino)fenil)-4*H*-benzo[e][1,3]oksazin-8-amina (**13**)

3.8. SINTEZA SOLI

Također je spoj **4b** preveden u sol (3-metil-2fenil-4*H*-benzo[*e*][1,3]tiazin-3-ium jodid) koristeći metil-jodid kao metilirajuće sredstvo (*Shema 47*).

Shema 47. Sinteza 3-metil-2fenil-4H-benzo[e][1,3]tiazin-3-ium jodid (14)

Reakcija je provedena na treskalici na 80°C, a praćena je TLC-om (10% etil-acetat u cikloheksanu kao eluens). Nakon 140 dodanih ekvivalenata metil-jodida i nakon 2 h provedbe reakcije smanjio se udio reaktanta **4b**, dok je nastanak željene soli potvrđen ¹H-NMR-om (*Slika 27*). U alifatskom području uočava se signal protona -CH₃ skupine, a protoni -CH₂ skupine koji su dio prstena su otklonjeniji nego što su protoni -CH₂ skupine reaktanta **4b**.

Slika 27. Usporedba alifatskog dijela ¹H NMR spektara spoja 4b i 14

4. EKSPERIMENTANLNI DIO

4.1. OPĆE NAPOMENE

Tijek kemijskih reakcija i čistoća sintetiziranih spojeva praćeni su putem tekućinske kromatografije vrlo visokog učinka vezane na spektrometar masa (*eng.* UPLC-MS/UV). Za UPLC-MS/UV analizu korišten je Waters Acquity instrument s UV i MS detektorom. Uzorci za UPLC-MS/UV otopljeni su u acetonitrilu, osim pri sintezi acil-klorida kada su otopljeni u metanolu.

Elektrociklizacijske reakcije provedene su na IKA ElectraSyn 2.0 elektrokemijskom uređaju. Korišten je Pt - C i C - C sustav elektroda.

Čišćenje sintetiziranih spojeva provedeno je ekstrakcijom s etil-acetatom / diklormetanom i NaHCO₃ i NaCl te kolonskom kromatografijom na Interchim PuriFlash 520+ i Biotage SP1 purifikacijskim instrumenatima primjenom SiHC kolona punjenih silikagelom (4 μ m / 12 μ m / 24 μ m / 40 μ m) uz odgovarajuću smjesu eluensa.

Za identifikaciju sintetiziranih spojeva korištena je spektroskopija nuklearne magnetske rezonance (NMR). ¹H spektri jednodimenzionalni spektri snimljeni su na Bruker Avance III 300 MHz spketrometru, a ¹H i ¹³C dvodimenzionalni spektri snimljeni su na Bruker Avance III 500 MHz spketrometru odnosno Bruker Avance III 600 spektrometru. Kao otapala korišteni su CDCl₃ i DMSO. Kemijski pomaci u ppm (δ) izraženi su prema tetrametilsilanu (TMS) kao internom standardu.

Svi su udjeli su određivani pomoću UPLC-UV-a na valnoj duljini od 254 nm.

4.2. SINTEZA ACIL-KLORIDA

4.2.1. SINTEZA 4-KLORBENZOIL-KLORIDA

U okrugloj tikvici otopi se 1000,0 mg (6,386 mmol, 1 ekv.) 4-klorbenzojeve kiseline u 20 mL CH₂Cl₂. Tako pripremljena otopina ohladi se na 0 °C te joj se zatim doda 0,728 mL (7,024 mmol, 1,1 ekv.) oksalil-klorida i DMF (2-3 kapi). Reakcijska se smjesa miješa 24 h na sobnoj temperaturi. Uparavanjem je dobiveno 1141 mg, prozirnog, uljnog sirovog derivata **1a**.

4.2.2. SINTEZA BENZOIL-KLORIDA

U okrugloj tikvici otopi se 1000,0 mg (8,189 mmol, 1 ekv.) benzojeve kiseline u 20 mL CH₂Cl₂. Tako pripremljena otopina ohladi se na 0 °C te joj se zatim doda 0,933 mL (9,007 mmol, 1,1 ekv.) oksalil-klorida i DMF (2-3 kapi). Reakcijska se smjesa miješa 72 h na sobnoj temperaturi. Uparavanjem je dobiveno 1263 mg prozirnog, uljnog sirovog derivata **1b**.

4.3. SINTEZA AMIDA 4.3.1. SINTEZA 4-KLOR-*N*-(3-KLORBENZIL)BENZAMIDA

1115 mg (6,371 mmol, 1 ekv.) **1a** otopi se u 20 mL CH₂Cl₂ te se zatim doda 0,752 mL (6,371 mmol, 1 ekv.) 3-klorbenzilamina i 2,239 mL (19,114 mmol, 3 ekv.) DIPEA-e. Reakcijska smjesa miješa se 20 h na sobnoj temperaturi. Otapalo se upari na rotacijskom uparivaču. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Dobiveno je 1272 mg bijele krutine **2a**.

4.3.2. SINTEZA N-BENZILBENZAMIDA

900 mg (6,403 mmol, 1 ekv.) **1b** otopi se u 20 mL CH_2Cl_2 te se zatim doda 0,699 mL (4,286 mmol, 1 ekv.) benzilamina i 2,239 mL (19,208 mmol, 3 ekv.) DIPEA-e. Reakcijska smjesa miješa se 20 h na sobnoj temperaturi. Otapalo se upari na rotacijskom uparivaču. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃

(1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu cikloheksan/etil-acetat (0-25% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću i Biotage SP1 uređaja te je pri tome korištena 12 g kolona. Dobiveno je 1085 mg bijele krutine **2b**.

4.3.3. SINTEZA 4-KLOR-N-(4-KLOROBENZIL)BENZAMIDA

1141 mg (6,520 mmol, 1 ekv.) **1a** otopi se u 20 mL CH₂Cl₂ te se zatim doda 0,793 mL (6,520 mmol, 1 ekv.) 4-klorbenzilamina i 2,239 mL (19,559 mmol, 3 ekv.) DIPEA-e. Reakcijska smjesa miješa se 20 h na sobnoj temperaturi. Otapalo se upari na rotacijskom uparivaču. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu DCM/MeOH-DCM (0-15% (2%) MeOH-DCM) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja te je pri tome korištena 40 g kolona. Nakon uparavanja dobiveno je 1590 mg bijele krutine **2c**.

1263 mg (8,985 mmol, 1 ekv.) **1b** otopi se u 20 mL CH₂Cl₂ te se zatim doda 1,093 mL (8,985 mmol, 1 ekv.) 4-klorbenzilamina i 4,694 mL (26,955 mmol, 3 ekv.) DIPEA-e. Reakcijska smjesa miješa se 24 h na sobnoj temperaturi. Otapalo se upari na rotacijskom uparivaču. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu DCM/MeOH-DCM (0-15% (2%) MeOH-DCM) kao eluens. Kolonska kromatografija provodi se pomoću i Biotage SP1 uređaja te je pri tome korištena 40 g kolona. Nakon uparavanja frakcija dobiveno je 1689 mg bijele krutine **2d**.

4.3.5. SINTEZA 4-KLOR-N-(4-CIJANOBENZIL)BENZAMIDA

1117 mg (6,382 mmol, 1 ekv.) **1a** otopi se u 20 mL CH_2Cl_2 te se zatim doda 1,093 mL (8,985 mmol, 1 ekv.) 4-(aminometil)benzonitrila i 3,334 mL (19,147 mmol, 3 ekv.) DIPEA-e. Reakcijska smjesa miješa se 24 h na sobnoj temperaturi. Otapalo se upari na rotacijskom uparivaču. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Dobiveno je 1514 mg narančaste krutine **2e**.

4.4. SINTEZA TIOAMIDA

4.4.1. SINTEZA 4-KLOR-N-(3-KLORBENZIL)BENZTIOAMIDA

U dvije reakcijske bočice otopi se 200 mg (0,714 mmol, 1 ekv.) 2a i 433,2 mg (1,071 mmol, 1,5 ekv.) Lawessonovog reagensa u 5 mL toluena. Reakcijske smjese zagriju se na 110°C na treskalici tijekom 24 h. Nakon hlađenja na sobnu temperaturu, smjese se spoje te se otpari toluen. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Interchim 520+ uređaja (25 g kolona). Nakon uparavanja dobiveno je 393 mg zelenog ulja **3a**.

4.4.2. SINTEZA N-BENZILBENZTIOAMIDA

U dvije reakcijske bočice otopi se 200 mg (0,947 mmol, 1 ekv.) **2b** i 574,4 mg (1,420 mmol, 1,5 ekv.) Lawessonovog reagensa u 5 mL toluena. Reakcijske smjese zagriju se na 110°C na treskalici tijekom 24 h. Nakon hlađenja na sobnu temperaturu, smjese se spoje te se otpari toluen. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provedi se pomoću Biotage SP1 uređaja (40 g kolona). Nakon uparavanja dobiveno je 386 mg žute krutine **3b**.

4.4.3. SINTEZA 4-KLOR-N-(4-KLORBENZIL)BENZTIOAMIDA

U dvije reakcijske bočice otopi se 200 mg (0,714 mmol, 1 ekv.) 2c i 433,2 mg (1,071 mmol, 1,5 ekv.) Lawessonovog reagensa u 5 mL toluena. Reakcijske smjese zagriju se na 110°C na treskalici tijekom 24 h. Nakon hlađenja na sobnu temperaturu, smjese se spoje te se otpari toluen. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provedena se pomoću i Biotage SP1 uređaja (40 g kolona). Nakon uparavanja dobiveno je 332 mg žute krutine **3c**.

U dvije reakcijske bočice otopi se 200 mg (0,814 mmol, 1 ekv.) **2d** i 493,9 mg (1,221 mmol, 1,5 ekv.) Lawessonovog reagensa u 5 mL toluena. Reakcijske smjese zagriju se na 110°C na treskalici tijekom 24 h. Nakon hlađenja na sobnu temperaturu, smjese se spoje te se otpari toluen. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja (40 g kolona). Nakon uparavanja dobiveno je 389 mg zelene krutine **3d**.

4.4.5. SINTEZA 4-KLOR-*N*-(4-CIJANOBENZILBENZIL)-BENZTIOAMIDA

U dvije reakcijske bočice otopi se 200 mg (0,739 mmol, 1 ekv.) **2e** i 448,3 mg (1,108 mmol, 1,5 ekv.) Lawessonovog reagensa u 5 mL toluena. Reakcijske smjese zagriju se na 110°C na treskalici tijekom 24 h. Nakon 24 h doda još 448,3 mg (1,108 mmol, 1,5 ekv.) Lawessonovog reagensa i zagrije se još jednom na 110°C na treskalici tijekom 24 h. Nakon hlađenja na sobnu temperaturu, smjese se spoje te se otpari toluen. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja (40 g kolona). Nakon uparavanja na rotacijskom uparivaču, dobiveno je 122 mg narančastog ulja **3e**.

4.5. ELEKTROKEMIJSKA SINTEZA RAZLIČITIH DERIVATA 4*H*-1,3-BENZTIAZINA

4.5.1. SINTEZA 8-KLOR-2-(4-KLORFENIL)-4H-BENZO[e]-[1,3]TIAZINA ODNOSNO 6-KLOR-2-(4-KLORFENIL)-4H-BENZO[e][1,3]TIAZINA

U reakcijskoj bočici od 20 mL s ugljičnom pločastom anodom (2,64 cm²) i ugljičnom pločastom katodom (2,64 cm²) otopi se 20,0 mg (0,068 mmol, 1,0 ekv.) **3a** i 11,5 mg (0,034 mmol, 0,5 ekv.) *n*Bu₄NClO₄ u 20 mL acetonitrila. Reakcijska se smjesa miješa 30 min pri konstantnom naponu od 6,5 V. Pokrenuto je 5 identičnih reakcija., Nakon hlađenja na sobnu temperaturu, smjese se spoje te se otpari toluen. Ostatak se otopi u etil-acetatu te zatim opere s zasićenom otopinom NaHCO₃ (1x) i NaCl (2x). Organski sloj se suši 10 min na Na₂SO₄, profiltrira kroz naborani filter papir te se otapalo upari na rotacijskom uparivaču. Produkt se zatim dodatno pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Interchim 520+ uređaja (12 g kolona). Odvojena su dva derivata **4a** i **4a'**. Nakon uparavanja na rotacijskom uparivaču, dobiveno je 14 mg bijele krutine **4a** te 11 mg bijele krutine **4a'**. Ukupno iskorištenje = 23%.

U reakcijskoj bočici od 20 mL s ugljičnom pločastom anodom (2,64 cm²) i ugljičnom pločastom katodom (2,64 cm²) otopi se 20,0 mg (0,088 mmol, 1,0 ekv.) **3b** i 15,0 mg (0,044 mmol, 0,5 ekv.) *n*Bu₄NClO₄ u 20 mL acetonitrila. Reakcijska se smjesa miješa 1 h pri konstantnom naponu od 6,5 V. Pokrenute se 4 identične reakcije, a reakcijske se smjese po završetku spoje. Otapalo se upari na rotacijskom uparivaču. Produkt se pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja. Za kolonsku kromatografiju koristi se 12 g kolona. Nakon uparavanja frakcija dobiveno je 34 mg narančastog ulja **4b**.

4.5.3. SINTEZA BENZO[*e*][1,3]TIAZINA

7-KLOR-2-(4-KLORFENIL)-4H-

U reakcijskoj bočici od 20 mL s ugljičnom pločastom anodom (2,64 cm²) i ugljičnom pločastom katodom (2,64 cm²) otopi se 20,0 mg (0,068 mmol, 1,0 ekv.) **3c** i 11,5 mg

(0,034 mmol, 0,5 ekv.) *n*Bu₄NClO₄ u 20 mL acetonitrila. Reakcijska se smjesa miješa 1 h pri konstantnom naponu od 6,5 V. Pokrenuto je 5 identičnih reakcija, a reakcijske se smjese po završetku spoje. Otapalo se upari na rotacijskom uparivaču. Produkt se pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja (25 g kolona). Nakon uparavanja frakcija dobiveno je 24 mg bijele krutine **4c**.

4.5.4. SINTEZA 7-KLOR-2-FENIL-4H-BENZO[e][1,3]TIAZINA

U reakcijskoj bočici od 20 mL s ugljičnom pločastom anodom (2,64 cm²) i ugljičnom pločastom katodom (2,64 cm²) otopi se 20,0 mg (0,076 mmol, 1,0 ekv.) **3d** i 13,1 mg (0,038 mmol, 0,5 ekv.) *n*Bu₄NClO₄ u 20 mL acetonitrila. Reakcijska se smjesa miješa 1 h pri konstantnom naponu od 6,5 V. Pokrenuto je 5 identičnih reakcija, a reakcijske se smjese po završetku spoje. Otapalo se upari na rotacijskom uparivaču. Produkt se pročisti kolonskom kromatografijom na silikagelu pomoću Biotage SP1 uređaja (25 g kolona) koristeći smjesu etil-acetat/cikloheksan (0-10% etil-acetata) kao eluens. Nakon uparavanja frakcija dobiveno je 31 mg narančastog ulja **4d**.

4.5.5. SINTEZA 2-(4-KLORFENIL)-4*H*-BENZO[e][1,3]TIAZIN-7-KARBONITRILA

U reakcijskoj bočici od 20 mL s ugljičnom pločastom anodom (2,64 cm²) i ugljičnom pločastom katodom (2,64 cm²) otopi se 20,0 mg (0,070 mmol, 1,0 ekv.) **3e** i 11,9 mg (0,035 mmol, 0,5 ekv.) *n*-Bu₄NClO₄ u 20 mL acetonitrila. Reakcijska se smjesa miješa 1 h pri konstantnom naponu od 6,5 V. Pokrenuto je 5 identičnih reakcija, a reakcijske se smjese po završetku spoje. Otapalo se upari na rotacijskom uparivaču. Produkt se pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etil-acetat/cikloheksan (0-15% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja (25 g kolona). Nakon uparavanja frakcija dobiveno je 9 mg bijele krutine **4e**.
4.6. ELEKTROKEMIJSKA SINTEZA RAZLIČITIH DERIVATA 4*H*-1,3-BENZOKSAZINA

4.6.1. SINTEZA 8-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]OKSAZINA ODNOSNO 6-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]OKSAZINA

U reakcijskoj bočici od 20 mL s ugljičnom pločastom anodom (2,64 cm²) i ugljičnom pločastom katodom (2,64 cm²) otopi se 40,0 mg (0,143 mmol, 1,0 ekv.) **2a** i 24,7 mg (0,071 mmol, 0,5 ekv.) *n*-Bu₄NClO₄ u 20 mL acetonitrila. Reakcijska se smjesa miješa 1 h i 30 min pri konstantnom naponu od 6,5 V. Pokrenuto je 5 identičnih reakcija, a reakcijske se smjese po završetku spoje. Otapalo se upari na rotacijskom uparivaču. Produkt se pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etilacetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja (25 g kolona). Odvojena su dva derivata **5a** i **5a'**. Nakon uparavanja frakcija dobiveno je 2 mg bijele krutine **5a** te 20 mg žute krutine **5a**'. Ukupno iskorištenje = 11%.

U reakcijskoj bočici od 20 mL s ugljičnom pločastom anodom (2,64 cm²) i ugljičnom pločastom katodom (2,64 cm²) otopi se 20,0 mg (0,095 mmol, 1,0 ekv.) **2a** i 16,2 mg (0,047 mmol, 0,5 ekv.) $nBu_4NClO_4 u$ 20 mL acetonitrila. Reakcijska se smjesa miješa 1 h i 30 min pri konstantnom naponu od 6,5 V. Pokrenuto je 5 identičnih reakcija, a reakcijske se smjese po završetku spoje. Otapalo se upari na rotacijskom uparivaču. Produkt se pročisti kolonskom kromatografijom na silikagelu koristeći smjesu etilacetat/cikloheksan (0-10% etil-acetata) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja (25 g kolona). Nakon uparavanja frakcija dobiveno je 6 mg bijele krutine **5b**.

4.7. AMINIRANJE

4.7.1. AMINIRANJE *N*-(4-KLORBENZIL)BENZAMIDA (2d) S 4-METOKSIANILINOM

200,0 mg (0,814 mmol, 1 ekv) **2d** otopljenog u 4,0 mL dioksana, 530,4 mg (1,628 mmol, 2 ekv.) Cs₂CO₃ i 150,4 mg (1,221 mmol, 1,5 ekv) 4-metoksianilina doda se u reakcijsku bočicu. Reakcijska se smjesa propuše dušikom te se zatim doda 77,6 mg (0,163 mmol, 0,2 ekv) Xphos-a. Sve se zagrije na 110°C tijekom noći na treskalici. Otapalo se otpari te se produkt pročisti kolonskom kromatografijom na silikagelu koristeći smjesu DCM/DCM:MeOH:NH4OH (90:9:0,5) (0-10% DCM:MeOH:NH4OH - DCM) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja te je pri tome korištena 12 g kolona. Nakon uparavanja frakcija i trituracije s dietil-eterom. Dobiveno je 120 mg žute krutine **8**.

4.7.2. AMINIRANJE 7-KLOR-2-FENIL-4*H*-BENZO[*e*][1,3]TIAZINA (4d) S 4-METOKSIANILINOM

55,0 mg (0,212 mmol, 1 ekv) **4d** otopljenog u 5,0 mL dioksana, 138,0 mg Cs₂CO₃ (0,423 mmol, 2 ekv.) i 52,2 mg (0,423 mmol, 2,0 ekv) 4-metoksianilina doda se u reakcijsku bočicu. Reakcijska se smjesa propuše dušikom i zatim se doda 50,5 mg (0,106 mmol. 0,5 ekv.) Xphos-a. Reakcijska se smjesa zagrije na 110°C tijekom 22 h na treskalici. Otapalo se otpari te se produkt pročisti kolonskom kromatografijom na silikagelu koristeći smjesu DCM/DCM:MeOH:NH4OH (90:9:0,5) (0-10% DCM:MeOH:NH4OH - DCM) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja te je pri tome korištena 12 g kolona. Dobiveno je 16 mg narančaste krutine **9**.

4.7.3. AMINIRANJE SMJESE 8-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]TIAZINA ODNOSNO 6-KLOR-2-(4-KLORFENIL)-4*H*-BENZO[*e*][1,3]TIAZINA (4a) S 4-METOKSIANILINOM

50,0 mg (0,170 mmol, 1 ekv) smjese **4A** otopljene u 5,0 mL dioksana, 221,5 mg Cs₂CO₃ (0,680 mmol, 4 ekv.) i 62,8 mg (0,510 mmol, 3,0 ekv) 4-metoksianilina doda se u reakcijsku bočicu. Reakcijska se smjesa propuše dušikom i zatim se doda 32,4 mg (0,068 mmol. 0,4 ekv.) Xphos-a. Reakcijska se smjesa zagrije na 110°C tijekom 2 h na treskalici. Otapalo se otpari te se produkt pročisti kolonskom kromatografijom na silikagelu koristeći smjesu DCM/DCM:MeOH:NH₄OH (90:9:0,5) (0-10% DCM:MeOH:NH₄OH - DCM) kao eluens. Kolonska kromatografija provodi se pomoću Biotage SP1 uređaja te je pri tome korištena 12 g kolona. Dva izomera **10a** i **10b** se nisu razdvojili ovom

metodom te su razdvojeni preparativnim HPLC-om. Dobiveno je 13,5 mg narančaste krutine **10a** te 14,9 mg narančaste krutine **10b**. Ukupno iskorištenje = 35,72%.

5,0 mg (0,022 mmol, 1,0 ekv) **4b** doda se u reakcijsku bočicu i otopi u 0,5 mL acetonitrila. Otopini se zatim doda 0,007 mL (0,110 mmol, 5,0 ekv.) metil-jodida te se reakcijska smjesa zagrije na 80°C tijekom 2 h na treskalici. Reakcija se prati TLC-om koristeći smjesu 10% etil-acetata u cikloheksanu kao eluens. Nakon dva 2 h reakcijskoj se smjesi ponovno doda 0,007 mL (0,110 mmol, 5,0 ekv.) metil-jodida te se zagrije na 80°C tijekom 2 h na treskalici. Nakon napravljene TLC-analize, odlučeno je reakcijskoj smjesi dodati još 0,130 mL (2,090 mmol, 95,0 ekv.) metil-jodida te ponovno sve zagrijati na 80°C tijekom 2 h na treskalici. TLC- analiza pokazuje nastajanje produkta, a snimljeni ¹H-NMR sirove smjese nakon otparavanja potvrđuje strukturu **14**. Sinteza je dala kvalitativan rezultat.

5. ZAKLJUČAK

Cilj rada bio je optimizirati elektrokemijsku sintezu, sintetizirati te izolirati različite, nove derivate 2-fenil-4H-1,3-benzoksazina i 2-fenil-4H-1,3-benzitiazina. Nadalje uspješno je provedeno aminiranje odabranih, dobivenih derivata Buchwald-Hartwigovom reakcijom s ciljem pomaka UV spektra dobivenih spojeva u vidljivo područje, a također je provedena i probna reakcija sinteze soli. Nakon sinteze amida (2a, 2b, 2c, 2d i 2e) i tioamida (3a, 3b, 3c, 3d i 3e) klasičnom organskom sintezom, provedene su optimizacije elektrokemijskih ciklizacija s ciljem dobivanja različitih derivata 2-fenil-4H-1,3benzoksazina i 2-fenil-4H-1,3-benzitiazina. Sve reakcije elektrokemijske ciklizacije na većoj skali provodile su se pri konstantnom naponu od 6,5 V koristeći C(+) - C(-) sustav elektroda, a vrijeme provedbe elektrokemijske reakcije ovisi o odabranom derivatu. Uspješno su sintetizirani ciklički derivati 4H-1,3-benzitiazina: 4a, 4b, 4c, 4e te ciklički derivati 4H-1,3-benzoxazina: 5a i 5b. Za raliku od uspješnih elektrokemijskih ciklizacija 4H-1,3-benzitiazina, elektrokemijska sinteza 4H-1,3-benzoxazina nije bila uspješna u svim pokušajima te općenito daje nepotpune konverzije u iszim uvjetima. Treba naglasiti da su pri sintezama dobivena dva derivata 4a i 4a' te 5a i 5a'. U najboljem iskorištenju od 34% dobiven je spoj 4b, a zatim ga slijede sinteza 4d (31%), 4a i 4a' (25%), 4c (24%) i na kraju 4e (9%). Ukupno iskorištenje 5a i 5a' iznosi 11%, a 5b 6%. Dobiveno je više derivata 5a' u odnosu na 5a, dok su dvije sinteze pri istim uvjetima dale drugačije omjere količina spojeva 4a i 4a'. Nadalje je uspješno provedeno aminiranje dobivenih spojeva 2d, 4a, smjese 4a i 4a', 4c, 4e i 5a s 4-metoksianilinom, dok aminiranje istih spojeva s 4-metoksibenzilaminom nije dalo produkte. U najboljem je iskorištenju dobiven spoj 8 (44%). Aminiranjem smjese spojeva 4a i 4a' amin se vezao na oba klorao. Dobiveno je više derivata 10b u odnosu na 10a, a ukupno iskorištenje iznosi 35%. Aminiranjem spoja 4c amin se također veže na oba klora, a dobivena je neznatna količina produkta 11. Aminiranjem spoja 4e nastaje produkt 12 nakon 4 h, no nije izoliran zbog raspada preko noći. Produkt 12 nastao je u iskorištenju od 17% vezanjem amina na oba klora spoja 5a. Također spoj 4b uspješno je preveden u sol 14 čija je struktura potvrđena ¹H-NMR analizom. Sve navedeno potvrđuje mogućnost provedbe željenih reakcija ciklizacije, aminiranja i sinteze soli. Sve ove sinteze, međutim, imaju otvoren put poboljšanju uvjeta reakcija u budućnosti, optimizacijom istih s ciljem još bolje izolacije.

6. LITERATURA

- Zhz, C., Ang, N. W. J., Meyer, T.H., Qiu Y., Ackermann, L., Organic Electrochemistry: Molecular S yntheses with Potential, ASCCent Sci., 2021, 7, 415-431.
- Meyer, T.H., Choi, I., Ackermann, L., How Can Electrochemistry Make a Difference in Organic Synthesis, Elsevier Inc., 2020, 6, 2484 – 2496.
- 3. Yu, Y., Guo. P., Zhoung, J., Yuan, Y., Ye, K., Merging photochemistry with electrochemistry in organic synthesis, Org. Chem. Front., 2020, 7, 131-135.
- Wang, H., Gao, X., Lv, Z., Abdelilah, T., Lei, A., Recent Advances in Oxidative R₁-H/R₂-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry, Chem. Rev., 2019, 119, 6769 – 6787.
- Francke, R., Little, R. D., Redox Catalysis in Organic Electrosynthesis: Basic Principles and Recent Developmentz, Chem. Soc. Rev., 2014, 43, 2492–2521.
- Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A., Vasquez-Medrano, R. Organic Electrosynthesis: A Promising Green Methodology in Organic Chemistry, Green Chem, 2010, 12, 2099–2119.
- Horn, E. J., Rosen, B. R., Baran, P. S., Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method, ACS Cent. Sci., 2016, 2, 302–308.
- Jutand, A., Contribution of Electrochemistry to Organometallic Catalysis, 2008, Chem. Rev., 108, 2300–2347.
- Schäfer, H. J., Contributions of Organic Electrosynthesis to Green Chemistry, C. R. Chim., 2011, 14, 745–765.
- Tang, S., Liu, Y., Lei, A., Electrochemical Oxidative Cross- Coupling with Hydrogen Evolution: A Green and Sustainable Way for Bond Formation, Chem., 2018, 4, 27–45.
- 11. Yoshida, J., Kataoka, K., Horcajada, R., Nagaki, A., Modern Strategies in Electroorganic Synthesis, Chem. Rev., 2008, 108, 2265–2299.
- Beatty, J. W., Stephenson, C. R., Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis, Acc. Chem. Res., 2015, 48, 1474–1484.
- Chen, B., Wu, L. Z., Tung, C. H., Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen- Evolution Cross-Couplings, Acc. Chem. Res., 2018, 51, 2512–2523.

- Chen, J. R., Hu, X. Q., Lu, L. Q., Xiao, W. J., Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond, Acc. Chem. Res., 2016, 49, 1911–1923.
- Qin, Y., Zhu, L.,Luo, S., Organocatalysis in Inert C-H Bond Functionalization, Chem. Rev., 2017, 117, 9433–9520.
- Prier, C. K., Rankic, D. A., MacMillan, D. W., Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis, Chem. Rev., 2013, 113, 5322–5363.
- Shi, L., Xia, W., Photoredox Functionalization of C-H Bonds Adjacent to A Nitrogen Atom, Chem. Soc. Rev., 2012, 41, 7687–7697.
- Beil, S. B., Muller, T., Sillart, S. B., Franzmann, P., Bomm, A., Holtkamp, M., Karst, U., Schade, W., Waldvogel, S. R., Active Molybdenum-Based Anode for Dehydrogenative Coupling Reactions, Angew. Chem., Int. Ed., 2018, 57, 2450–2454.
- Kirste, A., Hayashi, S., Schnakenburg, G., Malkowsky, I. M., Stecker, F., Fischer, A., Fuchigami, T., Waldvogel, S. R., Highly Selective Electrosynthesis of Biphenols on Graphite Electrodes in Fluorinated, Chem. - Eur. J., 2011, 17, 14164–14169.
- Kirste, A., Schnakenburg, G., Waldvogel, S. R., Anodic Coupling of Guaiacol Derivatives on Boron-Doped Diamond Electrodes, Org. Lett., 2011, 13, 3126–3129.
- Nokami, T., Ohata, K., Inoue, M., Tsuyama, H., Shibuya, A., Soga, K., Okajima, M., Suga, S., Yoshida, J., Iterative Molecular Assembly Based on the Cation-Pool Method. Convergent Synthesis of Dendritic Molecules, J. Am. Chem. Soc., 2008, 130, 10864–10865.
- Okajima, M., Suga, S., Itami, K., Yoshida, J., "Cation Pool" Method Based on C-C Bond Dissociation. Effective Generation of Monocations and Dications, J. Am. Chem. Soc., 2005, 127, 6930–6931.
- Morofuji, T., Shimizu, A., Yoshida, J., Metal- and Chemical- Oxidant-Free C-H/C-H Cross-Coupling of Aromatic Compounds: The Use of Radical-Cation Pools, Angew. Chem., Int. Ed., 2012, 51, 7259–7262.
- Kirste, A., Elsler, B., Schnakenburg, G., Waldvogel, S. R., Efficient Anodic and Direct Phenol-Arene C,C Cross-Coupling: The Benign Role of Water or Methanol, J. Am. Chem. Soc., 2012, 134, 3571–3576.

- Elsler, B., Schollmeyer, D., Dyballa, K. M.; Franke, R., Waldvogel, S. R., Metaland Reagent-Free Highly Selective Anodic Cross-Coupling Reaction of Phenols, Angew. Chem., Int. Ed., 2014, 53,5210–5213.
- Schulz, L., Enders, M.; Elsler, B., Schollmeyer, D., Dyballa, K. M., Franke, R., Waldvogel, S. R., Reagent- and Metal-Free Anodic C-C Cross-Coupling of Aniline Derivatives, Angew. Chem., Int. Ed., 2017, 56, 4877–4881.
- Wiebe, A., Lips, S., Schollmeyer, D., Franke, R., Waldvogel, S. R., Single and Twofold Metal- and Reagent-Free Anodic C-C Cross-Coupling of Phenols with Thiophenes, Angew. Chem., Int. Ed., 2017, 56,14727–14731.
- Meng, Q. Y., Zhong, J. J., Liu, Q., Gao, X. W., Zhang, H. H., Lei, T., Li, Z. J., Feng, K., Chen, B., Tung, C. H., Wu, L. Z., A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis, J. Am. Chem. Soc., 2013, 135, 19052–19055.
- Zhong, J. J., Meng, Q. Y., Liu, B., Li, X. B., Gao, X. W., Lei, T., Wu, C. J., Li, Z. J., Tung, C. H., Wu, L. Z., Cross-Coupling Hydrogen Evolution Reaction in Homogeneous Solution without Noble Metals, Org. Lett., 2014, 16, 1988–1991.
- Zhong, J.-J., Wu, C.-J.; Meng, Q.-Y., Gao, X.-W., Lei, T., Tung, C.-H., Wu, L.-Z., A Cascade Cross-Coupling andin Situ Hydrogenation Reaction by Visible Light Catalysis, Adv. Synth. Catal., 2014, 356, 2846–2852.
- Li, C. J., Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations, Acc. Chem. Res., 2009, 42, 335–344.
- 32. Xiang, M., Meng, Q. Y., Li, J. X., Zheng, Y. W., Ye, C., Li, Z. J., Chen, B.; Tung, C. H., Wu, L. Z., Activation of C–H Bonds through Oxidant-Free Photoredox Catalysis: Cross-Coupling Hydrogen- Evolution Transformation of Isochromans and beta-Keto Esters, Chem. Eur. J., 2015, 21, 18080–18084.
- 33. Yang, Q., Zhang, L., Ye, C., Luo, S., Wu, L. Z., Tung, C. H., Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis, Angew. Chem., Int. Ed., 2017, 56, 3694–3698.
- Fu, N., Li, L., Yang, Q., Luo, S., Catalytic Asymmetric Electrochemical Oxidative Coupling of Tertiary Amines with Simple Ketones, Org. Lett., 2017, 19, 2122–2125.

- 35. Hu, X., Zhang, G., Bu, F., Luo, X., Yi, K., Zhang, H., Lei, A., Photoinduced Oxidative Activation of Electron-Rich Arenes: Alkenylation with H2 Evolution under External Oxidant-Free Conditions, Chem. Sci., 2018, 9, 1521–1526.
- 36. Yoshida, H., Fujimura, Y., Yuzawa, H., Kumagai, J., Yoshida, T., A Heterogeneous Palladium Catalyst Hybridised with A Titanium Dioxide Photocatalyst for Direct C-C Bond Formation between An Aromatic Ring and Acetonitrile, Chem. Commun., 2013, 49, 3793–3795.
- Schulz, L., Enders, M., Elsler, B., Schollmeyer, D., Dyballa, K. M., Franke, R., Waldvogel, S. R., Reagent- and Metal-Free Anodic C-C Cross-Coupling of Aniline Derivatives, J. Am. Chem. Soc., 2017, 56, 4877–4881.
- Yi, H., Niu, L., Song, C., Li, Y., Dou, B., Singh, A. K., Lei, A, Photocatalytic Dehydrogenative Cross-Coupling of Alkenes with Alcohols or Azoles without External Oxidant, Angew. Chem., Int. Ed., 2017, 56, 1120–1124.
- Sauermann, N., Meyer, T. H., Tian, C., Ackermann, L., Electrochemical Cobalt-Catalyzed C-H Oxygenation at Room Temperature, J. Am. Chem. Soc., 2017, 139, 18452–18455.
- 40. Gao, W. J., Li, W. C.; Zeng, C. C., Tian, H. Y., Hu, L. M., Little, R. D., Electrochemically Initiated Oxidative Amination of Benzoxazoles Using Tetraalkylammonium Halides as Redox Catalysts, J. Org. Chem., 2014, 79, 9613–9618.
- 41. Li, K.-J., Xu, K., Liu, Y.-G.; Zeng, C.C., Sun, B.G., Electrochemical Dehydrogenative Cross-Coupling of Quinoxalin2(1H)-ones with Amines for the Synthesis of 3-Aminoquinoxalinones, Adv. Synth. Catal., 2019, 361, 1033–1041.
- Morofuji, T., Shimizu, A., Yoshida, J. Heterocyclization Approach for Electrooxidative Coupling of Functional Primary Alkylamines with Aromatics, J. Am. Chem. Soc., 2015, 137, 9816–9819.
- Niu, L., Yi, H., Wang, S., Liu, T., Liu, J., Lei, A., Photo-Induced Oxidant-Free Oxidative C-H/N-H Cross-Coupling between Arenes and Azoles, Nat. Commun., 2017, 8, 14226–14232.
- 44. Chen, H., Yi, H., Tang, Z., Bian, C., Zhang, H., Lei, A., External Oxidant-Free Regioselective Cross Dehydrogenative Coupling of 2- Arylimidazoheterocycles and Azoles with H₂ Evolution via Photoredox Catalysis, Adv. Synth. Catal., 2018, 360, 3220–3227.

- 45. Tang, S., Wang, S., Liu, Y., Cong, H., Lei, A., Electrochemical Oxidative C-H Amination of Phenols: Access to Triarylamine Derivatives, Angew. Chem., Int. Ed., 2018, 57, 4737–4741.
- 46. Liang, S., Zeng, C. C., Tian, H. Y., Sun, B. G., Luo, X. G., Ren, F. Z., Electrochemically Oxidative alpha-C-H Functionalization of Ketones: A Cascade Synthesis of alpha-Amino Ketones Mediated by NH₄I, J. Org. Chem., 2016, 81, 11565–11573.
- 47. Li, Y., Gao, H., Zhang, Z., Qian, P., Bi, M., Zha, Z., Wang, Z., Electrochemical Synthesis of Alpha-Enaminones from Aryl Ketones, Chem. Commun., 2016, 52, 8600–8603.
- Ogawa, K. A., Boydston, A. J., Organocatalyzed Anodic Oxidation of Aldehydes to Thioesters, Org. Lett., 2014, 16, 1928–1931.
- Wang, P., Tang, S., Huang, P., Lei, A, Electrocatalytic OxidantFree Dehydrogenative C-H/S-H Cross-Coupling, Angew. Chem., Int. Ed., 2017, 56, 3009–3013.
- 50. Hu, X., Zhang, G., Bu, F., Lei, A., Selective Oxidative [4+2] Imine/Alkene Annulation with H2 Liberation Induced by Photo- Oxidation, Angew. Chem., Int. Ed., 2018, 57, 1286–1290.
- Zhang, G., Lin, Y., Luo, X., Hu, X., Chen, C., Lei, A., Oxidative [4+2] Annulation of Styrenes with Alkynes under External-Oxidant- Free Conditions, Natt. Commun., 2018, 9, 1225–1231
- 52. Tian, W. F., Wang, D. P., Wang, S. F., He, K. H., Cao, X. P., Li, Y., Visible-Light Photoredox-Catalyzed Iminyl Radical Formation by N-H Cleavage with Hydrogen Release and Its Application in Synthesis of Isoquinolines, Org. Lett., 2018, 20, 1421–1425.
- 53. Tang, S., Wang, D., Liu, Y., Zeng, L., Lei, A., Cobalt-Catalyzed Electrooxidative C-H/N-H [4+2] Annulation with Ethylene or Ethyne, Nat. Commun., 2018, 9, 798–803.
- Qiu, Y., Tian, C., Massignan, L., Rogge, T., Ackermann, L. Electrooxidative Ruthenium-Catalyzed C-H/O-H Annulation by Weak O-Coordination, Angew. Chem., Int. Ed., 2018, 57, 5818–5822.
- Liu, K., Tang, S.; Huang, P., Lei, A., External Oxidant-Free Electrooxidative [3+2] Annulation between Phenol and Indole Derivatives, Nat. Commun., 2017, 8, 775–782.

- 56. Xu, F., Li, Y.-J., Huang, C., Xu, H.-C., Ruthenium-Catalyzed Electrochemical Dehydrogenative Alkyne Annulation,, ASC. Catal., 2018, 8, 3820–3824.
- Sauermann, N., Meyer, T. H., Tian, C., Ackermann, L., Electrochemical Cobalt-Catalyzed C-H Oxygenation at Room Temperature, ASC. Catal, 2017, 139, 18452–18455.
- Qiu, Y., Stangier, M., Meyer, T. H., Oliveira, J. C. A., Ackermann, L., Iridium-Catalyzed Electrooxidative C-H Activation by Chemoselective Redox-Catalyst Cooperation, Angew. Chem., Int. Ed., 2018, 57, 14179–14183.
- Qiu, Y., Kong, W. J., Struwe, J., Sauermann, N., Rogge, T., Scheremetjew, A., Ackermann, L., Electrooxidative Rhodium-Catalyzed C-H/C-H Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation, Angew. Chem., Int. Ed., 2018, 57, 5828–5832.
- Hou, Z. W., Mao, Z. Y., Zhao, H. B., Melcamu, Y. Y., Lu, X., Song, J., Xu, H.
 C. Electrochemical C H / N H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles, Angew. Chem., Int. Ed., 2016, 55, 9168–9172.
- Green, R. A., Pletcher, D., Leach, S. G., Brown, R. C., N Heterocyclic Carbene-Mediated Microfluidic Oxidative Electrosynthesis of Amides from Aldehydes, Org. Lett., 2016, 18, 1198–1201.
- Wu, Z. J., Xu, H. C., Synthesis of C3-Fluorinated Oxindoles through Reagent-Free Cross-Dehydrogenative Coupling, Angew. Chem., Int. Ed., 2017, 56, 4734–4738.
- 63. Zhao, H. B., Hou, Z. W., Liu, Z. J., Zhou, Z. F., Song, J. S., Xu, H. C, Amidinyl Radical Formation through Anodic N - H Bond Cleavage and Its Application in Aromatic C - H Bond Functionalization, Angew. Chem., Int. Ed., 2017, 56, 587–590.
- Xiong, P., Xu, H. H., Xu, H. C., Metal and Reagent Free Intramolecular Oxidative Amination of Tri- and Tetrasubstituted Alkenes, J. Am. Chem. Soc., 2017, 139, 2956–2959.
- 65. Gieshoff, T., Kehl, A., Schollmeyer, D., Moeller, K. D., Waldvogel, S. R., Insights into the Mechanism of Anodic N - N Bond Formation by Dehydrogenative Coupling., J. Am. Chem. Soc, 2017, 139, 12317–12324.
- Kehl, A., Breising, V. M., Schollmeyer, D., Waldvogel, S. R., Electrochemical Synthesis of 5-Aryl-phenanthridin-6-one by Dehydrogenative N,C Bond Formation, Chem. - Eur. J., 2018, 24, 17230–17233.

- 67. Li, C. J., Cross-Dehydrogenative Coupling (CDC): Exploring C C Bond Formations beyond Functional Group Transformations, Acc. Chem. Res. 2009, 42, 335–344.
- Long, J., Cao, X., Zhu, L., Qiu, R., Au, C. T. Yin, S.-F., Iwasaki, T., Kambe, N., Intramolecular, Site-Selective, Iodine-Mediated, Amination of Unactivated (sp³) C - H Bonds for the Synthesis of Indoline Derivatives, Org. Lett., 2017, 19, 2793–2796.
- Duhamel, T., Stein, C. J., Martinez, C., Reiher, M., Muniz, K., Engineering Molecular Iodine Catalysis for Alkyl-Nitrogen Bond Formation., ACS Catal. 2018, 8, 3918–3925.
- Long, J., Cao, X., Zhu, L., Qiu, R., Au, C. T., Yin, S. F., Iwasaki, T.; Kambe, N., Intramolecular, Site-Selective, Iodine-Mediated, Amination of Unactivated (sp³) C - H Bonds for the Synthesis of Indoline Derivatives., Org. Lett. 2017, 19, 2793–2796.
- Tang, S., Gao, X., Lei, A., Electrocatalytic Intramolecular Oxidative Annulation of N -Aryl Enamines into Substituted Indoles Mediated by Iodides, Chem. Commun. 2017, 53, 3354–3356.
- Wu, C. -J., Meng, Q. Y., Lei, T., Zhong, J. J., Liu, W. Q., Zhao, L. M., Li, Z.-J., Chen, B., Tung, C. - H., Wu, L. – Z., An Oxidant-FreeStrategy for Indole Synthesis via Intramolecular C-C Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction, ACS Catal., 2016, 6, 4635–4639.
- Zhang, J., Zhang, X., Wang, T., Yao, X., Wang, P., Wang, P., Jing, S., Liang, Y., Zhang, Z., Oxidant and Transition-Metal-Free Photoinduced Direct Oxidative Annulation of 1-Aryl-2-(furan/ thiophen-2-yl)butane-1,3-diones, J. Org. Chem., 2017, 82, 12097 – 12105.
- Zhang, G. T., Liu, C., Yi, H., Meng, Q. Y., Bian, C. L., Chen, H., Jian, J. X.; Wu,
 L. Z., Lei, A. W., External Oxidant-Free Oxidative Cross- Coupling: A
 Photoredox Cobalt-Catalyzed Aromatic C-H Thiolation for Constructing C-S
 Bonds, J. Am. Chem. Soc., 2015, 137, 9273–9280.
- 75. Qian, X. Y., Li, S. Q., Song, J., Xu, H. C., TEMPO-Catalyzed Electrochemical C-H Thiolation: Synthesis of Benzothiazoles and Thiazolopyridines from Thioamides, ACS Catal., 2017, 7, 2730 – 2734.

- 76. Folgueiras Amador, A. A., Qian, X. Y., Xu, H. C., Wirth, T. Catalyst and Supporting-Electrolyte - Free Electrosynthesis of Benzothiazoles and Thiazolopyridines in Continuous Flow, Chem. - Eur. J., 2018, 24, 487 – 491.
- 77. Xu, F., Qian, X. Y., Li, Y. J., Xu, H. C., Synthesis of 4H 1,3 Benzoxazines via Metal and Oxidizing Reagent Free Aromatic C H Oxygenation, Org. Lett., 2017, 19, 6332 6335.
- Okimoto, M., Ohashi, K., Yamamori, H., Nishikawa, S., Hoshi, M., Yoshida, T., Paper Electrooxidative Cyclization of Hydroxyamino Compounds Possessing a Benzyl Group. Synthesis 2012, 44, 1315 – 1322.
- 79. Zhang, S., Lian, F., Xue, M. Y., Qin, T. T., Li, L. J., Zhang, X., Xu, K., Electrocatalytic Dehydrogenative Esterification of Aliphatic Carboxylic Acids: Access to Bioactive Lactones. Org. Lett., 2017, 19, 6622 – 6625.
- Wen, J., Shi, W., Zhang, F., Liu, D., Tang, S., Wang, H., Lin, X. M., Lei, A., Electrooxidative Tandem Cyclization of Activated Alkynes with Sulfinic Acids To Access Sulfonated Indenones, Org. Lett., 2017, 19, 3131 – 3134.
- 81. Wang, P., Tang, S., Lei, A., Electrochemical Intramolecular Dehydrogenative C
 S Bond Formation for the Synthesis of Benzothiazoles, Green Chem., 2017, 19, 2092 2095.
- Yu, H., Jaio, M., Huang, R., Fang, X., Electrochemical Intramolecular Dehydrogenative Coupling of N-Benzyl(thio)amides: A Direct and Facile Synthesis of 4H-1,3-Benzoxazines and 4H-1,3-Benzothiazines, Eur. J. Org. Chem., 2019, 2004–2009.
- 83. a) Osipov, D. V., Osyanin, A., Khaysanova, G. D., Masterova, E. R., Krasnikov,
 P. E.,Klimochkin, Y. N., J. Org. Chem., 2018, 83, 4775–4785; b) Verma, V.,
 Singh, K., Kumar, D., Klapotke, T. M., Stierstorfer. J., Narasimhan, B., Qazi,
 A. K., Hamid, A., Jaglan, S., Eur. J. Med. Chem., 2012, 56, 195–202.
- 84. Xu, F., Qian, X.-Y., Li, Y.-J., Xu, H.-C., Org. Lett. 2017, 19, 6332-6335.
- 85. Masui, M., Ohmori, H. J., Chem. Soc., Perkin Trans., 1972, 2, 1882.
- 86. O'Donnell, M. J., Bennett, W. D., Polt, R. B, Tetrahedron Lett., 1985, 26, 695.
- Baba, D., Fuchigami, T., Anodic methoxylation and acetoxylation of imines and imidates, Tetrahedron Letters, 2003, 44, 3133-3136.
- 88. Gant, T. G., Meyers, A. I., Tetrahedron, 1994, 50, 2297.
- Corley, E. G., Karady, S., Abramson, N. L., Ellison, D., Weinstock, L. M., Tetrahedron Lett., 1988, 29, 1497.

- 90. Evans, D. A., Gage, J. R., Leighton, J. L., J. Am. Chem. Soc., 1992, 114, 9434.
- 91. Cardwell, K. S., Hermitage, S. A., Sjolin, S., Tetrahedron Lett., 2000, 41, 4239.
- 92. Ozturk, T., Ertas, E., Use of Lawesson's Reagent in Organic Syntheses, Chem. Rev. 2010, 110, 3419–3478.

7. PRILOZI

Prilog 1.

¹H NMR spektar spoja **1a**

Prilog 2

¹H NMR spektar spoja **2a**

¹H NMR spektar spoja **2e**

Prilog 4

¹H NMR spektar spoja **3a**

Prilog 5

¹H NMR spektar spoja **3b**

¹H NMR spektar spoja **3c**

¹H NMR spektar spoja **3d**

¹H NMR spektar spoja **3e**

a) ¹H-NMR spektar spoja **4a**

b) COSY NMR spektar spoja 4a

a) ¹H-NMR spektar spoja **4a'**

b) COSY NMR spektar spoja 4a'

Prilog 11

b) COSY NMR spektar spoja 4b

Prilog 12

¹H-NMR spektar spoja **4c**

Prilog 13

¹H-NMR spektar spoja **4d**

Prilog 14

a) ¹H-NMR spektar spoja **4e**

b) COSY NMR spektar spoja 4e

a) ¹H-NMR spektar spoja **5a**

b) COSY NMR spektar spoja 5a

a) ¹H-NMR spektar spoja **5a'**

b) COSY NMR spektar spoja 5a'

a) ¹H-NMR spektar spoja **5b**

b) COSY NMR spektar spoja **5b**

140

¹H-NMR spektar spoja 8

¹H-NMR spektar spoja **9**

a) ¹H-NMR spektar spoja **10a**

b) COSY spektar spoja 10a

a) ¹H NMR spoja **10a'**

a) ¹H-NMR spektar spoja **13**

148

¹H-NMR spektar spoja **14**

ŽIVOTOPIS

Moje ime je Petra Kovačec. Rođena sam 15.7.1998. u Zaboku. Od 2005. do 2013. godine pohađala sam Osnovnu školu "Ljudevit Gaj" u Krapini. 2013. godine upisujem Opću gimnaziju u Srednjoj školi Krapina. Srednjoškolsko obrazovanje završila sam 2017. godine te iste godine upisala preddiplomski sveučilišni studij Primijenjena kemija na Fakultetu kemijskog inženjerstva i tehnologije. Tijekom preddiplomskog obrazovanja odradila sam stručnu praksu u Centru za forenzična ispitivanja istraživanja i vještačenja "Ivan Vučetić". Tijekom prakse upoznala sam se s IR, HPLC, GC-FID, MS tehnikama te tankoslojnom kromatografijom (TLC) u procesu identifikacije i detekcije narkotičkih sredstava. Na trećoj godini preddiplomskog studija ostvarila sam pravo na STEM stipendiju u području prirodnih znanosti. Završni rad izradila sam na Zavodu za organsku kemijsku na Fakultetu kemijskog inženjerstva i tehnologije na temu Sinteza i karakterizacija novih amino derivata furostilbena kao potencijalnih inhibitora kolinesteraza prilikom čega sam stekla znanja u sintezi, izolaciji i strukturnoj karakterizaciji organskih spojeva. 2022. godine upisujem diplomski sveučilišni studij Primijenjena kemija na Fakultetu kemijskog inženjerstva i tehnologije, modul: Primijenjena organska kemija. Diplomski rad izradila sam u Selviti d.o.o. na temu Elektrokemijska sinteza novih derivata 1,3-benztiazinskih i 1,3-benzoksazinskih soli s potencijalnim afinitetom prema DNK/RNK gdje sam stekla znanja o elektrokemijskoj sintezi organskih spojeva te izolaciji istih na specijaliziranim uređajima za kolonsku kromatografiju na silikagelu.