Ravnoteža kapljevina-krutina u smjesama dugolančanih alkohola i dugolančanih alkana

Tomljenović, Emanuel

Undergraduate thesis / Završni rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:324328

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-09

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

SVEUČILIŠTE U ZAGREBU

FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ

Emanuel Tomljenović

RAVNOTEŽA KAPLJEVINA-KRUTINA U SMJESAMA DUGOLANČANIH ALKOHOLA I DUGOLANČANIH ALKANA

ZAVRŠNI RAD

Voditelj rada: dr. sc. Marko Rogošić, red. prof.

Članovi ispitnog povjerenstva:

Prof. dr. sc. Marko Rogošić Izv. prof. dr. sc. Krunoslav Žižek Doc. dr. sc. Igor Dejanović

Zagreb, rujan 2019.

SADRŽAJ

1. UVOD	1
2. TEORIJSKI DIO	2
2.1. UVJETI FAZNE RAVNOTEŽE KAPLJEVINA-KRUTINA	2
2.2. JEDNADŽBA FAZNE RAVNOTEŽE KAPLJEVINA-KRUTINA	3
2.3. FAZNI DIJAGRAMI U DVOKOMPONENTNIM SUSTAVIMA	9
2.4. MODELI KOEFICIJENTA AKTIVNOSTI	13
2.4.1. REDLICH-KISTEROV MODEL	13
2.4.2. WILSONOV MODEL	13
2.4.3. MODEL NRTL	14
2.4.4. MODEL NRTL-MK	14
2.4.5. MODEL UNIQUAC	17
2.4.6. MODEL UNIFAC	18
3. LITERATURNI PODATCI O RAVNOTEŽI KAPLJEVINA-KRUTINA	21
3.1. PREGLED EKSPERIMENTALNIH METODA	21
3.2. RAVNOTEŽNI SASTAVI	23
3.3. ODREĐIVANJE PARAMETARA MODELA	24
4. REZULTATI I RASPRAVA	27
4.1. USPOREDBA SUSTAVA	27
4.2. OPIS RAVNOTEŽE MODELIMA KOEFICIJENATA AKTIVNOSTI	28
5. ZAKLJUČAK	38
6. LITERATURA	39
7. POPIS SIMBOLA	40
8. PRILOG	43

SAŽETAK

U ovom radu su na nekoliko primjera opisani načini modeliranja fazne ravnoteže kapljevina-krutina u sustavima s dugolančanim organskim molekulama. Podatci za temperaturu taljenja kao funkciju sastava preuzeti su iz literature i na temelju tih podataka modelirani su fazni dijagrami u sustavima koji uz *n*-oktanol kao prvu komponentu sadrže još i ravnolančani alkan: *n*-oktan (2), *n*-dekan, *n*-undekan, *n*-dodekan, *n*-tetradekan odnosno *n*-heksadekan. Za opis neidalnosti kapljevite faze testirani su sljedeći modeli koeficijenta aktivnosti: troparametarski i četveroparametarski Redlich-Kisterov model, Wilsonov model, model NRTL, model NRTL-MK, model UNIQUAC i model UNIFAC. Kao rezultat modeliranja dobivene su ravnotežne krivulje taljenja koji nastoje što bolje opisati eksperimentalne podatke o ovisnosti tališta o sastavu otopine. Iz rezultata je vidljivo da Redlich-Kisterov model, model NRTL, model UNIQUAC i model NRTL-MK bolje opisuju sve sustave, a Wilsonov model, model NRTL, model UNIQUAC i model NRTL-MK bolje opisuju sve sustave, podudarnost krivulja modela i eksperimentalnih točaka.

KLJUČNE RIJEČI

ravnoteža kapljevina-krutina; Redlich-Kisterov model, Wilsonov model, NRTL, NRTL-MK, UNIQUAC, UNIFAC, dugolančani alkani, *n*-oktanol

Solid-liquid equilibria in mixtures of long-chain alkanes and long-chain alcohols

ABSTRACT

This paper describes, in several examples, procedures for modeling liquid-solid phase equilibria in systems with long-chain organic molecules. Experimental data for melting point as a function of system composition were taken from literature and on the basis of that data phase diagrams were modeled for systems containing *n*-octanol as the first component and long-chain *n*-alkanes: *n*-octane, *n*-decane, *n*-undecane, *n*-dodecane, *n*-tetradecane or *n*-hexadecane as the second component. In order to describe unideal behavior of liquid phase the following activity coefficient models were tested: three-parameter and four-parameter Redlich-Kister model, Wilson model, NRTL model, NRTL-MK model, UNIQUAC model and UNIFAC model. As a result of modeling, equilibrium *liquidus* curves were obtained which tend to describe the experimental data in the best possible way. The results show that the Redlich-Kister model (three-parameter and four-parameter) and the NRTL-MK model can describe fairly all investigated systems; Wilson, NRTL, UNIQUAC and UNIFAC models describe the experimental data slightly worse.

KEY WORDS

solid-liquid phase equilibria, Redlich-Kister model, Wilson model, NRTL, NRTL-MK, UNIQUAC, UNIFAC, long-chain alkanes, *n*-octanol

1. UVOD

Ravnotežu kapljevina-krutina karakterizira istovremena ravnotežna prisutnost kapljevite i čvrste faze. Pri ravnoteži kapljevina-krutina u višekomponentnim sustavima, sastavi dviju ravnotežnih faza određeni su prvenstveno međudjelovanjima čestica koje može biti okarakterizirano neidealnošću. Većina podataka potrebnih za proračune takvih ravnoteža određuje se eksperimentalno jer je mogućnost opisa međudjelovanja i neidealnosti postojećim modelima ograničena. Neki od modela za određivanje takvih ravnoteža primijenjeni su u ovom radu i uspoređeni sa eksperimentalnim krivuljama. Ravnoteža kapljevina-krutina može se susresti u industriji prvenstveno u procesima kristalizacije.

Kao modelni sustavi za proučavanje ravnoteže kapljevina-krutina u ovom radu odabrani su sustavi koji sadrže *n*-oktanol (1) i dugolančani *n*-alkan (2). Dugolančani *n*-alkani su komponente biljnih voskova. Njihova je separacija zahtjevna i može se provesti, između ostalog, selektivnim otapanjem i kristalizacijom. U ovom radu obrađuju se ravnoteže *n*-oktanol (1) – *n*-oktan (2); *n*-oktanol (1) – *n*-dekan (2); *n*-oktanol (1) – *n*-undekan (2); *n*-oktanol (1) – *n*-dodekan (2); *n*-oktanol (1) – *n*-tetradekan (2); *n*-oktanol (1) – *n*-heksadekan (2). Sustavi tvore binarne eutektike pri atmosferskom tlaku, s tim da su "rubni" sustavi *n*-oktanol (1) – *n*-oktan (2) i *n*-oktanol (1) – *n*-heksadekan (2) toliko asimetrični, odnosno komponente im se toliko razlikuju u atmosferskim talištima da se eutektični sastav vrlo približava čistoj komponenti nižega tališta.

Modeli koeficijenata aktivnosti su prikladne matematičke funkcije koje opisuju ovisnost termodinamičkih svojstava sustava o temperaturi, tlaku i sastavu. Cilj uvođenja modela je poprilično jasan – eksperimentalne podatke u obliku tablica ili dijagrama treba zamijeniti skupom funkcija pogodnim za ugradnju u složene kemijsko-inženjerske proračune. Drugim riječima, modeli služe za opis ponašanja nekog sustava. U ovom slučaju, modeli bi služili za izračunavanje ravnotežnih tališta sustava pri različitim sastavima. Mogućnost pretpostavljanja ponašanja s nekim postotkom pouzdanosti proračunatih podataka donosi veliku uštedu vremena i novca jer su eksperimenti dugotrajni i skupi. Stoga se kemijskoinženjerskim proračunima unaprijed mogu testirati neki separacijski postupci u računalu, i nakon donošenja konačnoga odabira najpovoljnijih varijanti, samo te varijante testirati u laboratoriju i poluindustrijskim postrojenjima prije uvođenja u industrijsku praksu.

2. TEORIJSKI DIO

2.1. UVJETI FAZNE RAVNOTEŽE KAPLJEVINA-KRUTINA¹

U stanju ravnoteže moraju biti zadovoljeni svi osnovni zakoni termodinamike. Nulti zakon termodinamike daje uvjet termičke ravnoteže tj. temperature kapljevite i krute faze jednake su u stanju termodinamičke ravnoteže:

$$T^{\rm S} = T^{\rm L} \,. \tag{1}$$

Slovom L (engl. liquid) označava se kapljevita faza, a slovom S čvrsta faza ili krutina (engl. solid).

Prvi zakon termodinamike govori o bilanci energije, pretvorbama jednog oblika energije u drugi, pri čemu ukupna energija ostaje stalna. Ukupna bilanca tvari u višekomponentnom dvofaznom sustavu iskazuje se izrazom:

$$\sum_{i=1}^{n_k} n_i^{\rm F} = \sum_{i=1}^{n_k} n_i^{\rm L} + \sum_{i=1}^{n_k} n_i^{\rm S} , \qquad (2)$$

gdje je n_k brojnost komponenti, a n_i količina tvari komponente *i*. F je oznaka za sustav u cjelini, a dolazi od pojne smjese (engl. *feed*).

Bilanca tvari po komponentama glasi:

$$\sum_{i=1}^{n_k} n_i^{\rm F} = \sum_{i=1}^{n_k} n_i^{\rm L} + \sum_{i=1}^{n_k} n_i^{\rm S} , \qquad (3)$$

a bilančne jednadžbe za pojedine faze u ravnoteži su:

$$\sum_{i=1}^{n_{k}} x_{i}^{\mathrm{L}} = 1 , \qquad (4)$$

$$\sum_{i=1}^{n_k} x_i^{\rm S} = 1.$$
 (5)

Provodi li se uspostavljanje ravnoteže pri stalnom tlaku, ključna termodinamička veličina pri bilanciraju je entalpija. U slučaju adijabatske kristalizacije ili taljenja, bilanca entalpije može se prikazati na slijedeći način:

$$H^{\rm F} = H^{\rm L} + H^{\rm S} \,. \tag{6}$$

S obzirom na to da su procesi kristalizacije i taljenja relativno spori, znatno su češći slučajevi izotermne kristalizacije ili taljenja, kada se toplina izmjenjuje s okolinom, pa u tom slučaju bilancu entalpije ne treba razmatrati.

II. zakon termodinamike govori o spontanosti odvijanja termodinamičkog procesa. Također, govori i o tome da će u izoliranom sustavu entropija poprimiti maksimalni iznos u stanju ravnoteže:

$$S = \max$$
 , (7)

$$dS = 0. (8)$$

Tom je kriteriju ekvivalentan skup uvjeta:

$$T^{\rm L} = T^{\rm S} , \qquad (9)$$

$$p^{\rm L} = p^{\rm S}, \tag{10}$$

$$\mu_i^{\rm L} = \mu_i^{\rm S} \,. \tag{11}$$

2.2. JEDNADŽBA FAZNE RAVNOTEŽE KAPLJEVINA-KRUTINA¹

Prije samog izvođenja jednadžbe potrebno je definirati ključne pojmove kao što su fugacitivnost, parcijalna fugacitivnost te koeficijent aktivnosti.

Fugacitivnost i aktivnost su termodinamičke veličine koje omogućavaju izračunavanje termodinamičkih funkcija za realne sustave uz provedbu kompletnog termodinamičkog proračuna.

Fugacitivnost, f, je tlak koji bi imao realni plin kada bi se vladao kao idealan:

$$(dg)_T = vdp = RTd\ln f.$$
⁽¹²⁾

Fugacitivnost *i*-te komponente višekomponentnog sustava, parcijalna fugacitivnost, definira se analogno definiranju fugacitivnosti čiste tvari:

$$d\mu_i = RTd\ln\hat{f}_i,\tag{13}$$

gdje je \hat{f}_i parcijalna fugacitivnost *i*-te komponente u realnoj otopini.

Parcijalna fugacitivnost, parcijalni koeficijent fugacitivnosti, $\hat{\varphi}_i$ i parcijalni tlak pojedine komponente povezani su jednadžbom:

$$\hat{f}_i = \hat{\varphi}_i p_i \,. \tag{14}$$

Prikladan oblik jednadžbe fazne ravnoteže kapljevina-krutina zavisi o raspoloživim eksperimentalnim podatcima za promatrani sustav. Kao osnovna jednadžba primijenit će se jednakost parcijalnih

fugacitivnosti komponenata. Promjena kemijskog potencijala čvrste komponente pri taljenju, odnosno otapanju jednaka je nuli:

$$(\mu_i^{\rm L} - \mu_i^{\rm S}) = RT \ln \frac{\hat{f}_i^{\rm L}}{\hat{f}_i^{\rm S}} = 0,$$
(15)

iz čega slijedi:

$$\hat{f}_i^{\rm L} = \hat{f}_i^{\rm S}.$$
(16)

Uvrštavanjem definicijskih izraza za aktivnost (omjer fugacitivnosti i fugacitivnosti u standardnom stanju):

$$a_i = \frac{\hat{f}_i^{\rm L}}{f_i^{\rm L\circ}},\tag{17}$$

$$a_i = \frac{\hat{f}_i^{\rm S}}{f_i^{\rm So}}, \tag{18}$$

odnosno koeficijent aktivnosti:

$$a_i = \gamma_i x_i, \tag{19}$$

dolazi se do sljedećeg oblika jednadžbe fazne ravnoteže kapljevina-krutina:

$$x_i^{\mathrm{L}} \gamma_i^{\mathrm{L}} f_i^{\mathrm{L}\circ} = x_i^{\mathrm{S}} \gamma_i^{\mathrm{S}} f_i^{\mathrm{S}\circ} \,.$$

Za primjenu jednadžbe potrebno je poznavati fugacitivnosti komponenata u standardnom stanju. Kao standardno stanje najčešće se uzima stanje čiste kapljevine odnosno krutine pri temperaturi i tlaku sustava.

Fugacitivnost čiste kapljevine, f_i^{Lo} , može se odrediti primjenom izraza:

$$f_i^{\text{L}\circ} = f_i^{\bullet} \exp\left[\int_{p_i^{\bullet}}^p \frac{v_i^{\text{L}}}{RT} dp\right] \approx f_i^{\bullet} \exp\left[\frac{v_i^{\text{L}} \left(p - p_i^{\bullet}\right)}{RT}\right] = f_i^{\bullet} \exp\left[\frac{1}{RT}\int_{p_i^{\bullet}}^p v_i^{\text{L}} dp^{\circ}\right].$$
(21)

Potrebni su eksperimentalni podatci za ravnotežni tlak para kapljevite komponente pri temperaturi sustava, p_i^{\bullet} , te molarni volumen čiste kapljevine pri temperaturi sustava v_i^{L} .

Kod visokih ravnotežnih tlakova, ravnotežna fugacitivnost, f_i^{\bullet} , računa se prema:

$$f_i^{\bullet} = \varphi_i^{\bullet} p_i^{\bullet}, \qquad (22)$$

gdje je φ_i^{\bullet} ravnotežni koeficijent fugacitivnosti koji se izračunava iz jednadžbe stanja za čisti fluid. Kod niskih tlakova vrijedi:

$$\varphi_i^{\bullet} = 1. \tag{23}$$

pa jednadžba stanja nije potrebna.

U slučaju da je temperatura sustava niža od temperature trojne točke za promatranu komponentu, standardno stanje čiste kapljevine je stanje tzv. pothlađene kapljevine (engl. *subcooled liquid*, SCL). Fugacitivnost takvoga stanja, $f_i^{SCL\bullet}$, računa se prema izrazu:

$$f_i^{\text{SCL}\circ} = f_i^{\bullet} \exp\left[\int_{p_i^{\bullet}}^{p} \frac{v_i^{\text{L}}}{RT} dp\right] \approx f_i^{\bullet} \exp\left[\frac{v_i^{\text{L}} \left(p - p_i^{\bullet}\right)}{RT}\right] = f_i^{\bullet} PF_i,$$
(24)

Eksponencijalni član *PF* naziva se Poyntingov faktor i iskazuje promjenu fugacitivnosti čiste kapljevine s tlakom. Poyntingov se faktor pri umjerenim tlakovima sustava ne razlikuje znatno od jedinice.

$$f_i^{\text{SCL}\circ} = \varphi_i^{\bullet} p_i^{\bullet} \left(PF \right)_i$$
(25)

Kada razlika temperatura nije prevelika, može se provesti ekstrapolacija krivulje isparavanja prema nižim temperaturama (slika 1.).

Slika 1. Ekstrapolacija krivulje isparavanja u područje pothlađene kapljevine.

Fugacitivnost standardne krutine, f_i^{so} , određuje se primjenom jednadžbe analogne onoj za kapljevinu:

$$f_i^{S_o} = f_i^{\bullet} \exp\left[\int_{p_i^{\bullet}}^p \frac{v_i^S}{RT} dp\right] \approx f_i^{\bullet} \exp\left[\frac{v_i^S\left(p - p_i^{\bullet}\right)}{RT}\right] = f_i^{\bullet} \exp\left(PF\right)_i.$$
(26)

Potrebni su eksperimentalni podatci za sublimacijski tlak (ravnotežni tlak para krute komponente) pri temperaturi sustava, p_i^{\bullet} , te molarni volumen čiste krutine pri temperaturi sustava, v_i^{s} . f_i^{\bullet} predstavlja ravnotežnu fugacitivnost, a *PF* je Poyntingov faktor za krutinu.

Podatci o sublimacijskom tlaku najčešće nisu dostupni u širokom temperaturnom području. Međutim, za krutinu najčešće se raspolaže s podatcima o temperaturi i tlaku trojne točke. U tom slučaju, primjenjuju se jednadžbe za ovisnost fugacitivnosti o tlaku i temperaturi:

$$\ln \frac{f_i^{S_o}}{f_{tt,i}} = \int_{p_{tt,i}}^{p_i} \frac{v_i^S}{RT} dp + \int_{T_{tt,i}}^{T_i} \frac{h_i^{V,id} - h_i^S}{RT^2} dT .$$
(27)

 $f_{tt,i}$ predstavlja fugacitivnost trojne točke, $p_{tt,i}$ tlak trojne točke, a $T_{tt,i}$ temperaturu trojne točke. Na lijevoj je strani jednadžbe logaritam omjera fugacitivnosti standardne krutine i fugacitivnosti trojne točke. Prvi član na desnoj strani daje promjenu fugacitivnosti s tlakom, a drugi promjenu fugacitivnosti s temperaturom. Za izračunavanje drugoga člana potrebna je razlika molarnih entalpija krutine i idealne pare, tj. molarna entalpija sublimacije u vakuumu:

$$h_i^{\rm V,id} - h_i^{\rm S} \approx \Delta h_i^{\rm subl}$$
⁽²⁸⁾

Molarna entalpija sublimacije poznata je obično pri razmjerno malom tlaku, obično atmosferskom, različitom od beskonačno malog tlaka, stoga se prethodni izraz piše sa znakom približne jednakosti. U slučaju malih temperaturnih razlika, molarna entalpija sublimacije u vakuumu može se smatrati konstantnom.

Na slici 2. prikazan je shematski prikaz izračunavanja fugacitivnosti standardne krutine iz fugacitivnosti trojne točke s izdvojenim doprinosima za ovisnost fugacitivnosti o temperaturi, odnosno tlaku.

Slika 2. Shematski prikaz izračunavanja fugacitivnosti

Nadalje slijedi izvod Schröderove jednadžbe topljivosti krutine u kapljevini iz jednadžbe ravnoteže kapljevina-krutina.

Jednadžba slična jednadžbi (27) može se postaviti i za pothlađenu kapljevinu:

$$\ln \frac{f_i^{\text{SCL}\circ}}{f_{\text{tt},i}} = \int_{p_{\text{tt},i}}^p \frac{v_i^{\text{SCL}}}{RT} dp + \int_{T_{\text{tt},i}}^T \frac{h_i^{\text{V,id}} - h_i^{\text{SCL}}}{RT^2} dT \,.$$
(29)

Nakon stavljanja u omjer jednadžbe (27) i (29) i djelomičnog integriranja dobiva se omjer fugacitivnosti krutine i pothlađene kapljevine pri temperaturi i tlaku sustava kao funkcija termodinamičkih veličina mjerenih u trojnoj točki:

$$\ln \frac{f_2^{\rm S}}{f_2^{\rm SCL_{\circ}}} = \frac{\Delta h_{2,tt}^{\rm talj}}{R} \left(\frac{1}{T_{2,tt}} - \frac{1}{T} \right) - \frac{\Delta c_{p2,tt}^{\rm talj}}{R} \left(\ln \frac{T_{2,tt}}{T} - \frac{T_{2,tt}}{T} + 1 \right) - \frac{\Delta v_2^{\rm talj}}{RT} \left(p - p_{2,tt} \right), \tag{30}$$

gdje f_2^{s} predstavlja fugacitivnost krutine, f_2^{sCLo} fugacitivnost pothlađene kapljevine, $\Delta h_{2,tt}^{talj}$ entalpiju taljenja u trojnoj točki, a $\Delta c_{\rho 2,tt}^{talj}$ razliku toplinskih kapaciteta kapljevine i krutine u trojnoj točki, a Δv_2^{talj} se prepoznaje kao molarni volumen taljenja pri stalnoj temperaturi, koji je praktički neovisan o tlaku.

Ovisno o raspoloživim podatcima i iznosima veličina moguće je, u većini slučajeva, provesti određena pojednostavljenja. Ukoliko se tlak sustava malo razlikuje od tlaka trojne točke, vrijedi:

$$\frac{\Delta v_2^{\text{talj}}}{RT} \left(p - p_{2,\text{tt}} \right) \approx 0.$$
(31)

Također, često je moguće pisati:

$$\Delta c_{p2,\text{tt}}^{\text{talj}} \approx 0.$$
(32)

Slijedi da se omjer fugacitivnosti može pisati kao:

$$\ln \frac{f_2^{\rm S}}{f_2^{\rm SCL_{\circ}}} = \frac{\Delta h_{2,\rm tt}^{\rm talj}}{R} \left(\frac{1}{T_{2,\rm tt}} - \frac{1}{T} \right).$$
(33)

Jednadžba topljivosti tada je:

$$x_{2} = \frac{1}{\gamma_{2}} \exp\left[\frac{\Delta h_{2,tt}^{\text{talj}}}{R} \left(\frac{1}{T_{2,tt}} - \frac{1}{T}\right)\right].$$
 (34)

Uzimajući u obzir egzaktan izraz:

$$\Delta h_{2,tt}^{\text{talj}} = \frac{\Delta s_{2,tt}^{\text{talj}}}{T_{2,tt}},$$
(35)

slijedi:

$$x_2 = \frac{1}{\gamma_2} \exp\left[\frac{\Delta s_{2,\text{tt}}^{\text{talj}}}{R} \left(1 - \frac{T_{2,\text{tt}}}{T}\right)\right].$$
(36)

Na osnovi entalpije, $\Delta h_{2,tt}^{\text{talj}}$, ili entropije taljenja, $\Delta s_{2,tt}^{\text{talj}}$, u trojnoj točki i temperature trojne točke moguće je procijeniti topljivost krutine.

Za mnoge krutine, temperaturu trojne točke i odgovarajuću entalpiju taljenja moguće je aproksimirati podatcima o normalnom talištu (pri atmosferskom tlaku), odnosno o entalpiji taljenja pri atmosferskom tlaku. Jednadžba topljivosti tada je:

$$x_2 = \frac{1}{\gamma_2} \exp\left[\frac{\Delta h_2^{\text{talj}}}{R} \left(\frac{1}{T_2^{\text{talj}}} - \frac{1}{T}\right)\right].$$
(37)

 x_2 je molarni udio otopljene tvari, γ_2 je koeficijent aktivnosti komponente, Δh_2^{talj} je entalpija taljenja komponente pri atmosferskom tlaku, a T_2^{talj} atmosfersko talište komponente.

Kada komponente tvore idealnu otopinu, jednadžba se svodi na:

$$x_2 = \exp\left[\frac{\Delta h_2^{\text{talj}}}{R} \left(\frac{1}{T_2^{\text{talj}}} - \frac{1}{T}\right)\right].$$
(38)

što je formulacija Schröderove jednadžbe za topljivost iz 1893.

2.3. FAZNI DIJAGRAMI U DVOKOMPONENTNIM SUSTAVIMA¹

Uobičajeni oblici faznog ponašanja u krutoj fazi su:

- potpuna nemješljivost (svaka komponenta kristalizira zasebno),
- djelomična mješljivost (u kristalnu formu jedne komponente može se ugraditi ograničena količina čestica druge komponente),
- potpuna mješljivost (čestice dviju komponenti potpuno se slobodno ugrađuju u kristalnu rešetku u bilo kojem omjeru).

Osim navedenih, moguće su i slijedeće pojave:

- različiti kristalni oblici komponenata pri različitim temperaturama, odnosno tlakovima,
- različita sposobnost kristalne rešetke da smjesti čestice druge komponente pri različitim temperaturama, odnosno tlakovima,
- djelomična mješljivost u kapljevitoj fazi, ovisna o temperaturi i tlaku,
- pojava faznog razmješavanja u čvrstoj fazi, ovisna o temperaturi i tlaku.

U čvrstoj fazi mogu nastati i međumolekulski spojevi. Dvije čestice tvore kristalnu rešetku točno određenog sastava, koja je po svojim svojstvima potpuno različita od kristalnih rešetki komponenata.

Na slikama 3 – 9 shematski su prikazani neki mogući tipovi faznih dijagrama koji se opažaju pri ravnoteži kapljevina-krutina u dvokomponentnim sustavima.

Binarni eutektik je dvofazna smjesa dviju komponenata minimalnog tališta. Na slici 3. kapljevite su komponente potpuno mješljive, a krutine potpuno nemješljive. Krutina A može postojati u dva kristalna oblika, pa će pri kristalizaciji talina bogatijih komponentom A nastajati kristalni oblik koji odgovara temperaturi kristalizacije. Oblik A' nastat će u području viših temperatura, a oblik A'' nastat će u području nižih temperatura.

Slika 3. Ravnoteža kapljevina-krutina u binarnim sustavima s eutektikom

Slika 4. prikazuje dijagram ravnoteže kapljevina-krutina u sustavima u kojima krutine A i B tvore zajedničku kristalnu rešetku, tj. međumolekulski spoj D. Taj je spoj sasvim nova kemijska komponenta u sustavu, pa je sustav u osnovi trokomponentan. Međumolekulski spoj je nemješljiv s komponentama A i B, te s njima tvori eutektične smjese E', odnosno E''. Stabilan je do temperature taljenja, i takvo se taljenje naziva kongruentno.

Slika 4. Ravnoteža kapljevina-krutina u binarnim sustavima s međumolekulskim spojem

Na slici 5. prikazana je situacija u sustavima kada postoji nekongruentno taljenje međumolekulskog spoja (raspada se prije temperature taljenja), te reakcija peritektične transformacije što označava raspadanje međumolekulskog spoja na kapljevinu i krutinu pri zagrijavanju ili obrnutu reakciju nastajanja međumolekulskog spoja prilikom hlađenja kapljevine i krutine. Komponenta D je, u području temperatura gdje je stabilna, potpuno nemješljiva s komponentama A i B, a s komponentom A tvori eutektik E.

Slika 5. Ravnoteža kapljevina-krutina u binarnim sustavima s međumolekulskim spojem, jednim eutektikom i jednim peritektikom.

Slika 6. prikazuje ravnotežni dijagram kapljevina-krutina za sustave u kojima je moguća ugradnja čestica komponenata A i B u jedinstvenu kristalnu rešetku.

Slika 6. Ravnoteža kapljevina-krutina u binarnim sustavima s potpunom mješljivošću u kapljevitoj i krutoj fazi

Na slici 7. prikazan je ravnotežni dijagram kapljevina-krutina za sustav u kojem se čestice komponenata A i B ugrađuju u jedinstvenu kristalnu rešetku. Na lijevoj slici, entropijski doprinos promovira miješanje, odnosno ugradnju u jedinstvenu kristalnu rešetku, ali u kristal unosi određenu napetost strukture, što rezultira minimumom tališta. U slučaju krutine s maksimumom tališta, na desnoj slici, ugradnja različitih čestica u kristalnu rešetku stabilizira kristal, pa miješani kristali imaju više talište od kristala čistih komponenata.

Slika 7. Ravnoteža kapljevina-krutina u binarnim sustavima s potpunom mješljivošću u kapljevitoj i krutoj fazi s minimumom i maksimumom tališta.

Na slici 8. kapljevite su komponente potpuno mješljive, a krutine djelomično, pri čemu se njihova mješljivost smanjuje sniženjem temperature. Kristali čistih komponenata mogu inkorporirati određenu, manju količinu druge komponente.

Slika 8. Ravnoteža kapljevina-krutina u binarnom sustavu s eutektikom s djelomičnom mješljivošću kapljevitih i krutih komponenata

Na slici 9. kapljevite su komponente potpuno mješljive. U krutoj fazi, kristali komponente B mogu otopiti određenu količinu komponente A pri svim temperaturama; topljivost komponente B u komponenti A ograničena je na usko temperaturno područje. Peritektična transformacija opaža se pri hlađenju ravnotežne smjese krutine B' i taline L. Pri peritektičnoj temperaturi dolazi do kristalizacije nove faze u sustavu, krutine A', koja ubrzano izlučuje komponentu B pri daljnjem snižavanju temperature.

Slika 9. Ravnoteža kapljevina-krutina u binarnim sustavima s peritektikom s potpunom mješljivošću kapljevitih komponenata.

2.4. MODELI KOEFICIJENTA AKTIVNOSTI

Modeli koeficijenata aktivnosti su matematičke funkcije koje pokušavaju što bolje opisati ovisnost termodinamičkih svojstava, ekscesne Gibbsove energije i koeficijenta aktivnosti, o tlaku, temperaturi ili sastavu. Cilj modeliranja je moći predvidjeti ponašanje sustava bez provođenja eksperimenata, što donosi veliku vremensku uštedu. Modeli su skup funkcija koji zamjenjuju eksperimentalne podatke i pogodni su za ugradnju u kemijsko-inženjerske proračune.

2.4.1. REDLICH-KISTEROV MODEL¹²

Prvi model koji će se razmatrati je Redlich-Kisterov model. Radi se o potpuno empirijskom modelu u kojem parametri nemaju fizičko značenje. Formule za izračun koeficijenata aktivnosti obiju komponenata u troparametarskoj varijanti modela su:

$$\ln \gamma_{1,\text{RK}} = x_2^2 \Big[A_0 + 5A_2 + A_1 (3 - 4x_2) + 4A_2 x_2 (-4 + 3x_2) \Big],$$
(39)

$$\ln \gamma_{2,\text{RK}} = x_1^2 \Big[A_0 + 5A_2 + A_1 \left(-3 + 4x_1 \right) + 4A_2 x_1 \left(-4 + 3x_1 \right) \Big].$$
(40)

Parametri su A₀, A₁, A₂. Formule za Redlich-Kisterov model u četveroparametarskoj varijanti su:

$$\ln \gamma_{1,\text{RKIV}} = x_2^2 \left(A_0 + A_1 \left(3 - 4x_2 \right) + \left(-1 + 2x_2 \right) \left(A_2 \left(-5 + 6x_2 \right) + A_3 \left(-16x_2^2 + 22x_2 - 7 \right) \right) \right), \tag{41}$$

$$\ln \gamma_{2,\text{RKIV}} = x_1^2 \left(A_0 + A_1 \left(-3 + 4x_1 \right) + \left(-1 + 2x_1 \right) \left(A_2 \left(-5 + 6x_1 \right) + A_3 \left(16x_1^2 - 22x_1 + 7 \right) \right) \right).$$
(42)

Parametri su: A_0 , A_1 , A_2 , A_3 .

2.4.2. WILSONOV MODEL¹¹

Wilsonov model koeficijenta aktivnosti izveden je iz fizičke slike dvokomponentne kapljevine kao skupa dviju vrsta ćelija koje se sastoje od središnje molekule (komponente 1 ili 2) okružene slojem istovrsnih i drugovrsnih molekula. Formule za koeficijente aktivnosti su:

$$\ln \gamma_{1,W} = -\log \left[x_1 + \Lambda_{12} x_2 \right] + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12} x_2} - \frac{\Lambda_{21}}{\Lambda_{21} x_1 + x_2} \right],$$
(43)

$$\ln \gamma_{2,W} = \log \left[\Lambda_{21} x_1 + x_2 \right] - x_1 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12} x_2} - \frac{\Lambda_{21}}{\Lambda_{21} x_1 + x_2} \right].$$
(44)

Iz formula je vidljivo da je model dvoparametarski. Parametri su Λ_{12} i Λ_{21} , definirani formulama:

$$\Lambda_{12} = \frac{v_2}{v_1} \exp\left(-\frac{\lambda_{12}}{RT}\right) = K_{21} \exp\left(-\frac{\lambda_{12}}{RT}\right),\tag{45}$$

$$\Lambda_{21} = \frac{v_1}{v_2} \exp\left(-\frac{\lambda_{21}}{RT}\right) = \frac{1}{K_{21}} \exp\left(-\frac{\lambda_{21}}{RT}\right).$$
(46)

13

Parametri uključuju interakcijski dio, definiran parametrima λ_{12} i λ_{21} , te geometrijski dio, opisan omjerom molarnih volumena komponenata, v_2 i v_1 :

$$K_{21} = \frac{v_2}{v_1}.$$
(47)

2.4.3. MODEL NRTL¹³

Model koeficijenta aktivnosti NRTL također je izveden iz fizičke slike dvokomponentne kapljevine kao skupa dviju vrsta ćelija koje se sastoje od središnje molekule (komponente 1 ili 2) okružene slojem istovrsnih i drugovrsnih molekula. Formule za koeficijente aktivnosti su:

$$\ln \gamma_{1,\text{NRTL}} = x_2^2 \left[\tau_{21} \left(\frac{G_{21}}{x_1 + x_2 G_{21}} \right)^2 + \frac{\tau_{12} G_{12}}{\left(x_1 G_{12} + x_2 \right)^2} \right], \tag{48}$$

$$\ln \gamma_{2,\text{NRTL}} = x_1^2 \left[\tau_{12} \left(\frac{G_{12}}{x_1 G_{12} + x_2} \right)^2 + \frac{\tau_{21} G_{21}}{\left(x_1 + x_2 G_{21} \right)^2} \right].$$
(49)

Model NRTL je troparametarski. Parametri τ_{12} i τ_{21} interakcijske su prirode i mogu se pisati u temperaturno neovisnom obliku, odnosno parametrima A_{12} i A_{21} :

$$\tau_{12} = \frac{A_{12}}{T},$$
(50)

$$\tau_{21} = \frac{A_{21}}{T} \,. \tag{51}$$

U formulama za koeficijente aktivnosti postoje pomoćni parametri G_{12} i G_{21} , definirani formulama:

$$G_{12} = \exp(-\alpha_{12}\tau_{12}),$$
(52)

$$G_{21} = \exp(-\alpha_{21}\tau_{21}).$$
(53)

Treći parametar, α_{12} , koji se pojavljuje u izrazima 52 i 53 je takozvani parametar neslučajnosti. Njegov fizikalni smisao se uzima kao inverzna vrijednost koordinacijskoga broja rešetke ($\alpha_{12} = 1/z$). Fiksira mu se vrijednost, obično na 0,2 za nemješljive kapljevine; 0,3 za mješljive organske smjese ili 0,4 za smjese organskih kapljevina i vode.

2.4.4. MODEL NRTL-MK⁸

Pretpostavlja se da termodinamička ekscesna funkcija može biti razdvojena na dva doprinosa. Jedan doprinos potječe od asocijacije (X^{Echem}), a drugi od doprinosa od ostalih neasocijativnih interakcija.

$$X^{\rm E} = X^{\rm Echem} + X^{\rm Ephys}.$$
(54)

U tom se slučaju dugolančani alkan ponaša kao inertna komponenta koja ne asocira (dimerizira, multimerizira) dok je *n*-oktanol sklon asocijaciji (dimerizaciji, multimerizaciji). U dvoparametarskom atermalnom Mecke-Kempterovu (MK) modelu, ravnotežna termodinamička konstanta dimerizacije (K_d) definirana je kao:

$$K_{\rm d} = \exp\left(\frac{-\Delta H_{\rm d}^{\circ}}{RT} + \frac{\Delta S_{\rm d}^{\circ}}{R}\right) = \frac{a_{\rm A2}}{a_{\rm A1}^2}.$$
(55)

Uz pretpostavku aditivnosti standardne entalpije ($\Delta H_{1,i}^{\circ}$) i entropije ($\Delta S_{1,i}^{\circ}$) nastajanja *i*-mera ($i \ge 2$) vrijedi:

$$\Delta H_{1,i}^{\circ} = \Delta H_{d}^{\circ} + (i-2)\Delta H^{\circ}, \qquad (56)$$

$$\Delta S_{1,i}^{\circ} = \Delta S_{d}^{\circ} + (i-2)\Delta S^{\circ}.$$
(57)

Ravnotežna konstanta uzastopne multimerizacijske reakcije, *K*, $(A_i = A_{i-1} + A_1; i > 2)$ neovisna je o multimerizacijskom broju (*i*). *K* se definira prema:

$$K = \exp\left(\frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}\right) = \frac{a_{Ai}}{a_{Ai-1}a_{A1}},$$
(58)

$$K_{1,i} = K_d K^{i-2} = \frac{a_{\rm Ai}}{a_{\rm A1}^i},$$
(59)

gdje su ΔH_d° i ΔS_d° entalpija i entropija dimerizacije, ΔH° i ΔS° entalpija i entropija koraka uzastopne multimerizacije, a a_{Ai} je aktivacija i-mera. a_{Ai} se definira kao:

$$a_{\mathrm{A}i} = \phi_{\mathrm{A}i} \exp\left(1 - \frac{\phi_{\mathrm{A}i}}{x_{\mathrm{A}i}}\right). \tag{60}$$

Stvarni volumni udio *i*-mera u normalnoj binarnoj otopini dan je izrazom:

$$\phi_{\mathrm{A}i} = \frac{in_{\mathrm{A}i}}{\left(\sum_{j=1}^{\infty} jn_{\mathrm{A}j} + rn_2\right)},\tag{61}$$

gdje je n_j broj molova *j*-te komponente, a *r* je omjer molarnih volumena inertne komponente i monomera, $r = v_2/v_{A1}$.

Uzme li se u obzir definicija srednjeg broja asocijacija:

$$\chi = \frac{\sum_{i=1}^{\infty} in_{\mathrm{A}i}}{\sum_{i=1}^{\infty} n_{\mathrm{A}i}},$$
(62)

definicija prosječnog molarnog udjela asocirane komponente:

$$\left\langle \chi \right\rangle = \frac{\sum_{i=1}^{\infty} n_{\mathrm{A}i}}{\left(\sum_{i=1}^{\infty} n_{\mathrm{A}i} + n_2\right)},\tag{63}$$

i definicija volumnog udjela nominalno asocirane komponente:

$$\phi_{1} = \frac{\sum_{i=1}^{\infty} in_{Ai}}{\left(\sum_{i=1}^{\infty} in_{Ai} + rn_{2}\right)},$$
(64)

volumni udio i-mera može se izraziti kao:

$$\phi_{\rm Ai} = \frac{i x_{\rm Ai} \phi_{\rm I}}{\chi \langle \chi \rangle}, \tag{65}$$

Supstitucijom jednadžbi 65 i 60 u jednadžbe 55 i 59 dobivaju se izrazi:

$$K_{d} = \frac{\left(\frac{\phi_{A2}}{\phi_{A1}^{2}}\right)}{e},$$
(66)

$$K_{1,i} = \left(\frac{\phi_{Ai}}{\phi_{A1}^{i}}\right) \exp\left(1-i\right)$$
(67)

Uzimajući u obzir jednadžbe bilance tvari

$$\phi_1 = \sum_{i=1}^{\infty} \phi_{\mathrm{A}i} , \qquad (68)$$

$$\frac{\phi_1}{\chi} = \sum_{i=1}^{\infty} \frac{\phi_{\mathrm{A}i}}{i} , \qquad (69)$$

i jednadžbe pod brojevima 66 i 67, dobiva se izraz za srednji stupanj asocijacije:

$$\chi = \frac{1 + \frac{K_{\rm d} e \phi_{\rm A1}}{1 - K e \phi_{\rm A1}}}{1 - \frac{K_{\rm d}}{K} \left[\frac{1 + \log\left(1 - K e \phi_{\rm A1}\right)}{K e \phi_{\rm A1}} \right]}.$$
(70)

Volumni udio monomera, ϕ_{A1} , definiran je kao:

$$\chi = \frac{1 + \frac{K_{\rm d} e \phi_{\rm A1}}{1 - K e \phi_{\rm A1}}}{1 - \frac{K_{\rm d}}{K} \left[\frac{1 + \log(1 - K e \phi_{\rm A1})}{K e \phi_{\rm A1}} \right]}.$$
(71)

Za proračune je potrebna i formula za volumni udio izvornih komponenata u sustavu:

$$\phi_1 = \frac{v_1 x_1}{v_1 x_1 + v_2 x_2},\tag{72}$$

$$\phi_2 = \frac{v_2 x_2}{v_1 x_1 + v_2 x_2}.$$
(73)

Jednadžbe asocijativnog doprinosa koeficijentu aktivnosti glase:

$$\gamma_{1,MK} = \frac{\phi_{A1}}{x_1 \phi_{A1,0}} \exp\left[\frac{1}{\chi_0} - \phi_1 \left(\frac{1}{\chi} + \frac{x_2}{x_1}\right)\right],$$
(74)

$$\gamma_{2,\text{MK}} = \frac{\phi_2}{x_2} \exp\left[1 - \phi_2\left(\frac{\chi x_2 + x_1}{\chi x_2}\right)\right].$$
(75)

Dok je ukupan koeficijent aktivnosti jednak:

$$\ln \gamma_{1,\text{NRTLMK}} = \ln \gamma_{1,\text{NRTL}} + \ln \gamma_{1,\text{MK}}, \qquad (76)$$

$$\ln \gamma_{2,\text{NRTLMK}} = \ln \gamma_{2,\text{NRTL}} + \ln \gamma_{2,\text{MK}}.$$
(77)

2.4.5. MODEL UNIQUAC¹⁴

Model UNIQUAC razvijen je na osnovi Guggenheimove kvazi-kemijske teorije otopina. U osnovi modela razabire se načelo rastavljanja doprinosa. Logaritmi koeficijenta aktivnosti suma su dvaju doprinosa, kombinatornog i rezidualnog. Kombinatorni doprinos potpuno je prediktivan.

Za proračun modela UNIQUAC potrebno je u literaturi pronaći podatke o površinskim (r) odnosno volumnim parametrima (q) za molekule komponenata koje sudjeluju u ravnoteži.

Formule za koeficijente aktivnosti su:

$$\ln \gamma_{1,\text{UNIQUAC}} = \frac{z}{2} q_1 \log \left(\frac{\theta_1}{\phi_1} \right) + \log \left(\frac{\theta_1}{x_1} \right) + l_1 - \frac{\left(l_1 x_1 + l_2 x_2 \right) \phi_1}{x_1} + q_1 \left[1 - \frac{\theta_2 \tau_{12}}{\theta_2 + \theta_1 \tau_{12}} - \frac{\theta_1}{\theta_1 + \theta_2 \tau_{21}} - \log \left(\theta_1 + \theta_2 \tau_{21} \right) \right]'$$
(78)

$$\ln \gamma_{2,\text{UNIQUAC}} = \frac{z}{2} q_2 \log\left(\frac{\theta_2}{\phi_2}\right) + \log\left(\frac{\theta_2}{x_2}\right) + l_2 - \frac{(l_1 x_1 + l_2 x_2)\phi_2}{x_2} + q_2 \left[1 - \frac{\theta_1 \tau_{21}}{\theta_1 + \theta_2 \tau_{21}} - \frac{\theta_2}{\theta_2 + \theta_1 \tau_{12}} - \log\left(\theta_2 + \theta_1 \tau_{12}\right)\right].$$
(79)

Dva parametra toga modela su τ_{12} i τ_{21} , parametri međudjelovanja (vrijede također jednadžbe 50 i 51). Kao pomoćna varijabla u izračunu se pojavljuje I_i .

$$l_1 = \frac{z}{2} (r_1 - q_1) - (r_1 - 1),$$
(80)

$$l_2 = \frac{z}{2} (r_2 - q_2) - (r_2 - 1).$$
(81)

z predstavlja koordinacijski broj – broj najbližih susjeda u rešetki ($z \approx 10$).

Površinski udio komponenata računa se prema:

$$\theta_1 = \frac{x_1 q_1}{x_1 q_1 + x_2 q_2},\tag{82}$$

$$\theta_2 = 1 - \theta_1 \,. \tag{83}$$

Volumni udio komponenata računa se prema:

$$\phi_1 = \frac{x_1 r_1}{x_1 r_1 + x_2 r_2},\tag{84}$$

$$\phi_2 = 1 - \phi_1 \,. \tag{85}$$

2.4.6. MODEL UNIFAC¹⁵

Model UNIFAC je prediktivna inačica modela UNIQUAC. Koeficijenti aktivnosti ovog modela također se sastoje od kombinatornog i rezidualnog doprinosa. Kao i kod modela UNIQUAC kombinatorni doprinos potpuno je prediktivan.

Kod toga modela nužno je definirati broj svih raznovrsnih strukturnih grupa koje se javljaju u spojevima za koje se provodi proračun. Svaka od tih grupa ima svoj doprinos površinskom, odnosno volumnom parametru komponente u smjesi.

Formule za koeficijente aktivnosti su:

$$\ln \gamma_{1,\text{UNIFAC}} = \ln \gamma_{1,\text{UNIFAC}}^{\text{C}} + \ln \gamma_{1,\text{UNIFAC}}^{\text{R}},$$
(86)

$$\ln \gamma_{2,\text{UNIFAC}} = \ln \gamma_{2,\text{UNIFAC}}^{\text{C}} + \ln \gamma_{2,\text{UNIFAC}}^{\text{R}}.$$
(87)

Formule za kombinatorni doprinos koeficijentu aktivnosti iste su kao i kod modela UNIQUAC:

$$\ln \gamma_{1,\text{UNIFAC}}^{\text{C}} = \log \left[\frac{\phi_1}{x_1} \right] + \frac{z}{2} q_1 \log \left[\frac{\theta_1}{\phi_1} \right] + l_1 - \frac{\phi_1}{x_1} \left(x_1 l_1 + x_2 l_2 \right), \tag{88}$$

$$\ln \gamma_{2,\text{UNIFAC}}^{\text{C}} = \log \left[\frac{\varphi_2}{x_2} \right] + \frac{z}{2} q_2 \log \left[\frac{\theta_2}{\phi_2} \right] + l_2 - \frac{\phi_2}{x_2} \left(x_1 l_1 + x_2 l_2 \right).$$
(89)

Slijede izrazi za izračunavanje volumnih, odnosno površinskih parametara komponente:

$$r_{i} = \sum_{k=1}^{n_{g}} v_{k,i} R_{k} ,$$
(90)

$$q_{i} = \sum_{k=1}^{n_{g}} v_{k,i} Q_{k} ,$$
 (91)

gdje je q_i je ukupna relativna površina čestice komponente *i*, a jednaka je zbroju površina strukturnih grupa koje tvore česticu. Q_k je relativna površina strukturne grupe *k*, a $v_{k,i}$ je brojnost grupe *k* u čestici komponente *i*. R_k je relativni volumen strukturne grupe *k*, a r_i je ukupni relativni volumen čestice komponente *i*.

Ponovo se uvodi pomoćna varijabla I_i koja se računa prema izrazima 80 i 81. Površinski, odnosno volumni udio komponenata se računa prema izrazima 82, 83, 84, 85.

Rezidualni se doprinos računa prema:

$$\ln \gamma_{1,\text{UNIFAC}}^{\text{R}} = \sum_{k=1}^{n_{\text{g}}} \nu_{k,1} \left(\ln \Gamma_{k} - \ln \Gamma_{k}^{(1)} \right), \tag{92}$$

$$\ln \gamma_{2,\text{UNIFAC}}^{\text{R}} = \sum_{k=1}^{n_{\text{g}}} \nu_{k,2} \left(\ln \Gamma_{k} - \ln \Gamma_{k}^{(2)} \right).$$
(93)

 Γ_k predstavlja koeficijent aktivnosti strukturne grupe k u otopini, dok Γ_k^i predstavlja koeficijent aktivnosti strukturne grupe k u standardnom stanju za komponentu *i*. Računaju se prema izrazima:

$$\ln \Gamma_{k} = Q_{k} \left(1 - \ln \sum_{m=1}^{n_{g}} \Theta_{m} \psi_{mk} - \sum_{l=1}^{n_{g}} \frac{\Theta_{l} \psi_{kl}}{\sum_{m=1}^{n_{g}} \Theta_{m} \psi_{ml}} \right),$$

$$\ln \Gamma_{k}^{i} = Q_{k} \left(1 - \ln \sum_{m=1}^{n_{g}} \Theta_{m}^{i} \psi_{mk} - \sum_{l=1}^{n_{g}} \frac{\Theta_{l}^{i} \psi_{kl}}{\sum_{m=1}^{n_{g}} \Theta_{m}^{i} \psi_{ml}} \right).$$
(94)

 Θ_i je površinski udio strukturne grupe *i*. Q_k predstavlja tabelirane vrijednosti površinskih parametara strukturnih grupa koji su identični onima u kombinatornom doprinosu. ψ_{ki} označava parametar međudjelovanja strukturnih grupa. Površinski udjeli strukturnih grupa izračunavaju se prema:

$$\Theta_m = \frac{Q_m X_m}{\sum_{l=1}^{n_g} Q_l X_l},\tag{96}$$

X_k predstavlja množinski udio strukturnih grupa:

$$X_{m} = \frac{\sum_{i=1}^{n_{k}} x_{i} v_{mi}}{\sum_{i=1}^{n_{k}} \left(x_{i} \sum_{j=1}^{n_{g}} v_{ji} \right)}.$$
(97)

 v_{ki} je brojnost grupe k u čestici komponente i. Slično vrijedi i za standardno stanje čiste tvari:

$$\Theta_{l}^{(l)} = \frac{Q_{l}X_{l}^{(i)}}{\sum_{m=1}^{n_{g}}Q_{m}X_{m}^{(i)}},$$
(98)

$$X_{l}^{(i)} = \frac{\nu_{li}}{\sum_{m=1}^{n_{g}} \nu_{mi}} \,.$$
(99)

Na kraju treba naglasiti da je model UNIFAC, za razliku od modela UNIQUAC, prediktivan i u rezidualnome dijelu, što ga čini potpuno prediktivnim modelom.

3. LITERATURNI PODATCI O RAVNOTEŽI KAPLJEVINA-KRUTINA

Nakon pregleda modela za opis ravnoteže kapljevina-krutina u ovom su poglavlju opisane eksperimentalne metode kojima se dolazi do vrijednosti ravnotežnih sastava za različite sustave za koje su provedena mjerenja te su prikazane eksperimentalne vrijednosti ravnotežnih tališta na osnovi kojih je provedeno modeliranje.

3.1. PREGLED EKSPERIMENTALNIH METODA

Ravnoteža kapljevina-krutina u sustavima *n*-oktanol – *n*-oktan, *n*-oktanol – *n*-dodekan, *n*-oktanol – *n*-tetradekan i *n*-oktanol – *n*-heksadekan određena je vizualnim opažanjem faznoga prijelaza u visokotlačnoj optičkoj posudi² pri kristalizaciji. Na slici 10. prikazana je aparatura. Otopina s uzorkom poznatoga sastava stavlja se u visokotlačnu optičku posudu (C) koja je uronjena u termostatiranu kupku (A) s temperaturnim odstupanjima ±0,05 K. Visoki tlak u posudi postiže se uljnom pumpom (J) i pojačalom tlaka (I). Cijevi, ventili i pojačalo tlaka zagrijavaju se na nešto višu temperaturu od temperature visokotlačne optičke posude s ciljem sprječavanja kristalizacije uzorka koji se nalazi izvan posude.

Slika 10. Shematski prikaz visokotlačne optičke posude s mikroskopom opremljenim videokamerom. A – termostat, B – zmijača za hlađenje, C – visokotlačna optička posuda, D – CCD-kamera, E – monitor, F – termopar bakar-konstantan, G – mjerilo naprezanja, H – indikator tlaka i temperature; I – pojačalo tlaka; J – uljna pumpa 1, K –uljna pumpa 2.

Fazni prijelaz može se utvrditi opažanjem taljenja kristala izravnim vizualnim promatranjem pri stalnoj temperaturi. Međutim, krutina ne nastaje uvijek pri pravom ravnotežnom tlaku uslijed fenomena pretlačenja. Zbog toga se primjenjuje postupak postupnog snižavanja tlaka. Prvo se na kapljeviti uzorak narine dovoljno visok tlak potreban za nastanak krutine koji se zatim postupno snižava do ravnotežnoga tlaka kristalizacije koji odgovara točki na *liquidus*-krivulji. U početku, tlak se snižava korak po korak svakih 10 MPa pri stalnoj temperaturi. U svakom se koraku tlak održava

stalnim oko 30 minuta da bi se doseglo pravo stanje termodinamičke ravnoteže. Interval sniženja tlaka smanjuje se postepeno kako se sustav približava tlaku kristalizacije otopine. U konačnici, korak se smanji za 0,5 MPa točno iznad *liquidus*-krivulje. Fazni prijelaz utvrđuje se potpunim nestankom krute faze, vizualnim opažanjem uz pomoć mikroskopa s videokamerom. Tlak se mjeri umjerenim digitalnim manometrom s osjetilom naprezanja. Njegovo odstupanje iznosi ±0,5 MPa. Temperatura se mjeri termoparom bakar-konstantan s odstupanjem od ±0,1 K.

Ravnoteža kapljevina-krutina u sustavima n-oktanol – n-oktan, n-oktanol – n-dekan, n-oktanol – nundekan, *n*-oktanol – *n*-dodekan i *n*-oktanol – *n*-heksadekan određena je Rossinijevom metodom⁴. Svaki uzorak predestilira se u ebuliometar izravno iz destilacijske kolone prije mjerenja. Tlak se mjeri ebuliometrijski. Rabi se manometar za mjerenje tlaka s rezolucijom do 0,5 Pa i termometar s rezolucijom do 0,001 K. Za precizno određivanje ravnotežne temperature primjenjuje se kinetička mikro-Rossinijeva metoda. Zasniva se na mjerenju temperature uzorka, T, kao funkcije vremena, Z, tijekom procesa taljenja i kristalizacije pod uvjetima kontrolirane izmjene topline između sustava i okoline. Posuda od Pyrex-stakla volumena oko 1 ml napuni se smjesom n-oktanola i dugolančanoga alkana poznatoga sastava. Posuda sa smjesom stavi se u kupku za hlađenje pri temperaturi od 225 K dok smjesa u potpunosti ne iskristalizira. Potom se prebacuje u kupku za zagrijavanje čija se temperatura strogo kontrolira i održava na temperaturi višoj od ravnotežne. Temperatura uzorka mjeri se platinskim otporničkim mjerilom temperature PT-100 povezanim s izvorom struje UNIPAN 654 i digitalnim voltmetrom povezanim s printerom. Iznosi napona mjere se svakih 20 sekundi. Slika 11. pokazuje metodu određivanja temperature kristalizacije (T_f) i taljenja (T_m). Temperatura T koja je blizu ravnotežnoj temperaturi kristalizacije ($T_{\rm f}$) može se utvrditi ekstrapolacijom dijela ravnotežne krivulje kristalizacije LF do sjecišta s krivuljom hlađenja kapljevine (AC). Ta je temperatura vrlo blizu pravoj temperaturi $T_{\rm f}$ kada je tvar čista i lako kristalizira.

Slika 11. Metoda određivanja temperature kristalizacije i taljenja

U slučaju pothlađivanja potrebno je uvesti dodatni član jer pothlađivanje smanjuje temperaturnu razliku $T - T_j$ i produljuje vrijeme kristalizacije. Kada ne bi dolazilo do pothlađivanja tvar bi mijenjala svoju temperaturu prema krivulji A'B'LF i tada bi $T_{B'}$ bila jednaka T_F . Točka kristalizacije može se odrediti i iz krivulje taljenja, ekstrapolacijom ravnotežnog dijela krivulje GH do sjecišta sa krivuljom zagrijavanja (krivulja taljenja) – točka J. Eutektična temperatura određuje se numerički,

ekstrapolacijom linearnog dijela ravnotežne krivulje taljenja do sjecišta s ekstrapoliranom krivuljom zagrijavanja krutine aproksimirane jednadžbom:

$$T = T^{\theta} - \Delta T^{\theta} \exp(-kZ), \qquad (100)$$

gdje je T^{θ} temperatura okoline, $\Delta T^{\theta} = T_0 - T$ pri Z = 0, a k je konstanta.

3.2. RAVNOTEŽNI SASTAVI

U tablici 1. nalaze se eksperimentalni podatci za sustave *n*-oktanol (1) – dugolančani ugljikovodik (2) kojima je opisana ravnoteža kapljevina-krutina pri atmosferskom tlaku. Talište je dano kao funkcija sastava sustava. Svi podatci poredani su od čistoga dugolančanoga ugljikovodika (2) prema čistom *n*-oktanolu (1).

Tablica 1. Eksperimentalni podatci za sustave <i>n</i> -oktanol (1) – dugolančani ugljikovodik (2) kojima je opisana
ravnoteža kapljevina-krutina pri atmosferskom tlaku

<i>n</i> -okta	an (2) ⁴	<i>n</i> -dek	an (2)⁵	<i>n</i> -unde	kan (2) ⁶	<i>n</i> -dode	kan (2) ⁶	<i>n</i> -tetrad	ekan (2) ⁷	<i>n</i> -heksad	lekan (2) ⁶
<i>x</i> ₁	<i>Т</i> (К)	<i>x</i> ₁	<i>Т</i> (К)	<i>x</i> ₁	<i>Т</i> (К)	<i>x</i> ₁	<i>T</i> (K)	<i>x</i> ₁	<i>Т</i> (К)	<i>x</i> ₁	<i>Т</i> (К)
0,0097	223 <i>,</i> 53	0,0000	243,54	0,0000	247,64	0,0000	263,46	0,00000	278,992	0,0000	294,54
0,0104	226,48	0,0229	243,32	0,0608	247,32	0,0470	263,18	0,02407	278,810	0,1025	291,08
0,0172	228,45	0,0508	243,17	0,1037	247,12	0,1080	262,94	0,04699	278,742	0,2006	290,56
0,0202	229,82	0,0766	243,11	0,1521	246,86	0,1459	262,84	0,04699	278,671	0,2995	290,31
0,0259	231,20	0,0999	243,06	0,1995	246,60	0,2006	262,64	0,06694	278,637	0,4007	289 <i>,</i> 87
0,0486	233,28	0,1645	243,59	0,2197	246,50	0,2504	262,41	0,07037	278,616	0,4972	289,37
0,1078	237,89	0,2463	245,65	0,3020	247,55	0,3000	262,27	0,19717	278,246	0,5998	288,70
0,1977	241,94	0,3675	248,09	0,3532	248,24	0,3518	261,94	0,31287	277,724	0,7010	287,48
0,2979	244,29	0,4196	248,94	0,3992	249,03	0,4004	261,74	0,38097	277,357	0,8014	285,34
0,4017	247,40	0,4697	249,36	0,4527	249,86	0,4511	261,37	0,43618	277,106	0,8499	283,80
0,5002	248,59	0,4976	249,92	0,5009	250,33	0,4995	261,04	0,50091	276,701	0,8912	281,23
0,5485	249,36	0,5528	250,46	0,5531	251,11	0,5499	260,61	0,56412	276,215	0,9214	278,23
0,5710	249,81	0,6503	251,88	0,6014	251,64	0,5996	260,09	0,57955	276,088	0,9422	275,10
0,5986	249,89	0,7424	253,15	0,6480	252,23	0,6474	259,40	0,67709	274,933	0,9547	271,92
0,6328	250,63	0,7821	253,67	0,7031	252,85	0,7020	258,60	0,72041	274,274	0,9667	269,10
0,6506	250,91	0,8404	254,62	0,7494	253,46	0,7414	257,59	0,72738	274,203	0,9752	265,81
0,7015	251,79	0,9023	255,86	0,7997	254,18	0,7618	256,88	0,75532	273,482	0,9795	263,54
0,8011	253,87	0,9366	256,53	0,8494	255,07	0,7784	256,22	0,79932	272,310	0,9840	260,18
0,8995	255,81	0,9684	257,28	0,8968	255,89	0,7946	255,17	0,80873	272,020		
0,9790	257,69	1,0000	258,1	0,9239	256,37	0,8761	255,52	0,83764	270,794		
1,0000	258,03			0,9648	257,31	0,8943	255,77	0,85836	269,836		
				1,0000	258,10	0,9204	256,30	0,88044	268,326		
						0,9364	256,55	0,88528	267,920		
						0,9456	256,78	0,88967	267,705		
						0,9597	257,08	0,90175	266,739		
						0,9736	257,33	0,91250	265,578		
						0,9802	257,55	0,91690	265,028		
						1,0000	258,10	0,94740	260,999		
								0,95238	259,798		
								0,96236	257,547		
								0,97279	257,768		
								0,98029	257,915		
								0,98339	257,984		
								0,98670	258,073		
								0,99067	258,139		
								1,00000	258,351		

U tablici 2. nalaze se podatci o talištima pri atmosferskom tlaku, entalpijama taljenja pri atmosferskom tlaku, molarnim volumenima te molarnim masama svih komponenata.

Tablica 2. Osnovni profacunski podatci za ciste komponente					
Komponenta	T ^{talj} (K)	Δh^{talj} (kJ mol ⁻¹)	v(cm³mol⁻¹)	<i>M</i> (g mol ⁻¹)	
<i>n</i> -oktanol	258,10 ⁶	42,319 ⁶	158,37	130,231	
<i>n</i> -oktan	216,3	20,74	163,53	114,232	
<i>n</i> -dekan	243,3	28,7	195,95	142,286	
<i>n</i> -undekan	247,4	22,18	212,24	156,313	
<i>n</i> -dodekan	263,5	36,82	228,59	170,340	
<i>n</i> -tetradekan	278,7	45,07	261,32	198,394	
n-heksadekan	291,0	51,46	294,11	226,448	

Tablica 2. Osnovni proračunski podatci za čiste komponente⁹

3.3. ODREĐIVANJE PARAMETARA MODELA

Za svaki od primijenjenih modela upotrebljavaju se odgovarajuće formule za izračunavanje tališta dviju komponenata:

$$T_{1}^{\text{mod}} = \left[\frac{1}{T_{1}^{\text{talj}}} - \frac{R}{\Delta h_{1}^{\text{talj}}} \ln(x_{1}\gamma_{1})\right]^{-1},$$

$$T_{2}^{\text{mod}} = \left[\frac{1}{T_{2}^{\text{talj}}} - \frac{R}{\Delta h_{2}^{\text{talj}}} \ln(x_{2}\gamma_{2})\right]^{-1}.$$
(101)
(102)

Za svaki model definira se i funkcija cilja koja predstavlja zbroj kvadrata odstupanja eksperimentalnog i računski određenog tališta.

$$OF_{1} = \frac{1}{n_{d}} \sum_{i=1}^{n_{d}} \left[T_{i}^{\exp} - T_{i}^{\mathrm{mod}} \right]^{2} .$$
(103)

Funkcija cilja je funkcija parametara modela.

U programskom sustavu Wolfram Mathematica 10.4 izrađen je kod za određivanje optimalnih parametara modela i usporedbu eksperimentalnih i modelom izračunatih faznih dijagrama ravnoteže kapljevina-krutina. Za izračunavanje minimuma funkcije cilja, odnosno određivanja parametara tro- i četveroparametarskoga Redlich-Kisterova modela te dvoparametarskoga Wilsonova modela primijenjena je ugrađena naredba FindMinimum s definiranjem jedne početne vrijednosti parametra, što znači da se radi o gradijentnoj metodi optimiranja.

Što se tiče modela NRTL, optimirane su vrijednosti dvaju interakcijskih parametara modela dok je vrijednost parametra neslučajnosti α_{12} fiksirana na 0,3. Primijenjena je ista naredba FindMinimum.

Za model UNIQUAC optimirane su vrijednosti dvaju interakcijskih parametara modela. Ponovo je primijenjena naredba FindMinimum. Vrijednosti primijenjenih površinskih, q_i , odnosno volumnih parametara, r_i , navedene su u tablici 3.

Tablica 3. Volumni, <i>r_i</i> ,	i površinski, q _i , parametri čist	ih komponenata
Komponenta	r _i	q i
<i>n</i> -oktanol	6,6219	5,828
<i>n</i> -oktan	5,8486	4,936
<i>n</i> -dekan	7,1974	6,016
<i>n</i> -undekan	7,8718	6,556
<i>n</i> -dodekan	8,5462	7,096
<i>n</i> -tetradekan	9,8950	8,176
<i>n</i> -heksadekan	11,2438	9,256

Parametri su izračunati iz strukturno-grupnih doprinosa tabeliranih u literaturi¹⁰. Stoga je bilo nužno definirati broj svih raznovrsnih strukturnih grupa koje se javljaju u spojevima za koje se provodi proračun. U tablici 4. vidljive su te vrijednosti za komponente koje sudjeluju u ravnotežama.

Tabilea 4. Pregleu broja strukturnin grupa za svaku molekulu						
Komponenta	broj –CH₃ skupina	broj –CH ₂ skupina	broj –OH skupina			
<i>n</i> -oktanol	1	7	1			
<i>n</i> -oktan	2	6	0			
<i>n</i> -dekan	2	8	0			
<i>n</i> -undekan	2	9	0			
<i>n</i> -dodekan	2	10	0			
<i>n</i> -tetradekan	2	12	0			
<i>n</i> -heksadekan	2	14	0			

Tablica 4. Pregled broja strukturnih grupa za svaku molekulu

Svaka od tih grupa ima svoj doprinos površinskom, odnosno volumnom parametru komponente u smjesi. Brojčane vrijednosti doprinosa strukturnih grupa površinskim, odnosno volumnim parametrima komponente dane su u tablici 5.

Tablica 5. Volumni, <i>R</i> , i površinski, <i>Q</i> , doprinosi strukturnih grupa ¹⁰					
Strukturna grupa	R	Q			
–CH₃	0,9011	0,848			
–CH ₂	0,6744	0,540			
–OH	1,0000	1,200			

Za model UNIFAC ne provodi se optimiranje, jer se radi o prediktivnome modelu. Za kombinatorni doprinos primjenjuju se isti parametri strukturnih grupa kao i za UNIQUAC. Za rezidualni doprinos primjenjuju se interakcijski parametri strukturnih grupa, također tabelirani u literaturi¹⁰. Navedeni su u tablici 6.

Tablica 6. Interakcijski parametri strukturnih grupa					
Strukturna grupa	–CH₃	–CH ₂	–OH		
–CH ₃	0	0	328,2		
-CH ₂	0	0	328,2		
–OH	644,6	644,6	0		

Što se tiče modela NRTL-MK, pokušaj da se provede istodobna optimizacija sva četiri parametra, dvaju interakcijskih parametara A_{12} i A_{21} , dimerizacijske konstante K_d i multimerizacijske konstante K

nije uspio. Stoga su pripremljeni parovi vrijednosti { K_d , K} prema formuli $n \cdot 10^m$, gdje je $n \in [1, 9]$, a $m \in [0, 8]$ za parametar K_d , dok je $n \in [1, 9]$, a $m \in [0, 5]$ za parametar K. Za svaki par vrijednosti određeni su optimalni interakcijski parametri A_{12} i A_{21} , a kao ukupni optimum odabran je onaj sustav s minimalnom vrijednošću funkcije cilja OF_1 .

4. REZULTATI I RASPRAVA

4.1. USPOREDBA SUSTAVA

Potrebno je osvrnuti se na sustave i usporediti ih, odnosno razmotriti kako se svojstva sustava mijenjaju s duljinom ugljikovodičnog lanca. Četiri od šest sustava pokazuju jasno izražena svojstva binarnog eutektika, dok u "rubnim" sustavima eutektične točke nisu određene, jer se eutektični sastavi nalaze vrlo blizu čistim komponentama. U tablici 12. dane su informacije o eksperimentalnim eutektčnim sastavima i temperaturama sustava.

Tablica 12. Eutektični sastavi i temperature istraživanih sustava					
Sustav	sastav, x ₂	temperatura <i>, T</i> _e [K]			
<i>n</i> -oktanol (1) – <i>n</i> -oktan (2)	-	-			
<i>n</i> -oktanol (1) – <i>n</i> -dekan (2)	0,90	243,06			
<i>n</i> -oktanol (1) – <i>n</i> -undekan (2)	0,775	245			
<i>n</i> -oktanol (1) – <i>n</i> -dodekan (2)	0,205	255,17			
<i>n</i> -oktanol (1) – <i>n</i> -tetradekan (2)	0,04	257,5			
<i>n</i> -oktanol (1) – <i>n</i> -heksadekan (2)	-	-			

Na slici 24. prikazan je dijagram ovisnosti eutektičnoga sastava o broju C-atoma u *n*-alkanu.

Slika 24. Ovisnost eutektičnoga sastava izraženoga molarnim udjelom n-alkana u sustavu o broju C-atoma

Na slici 25. prikazan je dijagram ovisnosti eutektične temperature o broju C-atoma u *n*-alkanu.

Slika 25. Ovisnost eutektične temperature, T_e, o broju C-atoma u *n*-alkanu

Na slici 24. može se vidjeti da s porastom C-atoma u ugljikovodičnom lancu *n*-alkana opada i udio *n*-oktanola, a raste udio *n*-alkana za postizanje eutektičnog sastava s minimumom tališta. Na slici 25. može se uočiti trend rasta eutektične temperature sa porastom C-atoma u ugljikovodičnom lancu *n*-alkana.

4.2. OPIS RAVNOTEŽE MODELIMA KOEFICIJENATA AKTIVNOSTI

U tablici 6 nalaze se podatci o izračunatim vrijednostima parametara troparametarskoga Redlich-Kisterova modela.

Tablica 0.1	21 acunati parante	th tropulation that ske	gu neulien Risterov	a moucia
komponenta 2	OF_1	A_0	A ₁	A ₂
<i>n</i> -oktan	1,5543	0,3415	-0,8323	0,4641
<i>n</i> -dekan	0,3244	0,6925	-0,6035	-0,3118
<i>n</i> -undekan	0,3646	1,2426	-1,1088	0,3861
<i>n</i> -dodekan	0,2566	1,7772	-0,4422	0,2520
<i>n</i> -tetradekan	0,0794	1,8982	-0,3806	0,3357
n-heksadekan	0,2948	1,9842	-0,4002	0,1792

Tablica 6. Izračunati parametri troparametarskoga Redlich-Kisterova modela

U tablici 7 nalaze se podatci o izračunatim vrijednostima parametara četveroparametarskoga Redlich-Kisterova modela.

	Tablica 7. Izračunati parametri četveroparametarskoga Redich-Kisterova modela						
komponenta 2	2 <i>OF</i> ₁	A_0	A_1	A ₂	A ₃		
<i>n</i> -oktan	0,4954	0,4335	-0,5153	-0,3942	-1,2322		
<i>n</i> -dekan	0,0963	0,8746	-0,6275	-0,0774	-1,0229		
<i>n</i> -undekan	0,0517	1,1131	-0,7218	0,1299	-0,9695		
<i>n</i> -dodekan	0,0571	1,4980	-0,5781	-0,0671	-0,9574		
<i>n</i> -tetradekan	0,0599	1,8806	-0,3668	0,4663	-0,1840		
n-heksadekan	0,0805	1,9331	-0,3287	0,5463	-0,4619		

Tablica 7. Izračunati parametri četveroparametarskoga Redlich-Kisterova modela

U tablici 8 nalaze se podatci o izračunatim vrijednostima parametara Wilsonova modela.

komponenta 2	OF_1	A_0	A_1
<i>n</i> -oktan	1,2079	6316,26	-1536,86
<i>n</i> -dekan	0,6198	4773,39	-1164,81
<i>n</i> -undekan	0,4437	3932,46	-1146,37
<i>n</i> -dodekan	0,7743	4860,39	-1427,1
<i>n</i> -tetradekan	3,3648*	5478,11	-2291,87
<i>n</i> -heksadekan	4,5269*	5978,37	-2837,85

Tablica 8. Izračunati parametri Wilsonova modela

U tablici 9 nalaze se podatci o izračunatim vrijednostima parametara modela NRTL.

Tabl	ica 9. Izračunati	parametri modela NI	RTL
komponenta 2	OF ₁	A ₁₂	A ₂₁
<i>n</i> -oktan	0,9800	-307,27	869,558
<i>n</i> -dekan	0,4872	-210,62	765,562
<i>n</i> -undekan	0,3029	-156,06	927,883
<i>n</i> -dodekan	0,3924	34195,00*	714,727*
<i>n</i> -tetradekan	0,1803	172,37	490,758
n-heksadekan	0,3469	154,16	627,088

U tablici 10. nalaze se podatci o izračunatim vrijednostima parametara modela UNIQUAC.

Tablica	1 0. Izračunati par	ametri modela UN	IQUAC
komponenta 2	OF_1	A ₁₂	A ₂₁
<i>n</i> -oktan	34,3549*	170,512	257,595
<i>n</i> -dekan	2,6622*	221,300	249,156
<i>n</i> -undekan	0,3146	502,581	52,4346
<i>n</i> -dodekan	0,3439	351,560	124,383
<i>n</i> -tetradekan	2,2088*	225,464	244,787
<i>n</i> -heksadekan	7,5388*	265,631	220,662

U tablici 11. nalaze se podatci o izračunatim vrijednostima parametara modela NRTL-MK.

	Tabli	ica 11. Izračunati par	ametri modela NRT	L-MK	
komponenta 2	OF_1	A ₁₂	A ₂₁	\mathcal{K}_{d}	К
<i>n</i> -oktan	0,5416	327,629	-379,854	60	20
<i>n</i> -dekan	0,4497	-334,107	716,499	9×10 ⁸	1
<i>n</i> -undekan	0,3161	-302,808	748,169	9×10 ⁸	1
<i>n</i> -dodekan	0,1835	34188,500*	278,940*	6×10 ⁸	1×10^3
<i>n</i> -tetradekan	0,01304	482,479	-277,728	9×10 ⁷	7×10 ⁴
<i>n</i> -heksadekan	0,1851	291,384	-192,010	1×10^{4}	800

Na slikama 12 – 23 uspoređene su računske i eksperimentalne vrijednosti tališta sustava u ovisnosti o sastavu. Rezultati za svaki sustav odvojeni su na dvije slike, od kojih jedna pokazuje modele koji bolje opisuju eksperimentalne točke (Redlich-Kisterov troparametarski i četveroparametarski model, te NRTL-MK), a druga one koji to čine nešto lošije (Wilson, NRTL, UNIQUAC i UNIFAC).

Slika 12. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-oktan (2) za Redlich-Kisterov troparametarski model (plava krivulja), Redlich-Kisterov četveroparametarski model (siva krivulja) i NRTL-MK model (ljubičasta krivulja)

Slika 13. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu n-oktanol (1) – n-oktan (2) za Wilsonov model (crvena krivulja), NRTL model (zelena krivulja), model UNIQUAC (ružičasta krivulja) i model UNIFAC (tirkizna krivulja)

Slika 14. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-dekan (2) za Redlich-Kisterov troparametarski model (plava krivulja), Redlich-Kisterov četveroparametarski model (siva krivulja) i NRTL-MK model (ljubičasta krivulja)

Slika 15. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-dekan (2) za Wilsonov model (crvena krivulja), NRTL model (zelena krivulja), model UNIQUAC (ružičasta krivulja) i model UNIFAC (tirkizna krivulja)

Slika 16. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-undekan (2) za Redlich-Kisterov troparametarski model (plava krivulja), Redlich-Kisterov četveroparametarski model (siva krivulja) i NRTL-MK model (ljubičasta krivulja)

Slika 17. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-undekan (2) za Wilsonov model (crvena krivulja), NRTL model (zelena krivulja), model UNIQUAC (ružičasta krivulja) i model UNIFAC (tirkizna krivulja)

Slika 18. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-dodekan (2) za Redlich-Kisterov troparametarski model (plava krivulja), Redlich-Kisterov četveroparametarski model (siva krivulja) i NRTL-MK model (ljubičasta krivulja)

Slika 19. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-dodekan (2) za Wilsonov model (crvena krivulja), NRTL model (zelena krivulja), model UNIQUAC (ružičasta krivulja) i model UNIFAC (tirkizna krivulja)

Slika 12. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-tetradekan (2) za Redlich-Kisterov troparametarski model (plava krivulja), Redlich-Kisterov četveroparametarski model (siva krivulja) i NRTL-MK model (ljubičasta krivulja)

Slika 21. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-tetradekan (2) za Wilsonov model (crvena krivulja), NRTL model (zelena krivulja), model UNIQUAC (ružičasta krivulja) i model UNIFAC (tirkizna krivulja)

Slika 22. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-heksadekan (2) za Redlich-Kisterov troparametarski model (plava krivulja), Redlich-Kisterov četveroparametarski model (siva krivulja) i NRTL-MK model (ljubičasta krivulja)

Slika 23. Ovisnost ravnotežne temperature taljenja o sastavu u sustavu *n*-oktanol (1) – *n*-heksadekan (2) za Wilsonov model (crvena krivulja), NRTL model (zelena krivulja), model UNIQUAC (ružičasta krivulja) i model UNIFAC (tirkizna krivulja)

Prethodno je spomenuto da neki modeli koeficijenta aktivnosti bolje opisuju eksperimentalno određene ravnoteže kapljevina-krutina u sustavima n-oktanol — n-alkan, a neki nešto lošije, pa je potrebno objasniti zašto je to tako.

Redlich-Kisterov model je jedan od modela koji dobro opisuju sustave u ovom radu. Radi se o polinomnome modelu koji može dobro opisati ovisnost ekscesne Gibbsove energije o sastavu u mnogim dvokomponentnim sustavima. Model je vrlo fleksibilan. U ovome radu primijenjeni su troparametarski i četveroparametarski oblici modela. Četveroparametarski je model još bolji u opisu ponašanja sustava, no treba naglasiti da ovakvi modeli nemaju nikakvu teorijsku utemeljenost, pa parametri nemaju fizičkoga značenja. Stoga se parametri određeni pri jednim uvjetima ne mogu prenositi u druge uvjete, parametri iz dvokomponentnih sustava neprenosivi su u trokomponentne i slično. Stoga se u posljednje vrijeme u kemijskom inženjerstvu znatno češće primjenjuju modeli s čvršćom teorijskom podlogom.

Prema rezultatima, Wilsonov model je jedan od onih koji ne opisuju sustave istražene u ovom radu baš najbolje. Model je primjenljiv za opis neidealnosti kapljevitih otopina vrlo različitih svojstava, uključujući sustave s polarnim komponentama. Glavna mana modela je što ne može predvidjeti djelomičnu mješljivost komponenata. Wilsonov model je dvoparametarski, a ti parametri kombinirane su entalpijsko-entropijske prirode i karakteristični su za svaki pojedini sustav (par komponenata) i temperaturu. Wilsonov model opisuje isključivo binarne interakcije (interakcije dviju čestica). Treba obratiti pozornost na vrijednosti istaknute zvjezdicom (*) u tablici 8. Vrijednosti funkcije cilja (*OF*) znatno su veće nego u ostalim sustavima što znači da je Wilsonov model osobito neprikladan za opis tališta u sustavima *n*-oktanol (1) – *n*-tetradekan (2) i *n*-oktanol (1) – *n*-heksadekan (2). Razloge odstupanja Wilsonova modela od eksperimenta treba tražiti u činjenici da model opisuje isključivo binarne interakcije, a poznato je da su dugolančani alkoholi komponente sklone dimerizaciji i multimerizaciji uslijed znatne polarnosti i razlike u fizičkim svojstvima njihove hidrofilne hidroksilne skupine – "glave" – i hidrofobnog ugljikovodičnog "repa". Takvu vrstu interakcija Wilsonov model načelno ne može opisati. Stoga je i fizikalni smisao parametara određenih u sustavima s dobrim opisom dvojben – i Wilsonov model ovdje funkcionira kao svojevrsni "polinomni" model.

Model NRTL je poprilično dobro opisao eksperimentalne podatke, no ipak ne tako dobro kao Redlich-Kisterov model i model NRTL-MK. Troparametarski empirijski model NRTL vrlo je fleksibilan pri opisu ovisnosti ekscesne Gibbsove energije o sastavu. Može opisati negativne, pozitivne i ekscesne Gibbsove energije koje mijenjaju predznak. Model NRTL prikladan je za primjenu u širokom rasponu sustava, uključujući potpuno i djelomično mješljive kapljevite smjese, sustave s polarnim i nepolarnim komponentama, te je jedan od najčešćih modela kojima se u industrijskoj primjeni opisuju ravnoteže. Svi su parametri modela NRTL korelativni, tj. određuju se iz eksperimenata i vrijede za promatrani sustav u ograničenom području temperatura i tlakova. Bitna razlika i prednost toga modela u odnosu na Wilsonov model je da je u svome osnovnome obliku troparametarski i stoga fleksibilniji. Ipak, u ovom je radu vrijednost parametra neslučajnosti α_{12} fiksirana kako se to najčešće radi zbog male pouzdanosti njegove procjene (male parametarske osjetljivosti). Potrebno je napomenuti da je model NRTL najbolji iz skupine modela s lošijim opisom eksperimentalnih podataka. U tablici 9 treba obratiti pozornost na parametre istaknute zvjezdicom, određene u sustavu oktanol (1) - n-dodekan (2). One znatno odstupaju od ostalih što vjerojatno znači da se ne radi uistinu o optimalnim interakcijskim parametrima binarnih međudjelovanja s fizikalnim smislom već o parametrima s empirijskim značenjem. Općenito, lošiji opis eksperimentalnih podataka u istraženim sustavima može se protumačiti činjenicom na ni NRTL ne može opisati dimerizaciju i multimerizaciju dugolančanih alkohola.

Model UNIQUAC loše je opisao eksperimentalne podatke. U osnovi modela UNIQUAC razabire se načelo rastavljanja na kombinatorni i rezidualni doprinos. Kombinatorni doprinos je entropijske prirode. UNIQUAC je, kao i NRTL, u načelu primjenjiv kako za mješljive, tako i za djelomično mješljive kapljevine. Također, može se primjenjivati i za polarne i za nepolarne smjese. Model UNIQUAC ima jednu prednost pred modelom NRTL, što se u ovim sustavima prema rezultatima ne može vidjeti. Naime, detaljno opisuje kombinatorni entropijski doprinos i stoga bi trebao bolje prikazivati smjese molekula različitih veličina. U istraživanim sustavima to možda i nije toliko izraženo, jer molekule ni veličinom niti oblikom nisu jako različite. Što se tiče rezidualnog, interakcijskog dijela, on ima dva interakcijska parametra koji se određuju iz eksperimentalnih podataka. U tablici 10 treba obratiti pozornost na iznose funkcije cilja istaknute zvjezdicom. Razmjerno veliki brojevi pokazuju da model nije uspio opisati čak četiri od šest sustava. U sustavima *n*-oktanol (1) – *n*-oktan i *n*-oktanol (1) – *n*-heksadekan (2) modelom izračunata tališta znatno odstupaju od eksperimentalnih. Odstupanja u sustavima *n*-oktanol (1) – *n*-dekan (2) i *n*-oktanol (1) – *n*-tetradekan (2) znatno su manja, ali još uvijek prevelika da bi se model uzeo kao prikladan za opis tih sustava. Niti UNIQUAC u svom osnovnom obliku ne može opisati dimerizaciju i multimerizaciju.

Model UNIFAC je model koji je najgore opisao eksperimentalne podatke. Kombinatorni entropijski doprinos ekscesnoj Gibbsovoj energiji, odnosno koeficijentu aktivnosti, po iznosu je potpuno jednak za modele UNIFAC i UNIQUAC. Bitna novost kod modela UNIFAC je način promatranja međudjelovanja komponenata, odnosno računanja rezidualnog doprinosa. Koeficijent aktivnosti svake pojedine komponente zbroj je koeficijenata aktivnosti pripadajućih strukturnih grupa. Niti UNIFAC ne može opisati dimerizaciju i multimerizaciju dugolančanih alifatskih alkohola. Dobivene procjene koeficijenta aktivnosti treba uzimati s oprezom. Naime, kao potpuno prediktivan model nakon popunjavanja tablica interakcijskih parametara, UNIFAC može dati pretpostavke faznog ponašanja za vrlo veliki broj sustava. Ipak, za provođenje pravih kemijsko-inženjerskih proračuna potrebno je provesti eksperimente u konkretnom sustavu i modelirati ih.

Posljednji model primijenjen za opis eksperimentalnih podataka bio je NRTL-MK, koji se ujedno ispostavio kao i najbolji model za opis eksperimentalnih podataka. Prema modelu, pretpostavlja se da termodinamička ekscesna funkcija može biti razdvojena na dva doprinosa. Jedan doprinos potječe od asocijacije jedne od komponenata, a drugi od doprinosa ostalih neasocijativnih interakcija. Model ima puno dodatnih varijabli i četveroparametarski je, a ti parametri imaju fizikalno značenje. Stoga se ispostavio kao jako dobar model za opis eksperimentalnih podataka u ovome radu. Ipak, treba obratiti pozornost na vrijednosti parametara označene zvjezdicom u tablici 11. Vrijednosti parametara (A_{12} i A_{21}) modela NRTL-MK za sustav oktanol (1) – *n*-dodekan (2) znatno odstupaju od ostalih, što se ne bi očekivalo s obzirom na sličnost komponenata sustava. Slično je dobiveno kod običnog modela NRTL i dovodi u sumnju fizikalni smisao interakcijskih parametara, ili pak upućuje ne moguću sustavnu pogrešku eksperimentalnih podataka, nepoznata podrijetla. Nadalje, vrijednosti parametara K_d i K – konstante dimerizacije odnosno konstante multimerizacije – međusobno se znatno razlikuju od sustava do sustava, iako bi za slične molekule trebale primati slične vrijednosti. To znači da ih se u konkretnom slučaju može smatrati ugodivim parametrima bez pravoga fizičkoga smisla, prikladnima za opis konkretnoga skupa eksperimentalnih podataka.

5. ZAKLJUČAK

U ovom su radu opisane neke metode za eksperimentalno određivanje fazne ravnoteže kapljevinakrutina, a iz stručne su literature odabrani eksperimentalni podatci za provedbu proračuna, modeliranja i opisa fazne ravnoteže u sustavima: n-oktanol (1) - n-oktan (2); n-oktanol (1) *n*-dekan (2); *n*-oktanol (1) – *n*-undekan (2); *n*-oktanol (1) – *n*-dodekan (2); *n*-oktanol (1) – *n*-tetradekan (2); *n*-oktanol (1) – *n*-heksadekan (2)). Za korelaciju eksperimentalnih podataka i za konstrukciju dijagrama temperature tališta u ovisnosti o sastavu primijenjeni su sljedeći modeli: Redlich-Kisterov troparametarski i četveroparametarski model, Wilsonov model, model NRTL, model NRTL-MK, model UNIQUAC i model UNIFAC. Od sedam modela boljima su se pokazali Redlich-Kisterov troparametarski i četveroparametarski model te model NRTL-MK. Od ukupno sedam modela pet ima parametre sa fizikalnim smislom (Wilsonov model, model NRTL, model NRTL-MK, model UNIQUAC, model UNIFAC), a samo je jedan od tih pet u modelima koji pokazuju bolji opis eksperimentalnih podataka – model NRTL-MK. Većina modela testiranih u proračunima ima teškoća s opisom dimerizacije i multimerizacije dugolančanih alifatskih alkohola. Usprkos činjenici da bi svi sustavi u radu trebali pokazivati ponašanje binarnog eutektika sa minimumom vrelišta u sustavima noktanol (1) – n-oktan (2) i n-oktanol (1) – heksadekan (2) nema vidljivih pojava eutektične točke, dok u svim drugim postoji eutektična točka. Razlog tome je blizina eutektičnog sastava čistim komponentama.

6. LITERATURA

1. *M. Rogošić*, predavanja iz kolegija 'Kemijsko inženjerska termodinamika', interna skripta, FKIT, Zagreb, 2013

2. *M. Yang, E. Terakawa, Y. Tanaka, T. Sotani, S. Matsuo*, Solid–liquid phase equilibria in binary (1-octanol + *n*-alkane) mixtures under high pressure, Part 1. (1-octanol + *n*-tetradecane or *n*-hexadecane) systems, Fluid Phase Equilibria, **194–197** (2002) 1119–1129

3. *M. Yang, T. Narita, Y. Tanaka, T. Sotani, S. Matsuo,* Solid–liquid phase equilibria in binary (1-octanol + *n*-alkane) mixtures under high-pressure, Part 2. (1-octanol + *n*-octane, *n*-dodecane) systems, Fluid Phase Equilibria, **204** (2003) 55–64

4. Z. Plesnar, P. Gierycz, A. Bylicki, Vapour–liquid equilibrium and solid–liquid equilibrium in the system formed by 1-octanol and n-octane, Thermochimica Acta, **128** (1988) 93-98

5. *Z. Plesnar, P. Gierycz, J. Gregorowicz, A. Bylicki*, Vapour–liquid equilibrium and solid-solid equilibrium in the system formed by octan-1-ol and *n*-decane: Measurement and calculation, Thermochimica Acta, **150** (1989) 101-109

6. Z. Plesnar, P. Gierycz, A. Bylicki, (Solid + liquid) equilibria in (*n*-octan-1-ol + *n*-hexadecane or *n*-dodecane or *n*-undecane), The Journal of Chemical Thermodynamics, **22** (1990) 393-398

7. *A. Liu, K. Pusicha, A. M. Demiriz, F. Kohler*, Model for alkanol + alkane mixtures: extension and experimental verification, Journal of Solution Chemistry, **20** (1991) 39-56

8. *K. Moorthi, P. Gierycz, I. Nagata,* Prediction and correlation of excess enthalpy and excess Gibbs energy of the 1-alkanol + *n*-alkane systems, Fluid Phase Equilibria, **64** (1991) 13-32

9. *E. S. Domalski, E. D. Hearing,* Heat capacities and entropies of organic compounds in the condensed phase. Volume III, Journal of Physical and Chemical Reference Data, **25** (1996) 1-525 10. *T. Magnussen, P. Rasmussen, A. Fredenslund,* UNIFAC parameter table for prediction of liquid-liquid equilibria, Industrial & Engineering Chemistry Process Design and Development, **20** (1981) 331–339

11. *G. M. Wilson*, Vapor–Liquid Equilibrium. XI. A new expression for the excess free energy of mixing, Journal of the American Chemical Society, **86** (1964) 127-130

12. *O. Redlich, A. T. Kister*, Thermodynamics of nonelectrolyte solutions – *x-y-t* relations in a binary system, Industrial & Engineering Chemistry, **40** (1948) 345

13. *H. Renon, J. M. Prausnitz*, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE Journal, **14** (1968) 135–144

14. D. S. Abrams, J. M. Prausnitz, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE Journal, **21** (1975) 116–128 15. A. Fredenslund, R. L. Jones, J. M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE Journal, **21** (1975) 1086–1099

7. POPIS SIMBOLA

a	Aktivnost
A_0, A_1, A_2, A_3	Parametri Redlich-Kisterova modela
A_{12}, A_{21}	Parametri modela NRTL
f	Fugacitivnost
f^{\bullet}	Parcijalna fugacitivnost
\hat{f}	Parcijalna fugacitivnost
$\hat{f}^{ ext{L}}$	Parcijalna fugacitivnost kapljevine
$f^{{ m L}\circ}$	Fugacitivnost čiste kapljevine
f^{s}	Fugacitivnost krutine
$\hat{f}^{ ext{S}}$	Parcijalna fugacitivnost krutine
$f^{\mathrm{S}\circ}$	Fugacitivnost čiste krutine
$f^{ m SCL\circ}$	Fugacitivnost čiste pothlađene kapljevine
$f_{\mathfrak{tt}}$	Fugacitivnost u trojnoj točki
G_{12}, G_{21}	Pomoćni parametri modela NRTL
$H^{ m F}$	Ukupna entalpija tvari u sustavu
$H^{\mathrm{L}}_{\mathbf{r}}$	Entalpija kapljevine
H^{s}	Entalpija krutine
h ^s	Molarna entalpija krutine
$h^{\nu,\mathrm{id}}$	Molarna entalpija idealne pare
K V	Konstanta multimerizacije modela NRTL-MK
K _d	
K ₂₁	Omjer molarnih volumena komponenata
l_i	Pomoćna varijabla kod modela UNIQUAC i UNIFAC
n ^r	Ukupna množina tvari u sustavu
n_k	Ukupan broj komponenata
n ^L	Množina tvari u kapljevitoj fazi
n ^s	Množina tvari u krutoj fazi
• •	Funkcija cilja
p DE	Ravnotezni tlak para
PF n ^L	Tlak kanlievine
p p^{S}	Tlak krutine
Р D.,,	Tlak u troinoi točki
q_i	Volumni parametar komponente kod modela UNIQUAC; ukupna relativna površina čestice komponente kod modela UNIFAC
Q_{ι}	Relativna površina strukturne grupe
- n	Omjer molarnih volumena inertne komponente i monomera kod modela NRTL-
r	МК
R	Opća plinska konstanta
r_i	Povrsinski parametar komponente kod modela UNIQUAC modela; Ukupni relativni volumen komponente kod modela UNIFAC

R_k	Relativni volumen strukturne grupe
S	Entropija
T	Termodinamička temperatura
T^{Θ}	Temperatura okoline
T^{L}	Temperatura kapljevine
	Temperatura proračunata modelom
T^{5}	Temperatura krutine
v^2	Molarni volumen kapijevine
V ^S	
V	Molarni volumen potniadene kapijevine
X ^L VEchem	Termodinamicka ekscesna funkcija
X Ephys	Asocijativni doprinos termodinamičkoj ekscesnoj funkciji
X^{L}	Množinski udio u kanljevitoj fazi
$\frac{X}{X^{S}}$	Množinski udio u krutoj fazi
Z	Koordinacijski broj rešetke
α_{12}, α_{21}	Parametri neslučajnosti modela NRTL
γ	Koeficijent aktivnosti
$\gamma^{ m L}$	Koeficijent aktivnosti u kapljevini
$\gamma^{\rm S}$	Koeficijent aktivnosti u krutini
Γ_k	Koeficijent aktivnosti strukturne grupe k
Γ^i_k	Koeficijent aktivnosti strukturne grupe k u standardnom stanju
$\Delta c_{p, ext{tt}}^{ ext{talj}}$	Razlika toplinskih kapaciteta kapljevine i krutine u trojnoj točki
ΔH°	Entalpija koraka uzastopne multimerizacije
$\Delta H^{\circ}_{ m d}$	Entalpija dimerizacije
$\Delta h^{ m subl}$	Molarna entalpija sublimacije
$\Delta h_{ m tt}^{ m talj}$	Entalpija taljenja u trojnoj točki
ΔS°	Entropija koraka uzastopne multimerizacije
$\Delta S_{ m d}^{\circ}$	Entropija dimerizacije
$\Delta S_{ m tt}^{ m talj}$	Entropija taljenja u trojnoj točki
$\Delta v^{ m talj}$	Molarna entalpija taljenja
θ	Površinski udio komponente
Θ	Površinski udio strukturne grupe
$\lambda_{12}, \lambda_{21}$	Interakcijski parametri Wilsonova modela
$\Lambda_{12}, \Lambda_{21}$	Parametri Wilsonova modela
μ^{L}	Kemijski potencijal kapljevine
μ^{s}	Kemijski potencijal krutine
$\boldsymbol{\nu}_k$	Brojnost grupe <i>k</i> u čestici
$ au_{12}, au_{21}$	Interakcijski parametri modela NRTL i UNIQUAC
$\hat{\varphi}_i$	Parcijalni koeficijent fugacitivnosti
ϕ_{A1}	Volumni udio monomera
ϕ_{i}	Volumni udio

- φ^{ullet} Ravnotežni koeficijent fugacitivnosti
- χ Srednji stupanj asocijacije
- Ψ_k Parametar međudjelovanja strukturnih grupa

8. PRILOG

Ispis koda izrađenoga u programskom paketu Wolfram-Mathematica 10.4 za proračun parametara modela koeficijenta aktivnosti i usporedbu eksperimentalnih i modelom izračunatih ravnotežnih dijagrama kapljevina-krutina u sustavu *n*-oktanol – *n*-oktan.

```
(*Sustav n-oktanol (1) - oktan (2)*)
(*podaci*)
ClearAll["Global`*"];
x1 = \{0.0097, 0.0104, 0.0172, 0.0202, 0.0259, 0.0486, 0.1078, 0.1977, 0.2979, 0.0104, 0.0172, 0.0202, 0.0259, 0.0486, 0.1078, 0.1977, 0.2979, 0.0104, 0.0172, 0.0202, 0.0259, 0.0486, 0.1078, 0.1977, 0.2979, 0.0202, 0.0259, 0.0486, 0.1078, 0.1977, 0.2979, 0.0202, 0.0259, 0.0486, 0.1078, 0.1977, 0.2979, 0.0202, 0.0259, 0.0486, 0.1078, 0.1977, 0.2979, 0.0202, 0.0259, 0.00486, 0.1078, 0.1977, 0.2979, 0.0202, 0.0259, 0.00486, 0.1078, 0.1977, 0.2979, 0.0202, 0.0259, 0.00486, 0.1078, 0.1977, 0.2979, 0.0202, 0.00202, 0.00259, 0.00486, 0.1078, 0.1977, 0.2979, 0.0202, 0.00202, 0.00259, 0.00486, 0.1078, 0.1977, 0.2979, 0.0202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202, 0.00202,
          0.4017, 0.5002, 0.5485, 0.571, 0.5986, 0.6328, 0.6506, 0.7015, 0.8011, 0.8995, 0.979};
T = \{223.53, 226.48, 228.45, 229.82, 231.2, 233.28, 237.89, 241.94, 244.29,
          247.4, 248.59, 249.36, 249.81, 249.89, 250.63, 250.91, 251.79, 253.87,
          255.81, 257.69};
x2 = 1 - x1;
podaci00 = Transpose[{x2, T}];
slika00 = ListPlot[podaci00, PlotStyle -> Black];
nd = Length[x1];
nd2 = 0;
RR = 8.314;
△h1 = 42.319 * 1000;
Tm1 = 258.10;
\Delta h2 = 20.74 \pm 1000;
Tm2 = 216.3;
(*Redlich Kister*)
\ln \gamma 2RK := x1[[i]]^2 (A0 + 5 A2 + 4 A2 x1[[i]] (-4 + 3 x1[[i]]) + A1 (-3 + 4 x1[[i]]));
ln\gamma 1RK := x2[[i]]^{2} (A0 + 5 A2 + A1 (3 - 4 x2[[i]]) + 4 A2 x2[[i]] (-4 + 3 x2[[i]]));
T2RK = Table \left[ \left( \frac{1}{Tm2} - \frac{RR}{\Delta h2} \left( Log[x2[[i]]] + ln\gamma 2RK \right) \right)^{-1}, \{i, 1, nd2\} \right];
T1RK = Table \left[ \left( \frac{1}{Tm1} - \frac{RR}{\Delta h1} (Log[x1[[i]]] + lny1RK) \right)^{-1}, \{i, nd2 + 1, nd\} \right];
TmodRK = Flatten[{T2RK, T1RK}];
OF1 = \frac{1}{nd} \sum_{i=1}^{nd} (T[[i]] - TmodRK[[i]])^2;
sol01 = FindMinimum [OF1, {{AD, 1}, {A1, 1}, {A2, 1}}];
Print[sol01];
A0 = sol01[[2, 1, 2]];
A1 = sol01[[2, 2, 2]];
A2 = sol01[[2, 3, 2]];
```

```
\ln \gamma 2RK = Table \left[ x1[[i]]^2 (A0 + 5 A2 + 4 A2 x1[[i]] (-4 + 3 x1[[i]]) + A1 (-3 + 4 x1[[i]])), \right]
    {i, 1, nd2}];
lny1RK = Table[x2[[i]]^{2} (A0 + 5 A2 + A1 (3 - 4 x2[[i]]) + 4 A2 x2[[i]] (-4 + 3 x2[[i]])),
    {i, nd2 + 1, nd};
lnyRK = Flatten[{lny2RK, lny1RK}];
T2RK = Table \left[ \left( \frac{1}{Tm^2} - \frac{RR}{Ab^2} \left( Log[x2[[i]]] + ln\gamma RK[[i]] \right) \right)^{-1}, \{i, 1, nd2\} \right];
T1RK = Table \left[ \left( \frac{1}{Tm1} - \frac{RR}{Ab1} \left( Log[x1[[i]]] + ln\gamma RK[[i]] \right) \right)^{-1}, \{i, nd2 + 1, nd\} \right];
TRK = Flatten[{T2RK, T1RK}];
podaci01 = Transpose[{x2, TRK}];
slika01 = ListPlot[podaci01, Joined → True, PlotStyle → Blue];
Show[slika00, slika01, PlotRange \rightarrow {{0, 1}, Automatic}]
(*Redlich Kister IV*)
Clear[A0, A1, A2];
lny2RKIV :=
  x1[[i]]^2
    (A0 + A1 (-3 + 4 x1[[i]]) +
       (-1+2x1[[i]]) (A2(-5+6x1[[i]]) + A3(-1+2x1[[i]]) (-7+8x1[[i]]));
inyiRKIV :=
  x2[[i]]<sup>2</sup>
    (A0 + A1 (3 - 4 x2[[i]]) +
       (-1 + 2 \times 2[[i]]) (A2 (-5 + 6 \times 2[[i]]) + A3 (-7 + 2 (11 - 8 \times 2[[i]]) \times 2[[i]])));
T2RKIV = Table \left[ \left( \frac{1}{Tm^2} - \frac{RR}{4h^2} \left( Log[x2[[i]]] + ln\gamma 2RKIV \right) \right)^{-1}, \{i, 1, nd2\} \right];
T1RKIV = Table\left[\left(\frac{1}{Tm1} - \frac{RR}{\Delta h1} \left( Log[x1[[i]]] + lny1RKIV \right) \right)^{-1}, \{i, nd2 + 1, nd\}\right];
TmodRKIV = Flatten[{T2RKIV, T1RKIV}];
OF2 = \frac{1}{nd} \sum_{i=1}^{nd} (T[[i]] - TmodRKIV[[i]])^2;
sol02 = FindMinimum[OF2, {{A0, 1}, {A1, 1}, {A2, 1}, {A3, 1}}];
Print[sol02];
A0 = sol02[[2, 1, 2]];
A1 = sol02[[2, 2, 2]];
A2 = sol02[[2, 3, 2]];
A3 = sol02[[2, 4, 2]];
```

```
lny2RKIV =
   Table
    x1[[i]]^{2}
       (A0 + A1 (-3 + 4 x1[[i]]) +
          (-1 + 2 \times 1[[i]]) (A2 (-5 + 6 \times 1[[i]]) + A3 (-1 + 2 \times 1[[i]]) (-7 + 8 \times 1[[i]]))),
     {i, 1, nd2}];
lny1RKIV =
   Table
    x2[[1]]<sup>2</sup>
       (A0 + A1 (3 - 4 x2[[i]]) +
          (-1 + 2 x^{2}[i]) (A^{2}(-5 + 6 x^{2}[i]) + A^{3}(-7 + 2 (11 - 8 x^{2}[i]) x^{2}[i]))),
     {i, nd2 + 1, nd} ;
lnyRKIV = Flatten[{lny2RKIV, lny1RKIV}];
T2RKIV = Table\left[\left(\frac{1}{Tm2} - \frac{RR}{\Delta h2} \left( Log[x2[[i]]] + ln\gamma RKIV[[i]] \right) \right)^{-1}, \{i, 1, nd2\}\right];
T1RKIV = Table\left[\left(\frac{1}{Tm1} - \frac{RR}{Ab1} \left( Log[x1[[i]]] + ln\gamma RKIV[[i]] \right) \right)^{-1}, \{i, nd2 + 1, nd\}\right];
TRKIV = Flatten[{T2RKIV, T1RKIV}];
podaci02 = Transpose[{x2, TRKIV}];
slika02 = ListPlot[podaci02, Joined 
> True, PlotStyle 
> Gray];
Show[slika00, slika02, PlotRange → {{0, 1}, Automatic}]
(*Wilson*)
v2 = 163.53 / 1000000;
v1 = 158.37 / 1000000;
K21 = \frac{V2}{V1};
\Lambda 12 := K21 \exp\left[-\frac{\lambda 12}{RR T[[i]]}\right];
\Lambda 21 := \frac{1}{K21} \exp\left[-\frac{\lambda 21}{RR T[[i]]}\right];
\ln \chi 2W := \log [\Lambda 21 \times 1[[i]] + (1 - \times 1[[i]])] -
     x1[[i]] \left( \frac{\Lambda 12}{x1[[i]] + \Lambda 12 (1 - x1[[i]])} - \frac{\Lambda 21}{\Lambda 21 x1[[i]] + (1 - x1[[i]])} \right); 
lny1W := -Log[x1[[i]] + \Lambda 12 (1 - x1[[i]])] +
     (1 - x1[[i]]) \left(\frac{\Lambda 12}{x1[[i]] + \Lambda 12 (1 - x1[[i]])} - \frac{\Lambda 21}{\Lambda 21 x1[[i]] + (1 - x1[[i]])}\right);
```

 $T2W = Table \left[\left(\frac{1}{Tm2} - \frac{RR}{Ab2} (Log[x2[[i]]] + lny2W) \right)^{-1}, \{i, 1, nd2\} \right];$ $T1W = Table\left[\left(\frac{1}{Tm1} - \frac{RR}{Ab1} (Log[x1[[i]]] + lny1W)\right)^{-1}, \{i, nd2 + 1, nd\}\right];$ TmodW = Flatten[{T2W, T1W}]; OF3 = $\frac{1}{nd} \sum_{i=1}^{nd} (T[[i]] - TmodW[[i]])^2;$ $sol03 = FindMinimum[OF3, \{\{\lambda 12, 10\}, \{\lambda 21, 10\}\}];$ Print[sol03]; $\lambda 12 = sol03[[2, 1, 2]];$ $\lambda 21 = sol03[[2, 2, 2]];$ $ln\gamma 2W =$ Table Log[$\Lambda 21 \times 1[[i]] + (1 - \times 1[[i]])]$ $x1[[i]] \left(\frac{\Lambda 12}{x1[[i]] + \Lambda 12 (1 - x1[[i]])} - \frac{\Lambda 21}{\Lambda 21 x1[[i]] + (1 - x1[[i]])}\right), \{i, 1, nd2\}];$ $ln\gamma 1W =$ Table $- Log[x1[[i]] + \Lambda 12 (1 - x1[[i]])] +$ $(1 - x1[[i]]) \left(\frac{\Lambda 12}{x1[[i]] + \Lambda 12} \left(1 - x1[[i]]\right) - \frac{\Lambda 21}{\Lambda 21} \left(1 - x1[[i]]\right)\right),$ {i, nd2 + 1, nd}; lmyW = Flatten[{lny2W, lny1W}]; $T2W = Table \left[\left(\frac{1}{Tm^2} - \frac{RR}{Ab^2} \left(Log[x2[[i]]] + ln_W[[i]] \right) \right)^{-1}, \{i, 1, nd2\} \right];$ $T1W = Table\left[\left(\frac{1}{T_{m1}} - \frac{RR}{Ab1} \left(Log[x1[[i]]] + \ln_{y}W[[i]]\right)\right)^{-1}, \{i, nd2 + 1, nd\}\right];$ TW = Flatten[{T2W, T1W}]; podaci03 = Transpose[{x2, TW}]; slika03 = ListPlot[podaci03, Joined → True, PlotStyle → Red]; Show[slika00, slika03, PlotRange → {{0, 1}, Automatic}] (*NRTL*) α12 = 0.3; τ12 := A12 / T[[i]]; τ21 := A21 / T[[i]]; G12 := $Exp[-\alpha 12 \tau 12]$; G21 := $Exp[-\alpha 12 \tau 21]$; $lmy2NRTL := x1[[i]]^{2} \left(\tau 12 \left(\frac{G12}{x1[[i]] G12 + (1 - x1[[i]])} \right)^{2} + \frac{\tau 21 G21}{(x1[[i]] + (1 - x1[[i]]) G21)^{2}} \right);$ InvINRTL := $(1 - x1[[i]])^{2} \left(\tau 21 \left(\frac{G21}{x1[[i]] + (1 - x1[[i]]) G21} \right)^{2} + \frac{\tau 12 G12}{(x1[[i]] G12 + (1 - x1[[i]]))^{2}} \right);$

 $T2NRTL = Table\left[\left(\frac{1}{Tm2} - \frac{RR}{\Delta h2} \left(\log\left[x2\left[\left[1\right]\right]\right] + \ln\gamma 2NRTL\right)\right)^{-1}, \{i, 1, nd2\}\right];$ $T1NRTL = Table\left[\left(\frac{1}{Tm1} - \frac{RR}{\Delta h1} \left(\log\left[x1\left[\left[1\right]\right]\right] + \ln\gamma 1NRTL\right)\right)^{-1}, \{i, nd2 + 1, nd\}\right];$ $TmodNRTL = Flatten[\{T2NRTL, T1NRTL\}];$

 $OF4 = \frac{1}{nd} \sum_{i=1}^{nd} (T[[i]] - TmodNRTL[[i]])^{2};$ sol04 = FindMinimum[OF4, {{A12, 1000}, {A21, 1000}]; Print[sol04]; A12 = sol04[[2, 1, 2]]; A21 = sol04[[2, 2, 2]];

Table
$$\left[x1[[i]]^{2}\left(\tau 12\left(\frac{G12}{x1[[i]]G12 + (1 - x1[[i]])}\right)^{2} + \frac{\tau 21G21}{(x1[[i]] + (1 - x1[[i]])G21)^{2}}\right),$$

{i, 1, nd2}];

InvINRTL =

$$Table\left[(1 - x1[[i]])^{2} \left(\frac{G21}{x1[[i]] + (1 - x1[[i]]) G21} \right)^{2} + \frac{t12 G12}{(x1[[i]] G12 + (1 - x1[[i]]))^{2}} \right),$$

$$\{i, nd2 + 1, nd\}];$$

lnyNRTL = Flatten[{lny2NRTL, lny1NRTL}];

 $T2NRTL = Table\left[\left(\frac{1}{Tm2} - \frac{RR}{\Delta h2} \left(\log\left[x2\left[i\right]\right] + \ln\gamma NRTL\left[i\right]\right)\right)^{-1}, \{i, 1, nd2\}\right];$ $T1NRTL = Table\left[\left(\frac{1}{Tm1} - \frac{RR}{\Delta h1} \left(\log\left[x1\left[i\right]\right] + \ln\gamma NRTL\left[i\right]\right)\right)^{-1}, \{i, nd2+1, nd\}\right];$ $TNRTL = Flatten[\{T2NRTL, T1NRTL\}];$

```
podaci04 = Transpose[{x2, TNRTL}];
slika04 = ListPlot[podaci04, Joined → True, PlotStyle → Green];
Show[slika00, slika04, PlotRange → {{0, 1}, Automatic}]
```

```
(*UNIQUAC*)
```

z = 10;Clear[A12, A21]; t12 := A12 / T[[i]]; t21 := A21 / T[[i]]; r1 = 6.6219; r2 = 5.8486; q1 = 5.828; q2 = 4.936; l1 = $\frac{z}{2}$ (r1 - q1) - (r1 - 1); l2 = $\frac{z}{2}$ (r2 - q2) - (r2 - 1);

$$\Theta 1 := \frac{x1[[i]] q1}{x1[[i]] q1 + x2[[i]] q2}; \\
\Theta 2 := 1 - \Theta 1; \\
\phi 1 := \frac{x1[[i]] r1}{x1[[i]] r1 + x2[[i]] r2}; \\
\phi 2 := 1 - \phi 1;$$

$$\begin{aligned} & \ln \gamma 2 \text{UNIQUAC} := \frac{z}{2} \text{ } q2 \text{ } \log \left[\frac{\theta 2}{\phi 2} \right] + \log \left[\frac{\phi 2}{x2 \left[\left[i \right] \right]} \right] + 12 - \frac{(11 \text{ } x1 \left[\left[i \right] \right] + 12 \text{ } x2 \left[\left[i \right] \right]) \phi 2}{x2 \left[\left[i \right] \right]} + q2 \left(1 - \frac{\theta 2}{\theta 2 + \theta 1 \text{ } \tau 12} - \frac{\theta 1 \text{ } \tau 21}{\theta 1 + \theta 2 \text{ } \tau 21} - \log \left[\theta 2 + \theta 1 \text{ } \tau 12 \right] \right); \\ & \ln \gamma 1 \text{UNIQUAC} := \frac{z}{2} \text{ } q1 \text{ } \log \left[\frac{\theta 1}{\phi 1} \right] + \log \left[\frac{\phi 1}{x1 \left[\left[i \right] \right]} \right] + 11 - \frac{(11 \text{ } x1 \left[\left[i \right] \right] + 12 \text{ } x2 \left[\left[i \right] \right]) \phi 1}{x1 \left[\left[i \right] \right]} + q1 \left(1 - \frac{\theta 2 \text{ } \tau 12}{\theta 2 + \theta 1 \text{ } \tau 12} - \frac{\theta 1}{\theta 1 + \theta 2 \text{ } \tau 21} - \log \left[\theta 1 + \theta 2 \text{ } \tau 21 \right] \right); \end{aligned}$$

 $T2UNIQUAC = Table \left[\left(\frac{1}{Tm2} - \frac{RR}{\Delta h2} \left(Log[x2[[i]]] + lny2UNIQUAC) \right)^{-1}, \{i, 1, nd2\} \right];$ $T1UNIQUAC = Table \left[\left(\frac{1}{Tm1} - \frac{RR}{\Delta h1} \left(Log[x1[[i]]] + lny1UNIQUAC) \right)^{-1}, \{i, nd2 + 1, nd\} \right];$ $TmodUNIQUAC = Flatten[{T2UNIQUAC, T1UNIQUAC}];$

$$OF5 = \frac{1}{nd} \sum_{i=1}^{nd} (T[[i]] - TmodUNIQUAC[[i]])^{2};$$

sol05 = FindMinimum[OF5, {{A12, 10}, {A21, 50}}];
Print[sol05];
A12 = sol05[[2, 1, 2]];
A21 = sol05[[2, 2, 2]];

1ny2UNIQUAC =

$$\begin{aligned} \text{Table}\left[\frac{z}{2} q^2 \log\left[\frac{\partial 2}{\phi 2}\right] + \log\left[\frac{\phi 2}{x^2[[i]]}\right] + 12 - \frac{(11 x1[[i]] + 12 x2[[i]]) \phi 2}{x^2[[i]]} + 2 q^2 \left(1 - \frac{\partial 2}{\partial 2 + \partial 1 \tau 12} - \frac{\partial 1 \tau 21}{\partial 1 + \partial 2 \tau 21} - \log\left[\partial 2 + \partial 1 \tau 12\right]\right), \ \{i, 1, nd2\}\right]; \end{aligned}$$

1my1UNIQUAC =

$$Table\left[\frac{z}{2} q1 \log\left[\frac{\theta 1}{\phi 1}\right] + \log\left[\frac{\phi 1}{x1[[i]]}\right] + 11 - \frac{(11 x1[[i]] + 12 x2[[i]]) \phi 1}{x1[[i]]} + q1 \left(1 - \frac{\theta 2 \tau 12}{\theta 2 + \theta 1 \tau 12} - \frac{\theta 1}{\theta 1 + \theta 2 \tau 21} - \log\left[\theta 1 + \theta 2 \tau 21\right]\right), \{i, nd2 + 1, nd\}];$$

lnyUNIQUAC = Flatten[{lny2UNIQUAC, lny1UNIQUAC}];

 $T2UNIQUAC = Table \left[\left(\frac{1}{Tm2} - \frac{RR}{\Delta h2} \left(Log[x2[[i]]] + lnyUNIQUAC[[i]] \right) \right)^{-1}, \{i, 1, nd2\} \right];$ $T1UNIQUAC = Table \left[\left(\frac{1}{Tm1} - \frac{RR}{\Delta h1} \left(Log[x1[[i]]] + lnyUNIQUAC[[i]] \right) \right)^{-1}, \{i, nd2 + 1, nd\} \right];$ $TUNIQUAC = Flatten[\{T2UNIQUAC, T1UNIQUAC\}];$

```
podaci05 = Transpose[{x2, TUNIQUAC}];
slika05 = ListPlot[podaci05, Joined -> True, PlotStyle -> Magenta];
Show[slika00, slika05, PlotRange → {{0, 1}, Automatic}]
(*UNIFAC*)
(*definiranje naziva komponenata i grupa*)
komp = {"n-oktanol", "oktan"};
grupe = { "CH3", "CH2", "OH" };
(*definiranje broja grupa i broja komponenata*)
ng = 3;
nk = 2;
(*interakcijski parametri*)
a = \{\{0, 0, 644.6\}, \{0, 0, 644.6\}, \{328.2, 328.2, 0\}\};
\psi = \text{Table}\left[\text{Exp}\left[-\frac{a}{T\left[[zz]\right]}\right], \{zz, 1, nd\}\right];
(*koordinacijski broj resetke*)
z = 10;
(*povrsinski i volumni parametri grupa*)
Q = \{0.848, 0.540, 1.200\};
R = \{0.9011, 0.6744, 1.0000\};
(*brojnost grupa po komponentama*)
(*grupe - redak, komponente-stupac*)
\mathbf{v} = \{\{1, 2\}, \{7, 6\}, \{1, 0\}\};
r = \{\}; q = \{\};
(*volumni i povrsinski parametri komponenata*)
Do\left[AppendTo\left[r, \sum_{k=1}^{ng} v_{[k,i]} R_{[k]}\right]; AppendTo\left[q, \sum_{k=1}^{ng} v_{[k,i]} Q_{[k]}\right], \{i, 1, nk\}\right];
(*pomocne varijable proracuna*)
1 = \{\};
Do\left[AppendTo\left[1, \frac{z}{2} \left(r_{[i]} - q_{[i]}\right) - \left(r_{[i]} - 1\right)\right], \{i, 1, nk\}\right];
```

(*izracunavanje volumnih i povrsinskih udjela komponenata u sustavu*)

$$\begin{split} \Theta 1 &= \frac{q_{[1]} \times 1}{q_{[1]} \times 1 + q_{[2]} \times 2}; \\ \Theta 2 &= \frac{q_{[2]} \times 2}{q_{[1]} \times 1 + q_{[2]} \times 2}; \\ \varphi 1 &= \frac{r_{[1]} \times 1}{r_{[1]} \times 1 + r_{[2]} \times 2}; \\ \varphi 2 &= \frac{r_{[2]} \times 2}{r_{[1]} \times 1 + r_{[2]} \times 2}; \\ \ln \gamma C 1 &= \log \left[\frac{\varphi 1}{x_1}\right] + \frac{z}{2} q_{[1]} \log \left[\frac{\Theta 1}{\varphi 1}\right] + 1_{[1]} - \frac{\varphi 1}{x_1} (x_1 1_{[1]} + x_2 1_{[2]}); \\ \ln \gamma C 2 &= \log \left[\frac{\varphi 2}{x_2}\right] + \frac{z}{2} q_{[2]} \log \left[\frac{\Theta 2}{\varphi 2}\right] + 1_{[2]} - \frac{\varphi 2}{x_2} (x_1 1_{[1]} + x_2 1_{[2]}); \end{split}$$

(*brojcani udio grupa u cistim komponentama*)
X = {};
Do
$$\left[Do \left[AppendTo \left[X, \frac{\gamma_{[1,i]}}{\sum_{m=1}^{ng} \gamma_{[m,i]}} \right], \{1, 1, ng\} \right], \{i, 1, nk\} \right];$$

X = Transpose [Partition [X, ng]];

(*povrsinski udio grupa u cistim komponentama*)

$$\Theta = \{\};$$

 $Do \left[Do \left[AppendTo \left[\Theta \Theta, \frac{X_{[1,i]} Q_{[1]}}{\sum_{m=1}^{ng} X_{[m,i]} Q_{[m]}} \right], \{1, 1, ng\} \right], \{i, 1, nk\} \right];$
 $\Theta = Transpose [Partition[\Theta, ng]];$

```
(*petija 2a 12racunavanje rezidualnog doprinosa koericijentu aktivnosti
za razlicite sastave otopine,x1*)
lngR1 = {};
lngR2 = {};
```

Do (*brojcani udio grupa u sustavu*) $XX = \{\};$ $Do\left[AppendTo\left[XX, \frac{v_{[m,1]} \times 1[[zz]] + v_{[m,2]} \times 2[[zz]]}{\times 1[[zz]] \sum_{j=1}^{ng} v_{[j,1]} + \times 2[[zz]] \sum_{j=1}^{ng} v_{[j,2]}}\right], \{m, 1, ng\}\right];$ (*povrsinski udio grupa u sustavu*) $0000 = {};$ $Do\left[AppendTo\left[0000, \frac{XX_{I=1}Q_{I=1}}{\sum_{l=1}^{n_g} XX_{fln}Q_{fln}}\right], \{m, 1, ng\}\right];$ (*logaritam rezidualnog doprinosa koeficijentu aktivnosti grupa u sustavu*) $\ln\Gamma = \{\};$ $Do\left[AppendTo\left[ln\Gamma, Q_{[k]}\left(1 - Log\left[\sum_{n=1}^{ng} \Theta\Theta\Theta_{[n]} \psi_{[n], n, k]}\right] - \sum_{l=1}^{ng} \frac{\Theta\Theta\Theta_{[l]} \psi_{[n], k, l]}}{\sum_{n=1}^{ng} \Theta\Theta\Theta_{[n]} \psi_{[n], n, l]}}\right)\right], \{k, 1, ng\}\right];$ (*izracunavanje rezidualnog doprinosa koeficijentu aktivnosti*) $\text{AppendTo} \Big[\ln \gamma \text{R1}, \sum_{i=1}^{i=\gamma} v_{[k,1]} (\ln r_{[k]} - \ln r I_{[i=1,k,1]}) \Big];$ AppendTo $\left[\ln \gamma R2, \sum_{i=1}^{n_{g}} v_{[k,2]} \left(\ln \Gamma_{[k]} - \ln \Gamma I_{[m,k,2]} \right) \right]$ (*kraj petlje*) , {zz, 1, nd} ; lny2UNIFAC = Table[lnyC2[[i]] + lnyR2[[i]], {i, 1, nd2}]; lmy1UNIFAC = Table[lnyC1[[i]] + lnyR1[[i]], {i, nd2 + 1, nd}]; lnyUNIFAC = Flatten[{lny2UNIFAC, lny1UNIFAC}]; $T2UNIFAC = Table\left[\left(\frac{1}{Tm^2} - \frac{RR}{Ab^2} \left(\log[x2[[i]]] + \ln\gamma UNIFAC[[i]]\right)\right)^{-1}, \{i, 1, nd2\}\right];$ $T1UNIFAC = Table\left[\left(\frac{1}{Tm1} - \frac{RR}{\Lambda h1} \left(Log[x1[[i]]] + lnyUNIFAC[[i]] \right) \right)^{-1}, \{i, nd2 + 1, nd\}\right];$ TUNIFAC = Flatten[{T2UNIFAC, T1UNIFAC}]; podaci06 = Transpose[{x2, TUNIFAC}]; slika06 = ListPlot[podaci06, Joined → True, PlotStyle → Cyan]; Show[slika00, slika06, PlotRange \rightarrow {{0, 1}, Automatic}]

(*NRTL-MK*)

```
Clear[Kd, K, α12, τ12, τ21, G12, G21, φ1, φ2, lnγ2NRTL, lnγ1NRTL];
Kdlist = Flatten[Table[Table[nn * 10<sup>mm</sup>, {nn, 1, 9}], {nm, 0, 8}]];
Kdlength = Length[Kdlist];
Klist = Flatten[Table[Table[nn * 10<sup>mm</sup>, {nn, 1, 9}], {mm, 0, 5}]];
Klength = Length[Klist];
listsol = {};
```

Do

Do

Clear[A12, A21];

Kd = Kdlist[[mm]];
K = Klist[[nn]];

α12 = 0.3; τ12 := A12 / T[[i]]; τ21 := A21 / T[[i]]; G12 := Exp[-α12 τ12]; G21 := Exp[-α12 τ21];

 $\begin{aligned} &\ln\gamma 2\text{NRTL} := \text{x1[[i]]}^2 \left(\tau 12 \left(\frac{\text{G12}}{\text{x1[[i]]} \text{ G12} + (1 - \text{x1[[i]]})} \right)^2 + \frac{\tau 21 \text{ G21}}{(\text{x1[[i]]} + (1 - \text{x1[[i]]}) \text{ G21})^2} \right); \\ &\ln\gamma 1\text{NRTL} := \\ & (1 - \text{x1[[i]]})^2 \left(\tau 21 \left(\frac{\text{G21}}{\text{x1[[i]]} + (1 - \text{x1[[i]]}) \text{ G21}} \right)^2 + \frac{\tau 12 \text{ G12}}{(\text{x1[[i]]} \text{ G12} + (1 - \text{x1[[i]]}))^2} \right); \end{aligned}$

$$\phi 1 := \frac{v1 x1[[i]]}{v1 x1[[i]] + v2 x2[[i]]};$$

$$\phi 2 := \frac{v2 x2[[i]]}{v1 x1[[i]] + v2 x2[[i]]};$$

$$\phi A1 := \frac{2 \phi 1}{1 + K E \phi 1 + ((1 + K E \phi 1)^2 + 4 (Kd - K) E \phi 1)^{0.5}};$$

$$\chi := \frac{1 + \frac{Kd E \phi A1}{1 - K E \phi A1}}{1 - \frac{Kd}{K} (1 + \frac{\log[1 - K E \phi A1]}{K E \phi A1})};$$

```
\phi A10 := \frac{2}{1 + K E + ((1 + K E)^{2} + 4 (Kd - K) E)^{0.5}};
       \chi_0 := \frac{1 + \frac{\mathrm{Kd} \, \mathrm{E} \, \mathrm{d} \, \mathrm{Alo}}{1 - \mathrm{KE} \, \mathrm{d} \, \mathrm{Alo}}}{1 - \frac{\mathrm{Kd}}{\mathrm{K}} \left(1 + \frac{\mathrm{Log} \, (1 - \mathrm{KE} \, \mathrm{d} \, \mathrm{Alo})}{\mathrm{KE} \, \mathrm{d} \, \mathrm{Alo}}\right)};
       \gamma 2MK := \frac{\phi^2}{x^2[[i]]} \exp\left[1 - \phi^2 \frac{\chi x^2[[i]] + x^1[[i]]}{\chi x^2[[i]]}\right];
       \gamma 1 \text{MK} := \frac{\phi \text{A1}}{\text{x1}[[i]] \phi \text{A10}} \operatorname{Exp}\left[\frac{1}{\chi 0} - \phi 1\left(\frac{1}{\chi} + \frac{\text{x2}[[i]]}{\text{x1}[[i]]}\right)\right];
        ln\gamma 2MK := Log [\gamma 2MK];
        lny1MK := Log[y1MK];
        lny2NRTLMK := lny2NRTL + lny2MK;
        lny1NRTLMK := lny1NRTL + lny1MK;
       T2NRTLMK = Table \left[ \left( \frac{1}{Tm^2} - \frac{RR}{Ab^2} \left( Log[x2[[i]]] + lny2NRTLMK \right) \right)^{-1}, \{i, 1, nd2\} \right];
       T1NRTLMK = Table\left[\left(\frac{1}{Tm1} - \frac{RR}{\Delta h1} \left( Log[x1[[i]]] + ln\gamma 1NRTLMK \right) \right)^{-1}, \{i, nd2+1, nd\}\right];
        TmodNRTLMK = Flatten[{T2NRTLMK, T1NRTLMK}];
       OF7 = \frac{1}{nd} \sum_{i=1}^{nd} (T[[i]] - TmodNRTLMK[[i]])^2;
        sol07 = FindMinimum[OF7, {{A12, 1000}, {A21, 1000}}];
        A12 = sol07[[2, 1, 2]];
       A21 = sol07[[2, 2, 2]];
        AppendTo[listsol, {Kd, K, sol07[[1]], sol07[[2, 1, 2]], sol07[[2, 2, 2]]}];
        , {nn, 1, Klength} ;
    Print[mm];
    , {mm, 1, Kdlength} ;
OFvrijed = Transpose[listsol][[3]];
minimum = Min[OFvrijed];
pozicija = Position[OFvrijed, minimum][[1, 1]];
rjesenje = listsol[[pozicija]];
Print[rjesenje];
Kd = rjesenje[[1]];
K = rjesenje[[2]];
A12 = rjesenje[[4]];
A21 = rjesenje[[5]];
```

 $T2NRTLMK = Table\left[\left(\frac{1}{Tm2} - \frac{RR}{\Delta h2} \left(\log\left[x2\left[\left[1\right]\right]\right] + \ln\gamma 2NRTLMK\right)\right)^{-1}, \{i, 1, nd2\}\right];$ $T1NRTLMK = Table\left[\left(\frac{1}{Tm1} - \frac{RR}{\Delta h1} \left(\log\left[x1\left[\left[1\right]\right]\right] + \ln\gamma 1NRTLMK\right)\right)^{-1}, \{i, nd2 + 1, nd\}\right];$ $TNRTLMK = Flatten[\{T2NRTLMK, T1NRTLMK\}];$

```
podaci07 = Transpose[{x2, TNRTLMK}];
slika07 = ListPlot[podaci07, Joined → True, PlotStyle → Purple];
Show[slika00, slika07, PlotRange → {{0, 1}, Automatic}]
```

```
Show[slika00, slika01, slika02, slika07]
Show[slika00, slika03, slika04, slika05, slika06]
```