Niskotemperaturna eutektična otapala za ekstrakciju sumporovih i dušikovih spojeva iz ugljikovodičnih smjesa

Zagajski Kučan, Kristina

Doctoral thesis / Disertacija

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:394869

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-15

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

University of Zagreb

FACULTY OF CHEMICAL ENGINEERING AND TECHNOLOGY

Kristina Zagajski Kučan

DEEP EUTECTIC SOLVENTS FOR THE EXTRACTION OF SULFUR AND NITROGEN COMPOUNDS FROM HYDROCARBON MIXTURES

DOCTORAL THESIS

Zagreb, 2020.

Sveučilište u Zagrebu FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE

KRISTINA ZAGAJSKI KUČAN

NISKOTEMPERATURNA EUTEKTIČNA OTAPALA ZA EKSTRAKCIJU SUMPOROVIH I DUŠIKOVIH SPOJEVA IZ UGLJIKOVODIČNIH SMJESA

DOKTORSKI RAD

Mentor: Prof. dr. sc. Marko Rogošić

Zagreb, 2020.

University of Zagreb

FACULTY OF CHEMICAL ENGINEERING AND TECHNOLOGY

Kristina Zagajski Kučan

DEEP EUTECTIC SOLVENTS FOR THE EXTRACTION OF SULFUR AND NITROGEN COMPOUNDS FROM HYDROCARBON MIXTURES

DOCTORAL THESIS

Supervisor: Prof. Marko Rogošić, PhD

Zagreb, 2020.

BIBLIOGRAFSKI PODACI

UDK:	665.662.3:665.633(043.3)
Znanstveno područje:	Tehničke znanosti
Znanstveno polje:	Kemijsko inženjerstvo
Znanstvena grana:	Mehanički, toplinski i separacijski procesi
Institucija:	Rad izrađen na Fakultetu kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu

Voditelj rada: Prof. dr. sc. Marko Rogošić, FKIT

Broj stranica: 207
Broj slika: 82
Broj tablica: 39
Broj priloga: 0
Broj literaturnih referenci: 183
Datum obrane: 20. studeni 2020.

Sastav povjerenstva za obranu doktorskoga rada:

- Prof. dr. sc. Aleksandra Sander, Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu
- Prof. dr. sc. Ante Jukić Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu
- 3. Prof. dr. sc. Ivana Radojčić Redovniković, Prehrambeno-biotehnološki fakultet Sveučilišta u Zagrebu

Rad je pohranjen u:

Nacionalnoj i sveučilišnoj knjižnici u Zagrebu, Hrvatske bratske zajednice bb;

Knjižnici Fakulteta kemijskog inženjerstva i tehnologije u Zagrebu, Marulićev trg 20;

Knjižnici Sveučilišta u Rijeci, Dolac 1;

Knjižnici Sveučilišta u Splitu, Livanjska 5 i

Knjižnici Sveučilišta u Osijeku, Europska avenija 24.

Tema rada prihvaćena je na 199. sjednici Fakultetskog vijeća Fakulteta kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu održanoj 26. rujna 2016.

Zahvaljujem svom šefu i mentoru doktorskog rada prof. dr. sc. Marku Rogošiću na povjerenju koje mi je ukazao kada me zaposlio kao svoju asistenticu i doktorandicu. Stigli smo zajedno do cilja, uz zavidan broj objavljenih radova i "Ivana Plotnikova"... vjerujem da sam dobiveno povjerenje opravdala. Zahvaljujem na stručnom vođenju tijekom eksperimentalnog rada kao i tijekom pisanja ove doktorske disertacije i svih naših radova, znanju koje je podijelio i savjetima koji su ostavili dubok trag u izgradnji mog karaktera i sposobnosti tijekom proteklih nekoliko godina našeg poznanstva.

Zahvaljujem svom bivšem mentoru, prof. dr. sc. Tomislavu Bolanči na prijateljskoj pomoći u nabavi plinskog kromatografa i pozivu u CWT. Hvala ekipi iz CWT-a na savjetima i druženju.

Zahvaljujem članovima povjerenstva prof. dr. sc. A. Sander, prof. dr. sc. A. Jukiću i prof. dr. sc. I. Radojčić Redovniković na savjetima koji su doprinijeli kvaliteti ove doktorske disertacije.

Hrvatskoj zakladi za znanost zahvaljujem na financijskoj potpori u velikome dijelu istraživanja. Radi se o projektu Zelena otapala za zelene tehnologije, HRZZ-IP-2014-09-9550, pod vodstvom prof. dr. sc. Ivane Radojčić Redovniković.

Zahvaljujem Rafineriji nafte Sisak na mjerenjima sadržaja ukupnog sumpora i dušika u uzorcima realnog benzina.

Zahvaljujem Zavodu za organsku kemiju i Zavodu za mehaničko i toplinsko procesno inženjerstvo na tehničkoj podršci.

Puno hvala mojoj zavodskoj ekipi, Martini, prof. Kreši, Davoru, Karlu i Marku. Što ste uvijek rame za plakanje, što ste uvijek ekipa za smijeh, što ste uvijek najbolja ekipa za pauzu!

Najviše hvala mojima doma...mami, tati, Danijelu, Dominiku i Viti.

SAŽETAK

U ovoj disertaciji pripremljeno je šest niskotemperaturnih eutektičnih otapala različitih molarnih omjera: ChCl-Gly 1:1,5, ChCl-Gly 1:2, ChCl-Gly 1:3, ChCl-EG 1:2, ChCl-EG 1:3 i ChCl-EG 1:3,5, te su karakterizirana njihova fizikalno-kemijska svojstva bitna za proces ekstrakcije.

Određene su ravnoteže kapljevina-kapljevina u trokomponentnim sustavima ugljikovodik – tiofen ili piridin – eutektično otapalo. Istraženi su sljedeći ugljikovodici: *n*-heksan, *n*-heptan, *i*-oktan i toluen. Ravnoteže su uspješno opisane modelima koeficijenta aktivnosti NRTL (engl. *non-random two liquid*) i UNIQUAC (engl. *universal quasi-chemical equation*), ali se prednost može dati UNIQUACu. Topljivost piridina (maks. 78 %) u eutektičnom otapalu znatno je veća od topljivosti tiofena, koja ne prelazi 10 %. Međusobno miješanje ugljikovodika i eutektičnih otapala nije uočeno, pa se zaključuje da su ispitana eutektična otapala selektivna za tiofen i piridin, povećanoga afiniteta za dušikove spojeve.

U pokušaju razvoja alternativnih metoda po kriterijima 'zelenih' tehnologija u proizvodnji benzina, ispitana je mogućnost primjene pripremljenih eutektičnih otapala za desulfurizaciju, denitrifikaciju i dearomatizaciju modelnog i realnog FCC-benzina (engl. *fluid catalytic cracking*) ekstrakcijom kapljevina-kapljevina pri atmosferskim uvjetima. Modelni benzin je otopina koja sadrži 26 % n-heksana, 26 % n-heptana, 26 % i-oktana, 10 % toluena, 6 % piridina i 6% tiofena, a svojim sastavom imitira FCC-benzin. Iz preliminarnih eksperimenata osmišljeni su radni uvjeti ekstrakcijskih eksperimenata. Za potrebe analize sastava rafinatne faze nakon ekstrakcije, razvijena je metoda plinske kromatografije. Od istraženih masenih omjera otapalo : modelni benzin najboljim se pokazao omjer 1:1 u svim sustavima. S manjim masenim omjerom u višestupanjskoj se ekstrakciji postiže jednaka djelotvornost ekstrakcije kao s omjerom 1:1 u jednostupanjskoj. Bez pročišćavanja otapala između ekstrakcijskih stupnjeva smanjuje se njegov ekstrakcijski kapacitet. Regeneracija otapala između stupnjeva uspješno se provodi jednostavnim vakuumskim isparavanjem otopljenih komponenti, bez gubitka ekstrakcijske djelotvornosti. Sva ispitana eutektična otapala pokazala su veći potencijal za denitrifikaciju nego desulfurizaciju i dearomatizaciju. Iz grupe otapala na osnovi glicerola najbolji je ChCl-Gly 1:3, a iz grupe na osnovi etilen-glikola ChCl-EG 1:3,5. Rezultati pokazuju da se djelotvornost denitrifikacije povećava s udjelom donora vodikove veze u eutektičnom otapalu. Isti je trend ponašanja opažen i kod eksperimenata s uzorcima realnog FCC-benzina.

Ključne riječi: dearomatizacija, denitrifikacija, desulfurizacija, ekstrakcija kapljevina-kapljevina, FCC-benzin, niskotemperaturna eutektična otapala, NRTL, UNIQUAC

ABSTRACT

In this dissertation six deep eutectic solvents in various molar ratios: ChCl-Gly 1:1,5, ChCl-Gly 1:2, ChCl-Gly 1:3, ChCl-EG 1:2, ChCl-EG 1:3 i ChCl-EG 1:3 were prepared, and characterization of their physicochemical properties essential for the extraction process were made.

The liquid-liquid equilibria for the ternary systems hydrocarbon – pyridine or thiophene – eutectic solvent were determined. The hydrocarbon was varied between *n*-hexane, *n*-heptane, *i*-octane or toluene. Equilibria were successfully described by NRTL and UNIQUAC activity coefficient models, but the preference can be given to the UNIQUAC model. The solubility of pyridine (max. 78 %) in the deep eutectic solvent was significantly higher than the solubility of thiophene, which did not exceed 10%. Mixing of hydrocarbons and deep eutectic solvents was not observed, so it is concluded that the tested eutectic solvents are selective for thiophene and pyridine, with affinity for denitrification.

In an attempt to develop alternative methods that meet the criteria of 'green' technology in gasoline production, the possibility of using prepared eutectic solvents for desulfurization, denitrification and dearomatization of model and real FCC-gasoline by liquid-liquid extraction under atmospheric conditions was investigated. Model gasoline is a solution containing 26 % of n-hexane, 26 % of *n*-heptane, 26 % of *i*-octane, 10 % of toluene, 6 % of pyridine and 6 % of thiophene and its composition mimics FCC-gasoline. From the preliminary experiments, the working conditions of the extraction experiments were designed. For the purpose of analysis of the raffinate phase composition after extraction, a gas chromatography method was developed. The best mass ratio of solvent : model gasoline was determined; it amounted 1:1 in all systems. With a lower mass ratio, in multistage extraction, the same extraction efficiency was achieved as with the optimum one. The extraction capacity of the solvent was reduced without purification of the solvent between the extraction steps. Solvent regeneration was successfully done by simple vacuum evaporation of the dissolved components between stages, without a loss in extraction efficiency. All tested eutectic solvents showed higher affinity for denitrification than desulfurization and dearomatization. ChCl-Gly 1:3 was selected from the group of glycerol-based solvents, and ChCl-EG 1:3.5 was selected from ethylene glycolbased solvents. The results showed that the denitrification efficiency increased with the content of hydrogen bond donors in deep eutectic solvent. The same trend of behavior was present in real gasoline samples.

Keywords: dearomatization, denitrification, desulfurization, deep eutectic solvents, FCC gasoline, liquid-liquid extraction, NRTL, UNIQUAC

SADRŽAJ

1.	UVOD		1
2.	OPĆI DI	0	4
	2.1. Rafir	nerijska postrojenja	4
	2.2. Hidrodesulfurizacija		5
	2.2.1.	Katalizatori	6
	2.2.2.	Procesni uvjeti	6
	2.2.3.	Reakcijski mehanizmi	7
	2.2.4.	Reaktivnost sumporovih komponenti	9
	2.2.5.	Alternativne metode pročišćavanja goriva	11
	2.2	2.5.1. Adsorpcijska desulfurizacija	11
	2.2	2.5.2. Oksidacijska desulfurizacija	12
	2.2	2.5.3. Biodesulfurizacija	13
	2.2	2.5.4. Ekstrakcijska desulfurizacija	14
	2.3. Eksti	rakcija	14
	2.3.1.	Ravnoteža kapljevina-kapljevina	17
	2.3.2.	Trokutni dijagram	21
	2.4. Eutel	ktični sustav	24
	2.5. Niskotemperaturno eutektično otapalo		25
	2.5.1.	Definicija niskotemperaturnog eutektičnog otapala	25
	2.5.2.	Struktura niskotemperaturnog eutektičnog otapala	28
	2.5.3.	Svojstva niskotemperaturnog eutektičnog otapala	31
	2.5.4.	Primjena niskotemperaturnih eutektičnih otapala	33
	2.5.5.	Primjena niskotemperaturnih eutektičnih otapala u ekstrakcijskom pročišćavanju kapljevitih goriva	35
	2.:	5.5.1. Desulfurizacija	36
2.5		5.5.2. Denitrifikacija	37
	2	5.5.3. Dearomatizacija	39
3.	EKSPER	IMENTALNI DIO	41
	3.1. Ciljevi eksperimentalnog istraživanja		41
	3.2. Mate	rijali	41
	3.2.1.	Priprava modelnog benzina	41
	3.2.2.	Uzorci realnog benzina	42
	3.2.3.	Priprava niskotemperaturnih eutektičnih otapala	42

	3.3. Kara	kterizacija niskotemperaturnih eutektičnih otapala	43	
	3.3.1.	Određivanje gustoće	43	
	3.3.2.	Određivanje dinamičke viskoznosti	43	
	3.3.3.	Određivanje indeksa loma	44	
	3.3.4.	Određivanje električne provodnosti	44	
	3.3.5.	Određivanje toplinskih svojstava	44	
	3.3.6.	Određivanje ¹ H NMR-spektara čistih eutektičnih otapala	45	
	3.4. Analitičke metode			
	3.4.1.	Određivanje sastava modelnog benzina	45	
	3.4.2.	Određivanje količine ukupnog sumpora	46	
	3.4.3.	Određivanje količine ukupnog dušika	46	
	3.5. Ekstr	akcijski eksperimenti u kvazi-trokomponentnim sustavima	47	
	3.5.1.	Određivanje topljivosti ugljikovodika u eutektičnom otapalu	47	
	3.5.2.	Određivanje maksimalne topljivosti ugljikovodika u eutektičnom otapalu	47	
	3.5.3.	Određivanje maksimalne topljivosti eutektičnog otapala u ugljikovodiku	48	
	3.5.4.	Određivanje kalibracijskih krivulja	48	
	3.5.5.	Određivanje veznih linija	48	
	3.6. Ekstr sustav	akcijski eksperimenti u kvazi-sedmerokomponentnim vima	49	
	3.6.1.	Određivanje vremena ekstrakcije	50	
	3.6.2.	Jednostupanjska ekstrakcija – utjecaj masenog omjera m(eutektično otapalo) / m(modelni benzin) na djelotvornost ekstrakcije	51	
	3.6.3.	Višestupanjska ekstrakcija – određivanje maksimalne djelotvornosti	51	
	3.6.4.	Višestupanjska ekstrakcija – određivanje ekstrakcijskog kapaciteta eutektičnog otapala	51	
	3.6.5.	Višestupanjska ekstrakcija – regeneracija eutektičnog otapala	52	
	3.7. Ekstr	akcijski eksperimenti s realnim FCC-benzinom	52	
4.	REZULT	TATI I RASPRAVA	53	
	4.1. Mate	rijali	53	
	4.1.1.	Modelni benzin	53	
	4.1.2.	Realni benzin	53	
	4.1.3.	Niskotemperaturna eutektična otapala	53	
	4.2. Kara	kterizacija niskotemperaturnih eutektičnih otapala	54	

	4.2.1.	Gustoća	55
	4.2.2.	Dinamička viskoznost	57
	4.2.3.	Indeks loma	60
	4.2.4.	Električna provodnost	62
	4.2.5.	Toplinska svojstva	64
	4.2.6.	¹ H NMR-spektri čistih eutektičnih otapala	66
	4.3. Sasta	v modelnog benzina	67
	4.4. Ekstr	akcijski eksperimenti	68
	4.4.1.	Topljivost ugljikovodika u eutektičnom otapalu	68
	4.4.2.	Maksimalna topljivost ugljikovodika u eutektičnom otapalu	69
	4.4.3.	Maksimalna topljivost eutektičnog otapala u ugljikovodicima	70
	4.4.4.	Kalibracijske krivulje	70
	4.4.5.	Vezne linije	72
	4.4.6.	Termodinamičko modeliranje u kvazi-trokomponentim sustavima	83
	4.4	4.6.1. Modelne vezne linije u sustavima s piridinom	85
	4.4	1.6.2. Modelne vezne linije u sustavima s tiofenom	102
	4.4	4.6.3. Interakcijski parametri u kvazi-trokomponentnim sustavima s piridinom	121
	4.4	4.6.4. Interakcijski parametri u kvazi-trokomponentnim sustavima s tiofenom	124
	4.5. Ekstr	akcije u sustavima s modelnim benzinom	127
	4.5.1.	Vrijeme ekstrakcije	128
	4.5.2.	Jednostupanjska ekstrakcija – maseni omjer <i>m</i> (eutektično otapalo) / <i>m</i> (modelni benzin)	133
	4.5.3.	Višestupanjska ekstrakcija	146
	4.5.4.	Višestupanjska ekstrakcija – maksimalna djelotvornost	153
	4.5.5.	Višestupanjska ekstrakcija – ekstrakcijski kapacitet	157
	4.5.6.	Višestupanjska ekstrakcija – regeneracija	164
	4.5.7.	Termodinamičko modeliranje u kvazi-sedmerokomponentnim sustavima	176
	4.6. Ekstr	akcije u sustavima s realnim benzinom	183
5.	ZAKLJU	ČCI	186
6.	LITERA	ΓURA	190

WOD

1. UVOD

Rafiniranje sirove nafte uključuje niz procesa kao što su separacijski procesi, postupci kemijske pretvorbe, postupci obrade i miješanja te različiti pomoćni procesi. Većina ih je ekonomski vrlo zahtjevna zbog oštrih radnih uvjeta, velikog broja procesnih jedinica te skupe obrade nastalog procesnog otpada i njegova štetnog utjecaja na okoliš. Općenito se rafinerije smatraju velikim izvorom onečišćenja zraka, voda i tla što je u skladu s činjenicom da oko 40 % svjetskog tržišta kemikalija otpada na petrokemijske proizvode. [Naderpour 2008] Opasnost onečišćenja vode podrazumijeva mogućnost kontaminiranja podzemnih i površinskih voda otpadnom vodom iz rafinerijskih procesa. Negativan utjecaj najizraženiji je kod onečišćenja zraka. Rafinerije ispuštaju manje otrovne ugljikovodike poput prirodnog plina i hlapljivih goriva i ulja, ali i jako toksične BTEX-spojeve (engl. benzene, toluene, ethylbenzene, xylene). Glavni izvor onečišćenja zraka ipak su dušikovi oksidi (NO_x), ugljikov monoksid (CO) i sumporovi oksidi (SO_x). Međutim, velik izvor istog onečišćenja su i rafinerijski proizvodi – kapljevita naftna goriva, bogata sumporovim, dušikovim i aromatskim spojevima – čijim sagorijevanjem nastaju spomenuti štetni plinovi. S porastom svijesti o ekološkoj štetnosti, taj problem regulira se putem Zakona o zaštiti zraka [Zakon], propisima o kakvoći benzina i dizelskog goriva čime sadržaj S u gorivu ne smije biti veći od 10 mg/kg, [Uredba o kvaliteti] te drugim propisima o tehničkim standardima zaštite okoliša za smanjenje emisija hlapivih organskih spojeva. [Uredba o tehničkim standardima 1] [Uredba o tehničkim standardima 2] Ispunjavanje zahtjeva zakonske regulative tjera rafinerije na zamjenu ili preinaku procesne opreme u postrojenjima s ciljem proizvodnje goriva niskog sadržaja sumporovih spojeva. Sniženjem sadržaja sumpora, osim što se neposredno smanjuju negativni utjecaji na okoliš i zdravlje ljudi, poboljšava se kvaliteta proizvoda, ali se utječe i na cjelokupnu ekonomičnost prerade nafte.

U današnje se vrijeme za desulfurizaciju, denitrifikaciju i dearomatizaciju rafinerijskih frakcija najčešće primjenjuje hidrodesulfurizacija (HDS) koja zatijeva razmjerno visoke radne temperature, visok radni tlak, skupe katalizatore te veliku količinu vodika. Osim složenosti i neekonomičnosti procesa, nedostatak hidrodesulfurizacije je nemogućnost uklanjanja sumporovih spojeva složenije strukture. Naime, goriva sadrže veliki broj sumporovih spojeva. Alifatski organski sumporovi spojevi (merkaptani, sulfidi i disulfidi) lako se uklanjanju HDS-procesom. Sumporovi spojevi koji sadrže tiofenske prstene (tiofeni, benzotiofeni i njihovi derivati) teže se uklanjaju iz goriva, dok su najmanje reaktivni alkilirani benzotiofeni, dibenzotiofeni i alkildibenzotiofeni te policiklički organski sumporovi spojevi. Posljedično, u

samom trenutku ograničenja sadržaja S u gorivu na 10 mg/kg konvencionalnom se hidrodesulfurizacijom teže moglo proizvesti gorivo izrazito niskog sadržaja sumpora i istovremeno zadržati ostala svojstva goriva (sadržaj kisika, sadržaj benzena, tlak para, sadržaj aromata, vrelište) u propisanim granicama, pa je istraživanje alternativnih metoda pročišćavanja koje bi se mogle integrirati u postojeće postrojenje kao zasebne jedinice postalo velik izazov.

Ekstrakcija kapljevina-kapljevina primjenom niskotemperaturnih eutektičnih otapala, što je područje istraživanja ovog rada, pokazala se učinkovitom u separaciji ugljikovodičnih smjesa te izdvajanju nepoželjnih sumporovih, dušikovih i aromatskih spojeva iz modelnih i realnih goriva, uz zadržavanje ostalih važnih svojstava goriva. U odnosu na hidrodesulfurizaciju, ekstrakcija je ekonomičniji proces s obzirom na to da se provodi pri atmosferskom tlaku i temperaturi. Sve stroži zahtjevi zaštite zdravlja i okoliša potaknuli su sve intenzivniji razvoj i primjenu "zelene" kemije i kemijske tehnologije, osobito u industrijskom sektoru u visokotonažnoj proizvodnji. Primjena niskotemperaturnog eutektičnog otapala u ekstrakciji, umjesto klasičnoga organskog otapala, daje "zeleni", prihvatljiv karakter promatranom tehnološkom procesu. Niskotemperaturna eutektična otapala svojim fizikalno-kemijskim svojstvima zadovoljavaju kriterije ekološki prihvatljivih otapala: niski tlak para, nisko talište, jednostavna priprava iz netoksičnih, biološki razgradivih i jeftinih komponenti. Moguće ih je regenerirati što je industrijski važna karakteristika ekstrakcijskog otapala. Izborom komponenti koje ih tvore može se izravno utjecati na svojstva, tako da ih je moguće unaprijed kreirati za karakteristično područje primjene.

Općenit cilj ovog istraživanja je unapređenje postupaka desulfurizacije i denitrifikacije kapljevitih goriva – naftnih derivata putem zamjene postojećih postupaka alternativnima, prvenstveno ekstrakcijom pomoću tzv. zelenih otapala. Poseban cilj istraživanja je nalaženje optimalnog sastava niskotemperaturnog eutektičnog otapala za učinkovito i selektivno uklanjanje sumporovih i dušikovih spojeva.

Istraživanje se temelji na sljedećim hipotezama:

 niskotemperaturna eutektična otapala na osnovi kolin-klorida i glicerola, odnosno kolin-klorida i etilen-glikola odgovarajućeg sastava mogu djelotvorno ekstrahirati sumporove i dušikove spojeve iz kapljevitih goriva, uz mogućnost njihove učinkovite regeneracije na osnovi rezultata ograničenih eksperimenata i modeliranja neidealnosti kapljevina uobičajenim modelima poput NRTL-a i UNIQUAC-a moguće je konstruirati učinkovit višestupnjeviti postupak ekstrakcije za odvajanje sumporovih i dušikovih spojeva iz motornih benzina

Očekivani znanstveni doprinos predloženog istraživanja obuhvaća utvrđivanje prednosti i nedostataka niskotemperaturnih eutektičnih otapala – smjesa kolin-klorida i glicerola, odnosno kolin-klorida i etilen-glikola kao "zelenih" otapala za denitrifikaciju i desulfurizaciju motornih goriva te razvoj i optimiranje ekstrakcije kao alternativne metode denitrifikacije i desulfurizacije motornih goriva.

2. OPĆI DIO

2.1. Rafinerijska postrojenja

Rafinerije su kompleksna postrojenja s proizvodnim procesima za primarnu i sekundarnu preradu sirove nafte. U primarnim postrojenjima odvija se fizička separacija ugljikovodika koji su prisutni u sirovoj nafti. Kod sekundarnih se procesa odvija kemijska transformacija procesnih struja koje su dobivene primarnim procesima i njihovo razdvajanje u proizvode. Od tih proizvoda neki su konačni rafinerijski proizvodi, dok se većina konačnih proizvoda dobiva namješavanjem (blendingom). Dobiveni konačni proizvodi otpremaju se na tržište nakon provedene kontrole kvalitete. Rafinerijski procesni tokovi prikazani su na Slici 2.1., na primjeru hrvatske rafinerije INA – Rafinerija nafte Sisak [RNS 2014].

Slika 2.1. Shema procesnih tokova u Rafineriji nafte Sisak [RNS 2014]. LPU – lako plinsko ulje, TPU – teško plinsko ulje, AO – atmosferski ostatak, UNP – ukapljeni naftni plin, VO – vakuumski ostatak, SRU (engl. *sulfur recovery unit*) – jedinica za uklanjanje sumpora, PU – plinsko ulje, BRC (engl. *benzene-rich cut*) – frakcija bogata benzenom, DU – dekantirano ulje, LCO (engl. *light catalytic oil*) – lako katalitičko ulje, HDS – hidrodesulfurizacija, FCC (engl. *fluid cataytic cracking*) – fluidizirano katalitičko krekiranje.

2.2. Hidrodesulfurizacija

U petrokemijskoj industriji temeljni procesi za uklanjanje sumporovih spojeva iz primarnih i sekundarnih frakcija, kao i frakcija fluidiziranog katalitičkog krekiranja (engl. *fluid catalytic cracking*, FCC), mogu se prema načinu pretvorbe sumporovih spojeva podijeliti u tri grupe ovisno o tome razgrađuju li se sumporovi spojevi, odvajaju li se iz rafinerijske struje bez razgradnje, ili se primjenjuje kombinacija odvajanja i razgradnje sumporovih spojeva. [Babich 2003] Najčešće se provodi razgradnja sumporovih spojeva i to postupkom konvencionalne hidrodesulfurizacije (HDS).

Hidrodesulfurizacija ili odsumporavanje vodikom je proces blagog hidrokrekiranja gdje se uz djelotvorne katalizatore razgrađuju i uklanjaju ponajprije sumporovi, a istodobno i dušikovi i kisikovi spojevi, a hidrogenacijom zasićuju i dvostruke veze alkena i djelomice aromata. [Janović 2011] [Topsøe 1996]. Općenito se hidrodesulfurizacijom poboljšavaju ekološke i primjenske značajke goriva jer se povećava kemijska postojanost benzina, cetanski broj i stabilnost dizelskih goriva. Shema procesa hidrodesulfurizacije prikazana je na **Slici 2.2.** [Sertić-Bionda 2006]

Slika 2.2. Shema procesa hidrodesulfurizacije (HDS). [Sertić-Bionda 2006]

Ulazna sirovina i vodik koji dolazi iz dvije grane, iz procesa katalitičkog reformiranja i recirkulirani vodik, zagrijavaju se u izmjenjivaču topline i peći. Nakon zagrijavanja ulaze u

reaktor s nepokretnim slojem katalizatora (Reaktor 1). Produkti iz Reaktora 1 odvode se u visokotlačni odjeljivač (Separator 1) iz kojeg se izdvaja vodik i vraća u ulaznu struju (recirkulirani vodik). Sljedeća jedinica u koju se odvode produkti je niskotlačni odjeljivač (Separator 2) gdje se izdvajaju H₂S, NH₃ i ugljikovodici C1-C4. Kapljeviti produkt odlazi u kolonu za stripiranje gdje se komponente nižeg vrelišta uklanjaju pomoću vodene pare. Na dnu kolone za stripiranje sakuplja se kapljeviti rafinirani produkt koji se koristi za namješavanje gotovih proizvoda (motorni benzin, dizelsko gorivo, loživo ulje) ili kao sirovina u procesima izomerizacije i katalitičkog reformiranja ili katalitičkog krekiranja.

2.2.1. Katalizatori

Najčešće korišteni katalizatori HDS-a su smjesa Co- i Mo-oksida te CoMoO₄ i MoO₃, na nosaču γ -Al₂O₃ pri čemu je omjer Co/Mo \approx 0,3; katalizator sadrži 3 – 4 % Co i 7 – 10 % Mo. Co ima ulogu promotora, iako se uvođenjem drugog promotora kao što je Ni također postižu dobre značajke katalizatora. [Girgis 1991] [Kabe 1999] Tijekom procesa oksidi prelaze u sulfide ili oksisulfide. Veze molibden-sumpor smatraju se aktivnim katalitičkim mjestima. Katalitička se aktivnost zbog prisutnosti vodika održava dugo, pa katalizatora godinama nije potrebno regenerirati. Visoki tlak također pogoduje duljem vijeku katalizatora. Postupni gubitak aktivnosti katalizatora može se nadoknaditi povišenjem radne temperature u procesu. Regeneracija se provodi *in situ*, tj. spaljivanjem koksa u struji zraka (konc. kisika do 1 vol. %) pri temperaturi 550 °C.

2.2.2. Procesni uvjeti

Radno temperaturno područje je 280 – 420 °C. Sve reakcije koje se provode pri temperaturama nižim od 280 °C odvijaju se premalom brzinom. Pri temperaturama višim od 420 °C dolazi do neželjenih reakcija koje podrazumijevaju stvaranje koksa i plinova. Raspon tlakova je 15 – 175 bar, najčešće 20 – 70 bar. Volumni omjer struje vodika i struje sirovine je $5 - 350 \text{ m}^3/\text{m}^3$, a volumni udio vodika u struji vodika treba biti 40 – 70 %. Prostorna brzina mora iznositi 0,1 – 12 h⁻¹.

Svi navedeni procesni uvjeti zapravo ovise o vrsti ulazne sirovine koja se obrađuje u procesu hidrodesulfurizacije. Prema tome, "lakše" frakcije (npr. benzin) zahtijevaju niže radne temperature, niže tlakove, manje količine vodika i veće prostorne brzine, dok "teže" sirovine zahtijevaju visoke temperature, visoke tlakove, veće količine vodika, ali manju prostornu brzinu.

2.2.3. Reakcijski mehanizmi

Za razgradnju neželjenih spojeva u rafinerijskim produktima primjenjuje se hidrogenacija, tj. adicija molekulskog vodika na dvostruku ili trostruku vezu. Kako su molekule vodika vrlo stabilne, reakcija se provodi isključivo uz prisutnost katalizatora. Osim uobičajenih, već spomenutih katalizatora, smjese Co- i Mo-oksida te CoMoO₄ i MoO₃, na nosaču γ -Al₂O₃, u ulozi katalizatora našao se i veći broj metala, od toga Ni, Cu, Pt, Rh, Ru i drugi.

Reakcije hidrodesulfurizacije mogu se razvrstati prema vrsti spojeva prisutnih u rafinerijskim produktima:

Spojevi sumpora

Hidrogenacijom sumporovih spojeva nastaje odgovarajući ugljikovodik i H₂S, koji se najčešće prevodi u elementarni sumpor.

- Merkaptani: C_2H_5 -SH + $H_2 \rightarrow C_2H_6$ + H_2S
- Sulfidi: C_2H_5 -S- C_2H_5 + $2H_2 \rightarrow 2C_2H_6$ + H_2S
- Tiofan: $C_4H_8S + 2H_2 \rightarrow C_4H_{10} + H_2S$
- Tiofen: $C_4H_4S + 4H_2 \rightarrow C_4H_{10} + H_2S$

Dibenzotiofen: $C_{12}H_8S + 2H_2 \rightarrow C_{12}H_{10} + H_2S$

Spojevi dušika

Hidrogenacijom dušikovih spojeva ili hidrodenitrifikacijom nastaje odgovarajući ugljikovodik i amonijak.

Amin:

$$RNH_2 \longrightarrow RH + NH_3$$

Pirol:

Piridin:

Karbazol:

Kinolin:

Spojevi kisika

Hidrogenacijom kisikovih spojeva nastaje odgovarajući ugljikovodik i voda.

Nezasićeni spojevi

Hidrogenacijom nezasićenih spojeva nastaju odgovarajući zasićeni spojevi.

2.2.4. Reaktivnost sumporovih komponenti

Hidrodesulfurizacijom se učinkovito uklanjaju merkaptani, sulfidi i disulfidi iz rafinerijskih produkata, dok se aromatske sumporove komponente većih molekulskih masa (benzotiofeni, dibenzotiofeni) vrlo teško uklanjaju. [Song 2003] Takvo ponašanje može se objasniti različitom reaktivnošću sumporovih spojeva u HDS-procesu, ovisno o njihovoj vrsti i veličini. Prema tome, jednostavnije sumporove komponente pokazuju veću reaktivnost u HDS-procesu, dok je reaktivnost derivata dibenzotiofena znatno manja u odnosu na druge sumporove komponente. Uklanjanje slabo reaktivnih komponenti iz rafinerijskih produkata s ciljem zadovoljenja zakonskih ograničenja (sadržaj S < 10 mg/kg benzina) zahtijeva oštre radne uvjete i velike količine katalizatora što dovodi do izrazito velikih troškova te predstavlja opterećenje za okoliš. Na **Slici 2.3.** shematski je prikazana reaktivnost pojedinih sumporovih komponenti prisutnih u različitim rafinerijskim produktima pri HDS-u.

Veličina komponente i poteškoće HDS

Iz grafičkog se prikaza vidi da se poteškoće uklanjanja sumporovih spojeva primjenom hidrodesulfurizacije povećavaju s veličinom molekule, u nizu prirodni plin < benzin < mlazno gorivo < dizelsko gorivo. Prirodni plin sadrži jednostavne sumporove komponente: tiole, sulfide i merkaptane, pa se HDS odvija izravnom hidrogenolizom zbog nepostojanja aromatskih prstenova, što rezultira lakim cijepanjem veze C-S i brzom proizvodnjom H₂S. [Song 2003] Sumporove komponente u benzinu uglavnom su tiofen, kinetičkog promjera 53 nm, i alkil-tiofeni koji su nešto veći. Mlazna goriva primarno sadrže benzotiofene, kinetičkoga promjera 60 nm, i alkil-benzotiofene s većim promjerom. Dizel sadrži najveće sumporove komponente, dibenzotiofen i alkil-dibenzotiofene koji imaju kinetički promjer minimalno 90 nm. Hidrodesulfurizacija takvih aromatskih spojeva može se odvijati na dva načina: hidrogenacijom preko π -elektrona, te hidrogenolizom preko σ -veze. [Ermakova 2002]

Dušikove komponente mogu se svrstati u dvije grupe: bazične (piridini, kinolini) i neutralne (karbazoli, indoli). [Girgis 1991] U rafinerijskim su produktima nepoželjne s obzirom na to da inhibiraju proces hidrodesulfurizacije. [Koltai 2002] [Kumar 2015] [Srivastava 2012] [Sharma 2013] Bazične N-komponente djeluju inhibirajuće na katalizator HDS-procesa budući da se adsorbiraju na kisela mjesta na katalizatoru, dok su neutralne N-

komponente sklone polimerizaciji uz nastajanje smole što dovodi do začepljenja pora na katalizatoru. [Dong 1997] [Ramachandran 1982] [Furimsky 1999] Kako bi HDS-proces bio učinkovit, nužno je ukloniti i dušikove komponente. Radi se o procesu hidrodenitrifikacije koji zahtijeva oštre radne uvjete, velik utrošak vodika i skupu procesnu opremu. Kako su dušikovi spojevi uglavnom aromatske strukture čija se razgradnja temelji na reakcijama zasićenja aromatskih spojeva, reakcije denitrifikacije su složenije i stoga teže provedive u odnosu na desulfurizaciju.

Iz navedenih razloga jasno je da je postojeće procese potrebno prilagoditi ili naći neka nova rješenja za desulfurizaciju. Do sada su ispitane neke mogućnosti, u laboratorijskom ili industrijskom mjerilu. Što se tiče HDS-a, izoštravanje reakcijskih uvjeta povećava stupanj desulfurizacije, ali smanjuje oktanski broj goriva i potiče stvaranje koksa što deaktivira katalizator. [Babich 2003] Treba pronaći katalizator poboljšane aktivnosti i selektivnosti te unaprijediti sam reaktor ili, u idealnom slučaju, primijeniti poboljšani katalizator u unaprijeđenom reaktoru. Poboljšanja reaktora podrazumijevaju zamjenu postojećeg istostrujnog procesa protustrujnim. U industriji se već primjenjuju napredna tehnologija SynSat i reaktor s fluidiziranim slojem katalizatora. [Babich 2003]

2.2.5. Alternativne metode pročišćavanja goriva

U odjeljku 2.2.4 opisani su problemi vezani uz proces hidrodesulfurizacije koji ga čine skupim, složenim i prema najnovijoj zakonskoj regulativi (sadržaj S u gorivu < 10 mg/kg) ekološki neprihvatljivim. Ti problemi iziskuju nužne prilagodbe postojećih procesa. Osim poboljšanja u procesu HDS-a, istraživanja su usmjerena i na alternativne metode koje bi mogle u potpunosti zamijeniti postojeće procese ili se integrirati kao zasebne jedinice u HDS. Pregledom literature ustanovljeno je da se od alternativnih metoda uklanjanja sumporovih komponenti iz goriva najviše istražuju adsorpcijska desulfurizacija, oksidacijska desulfurizacija, biodesulfurizacija te ekstrakcijska desulfurizacija.

2.2.5.1. Adsorpcijska desulfurizacija

Adsorpcijska se desulfurizacija (ADS) definira kao proces selektivnog sakupljanja i koncentriranja sumporovih molekula iz plina ili kapljevine na čvrstoj površini tvari koja posjeduje adsorpcijska svojstva. Prema mehanizmu interakcije sumporovih spojeva s adsorbensom, ADS se može podijeliti u dvije skupine procesa: "adsorpcijsku desulfurizaciju" koja se zasniva na fizikalnoj adsorpciji organonsumporovih spojeva na krutoj površini, i

"reakcijsku adsorpcijsku desulfurizaciju" koja se zasniva na kemijskoj interakciji organosumporovih spojeva i adsorbensa. Da bi se ADS primijenio u industriji, mora se odvijati pri sobnoj temperaturi, adsorbens mora selektivno adsorbirati samo sumporove spojeve te ga se mora moći višekratno upotrebljavati.

Učinkovitost ADS-a ovisi o svojstvima adsorbensa: adsorpcijskom kapacitetu, selektivnosti za organosumporove spojeve, regeneraciji adsorbensa te njegovu životnom vijeku. Klasični adsorbens je aktivni ugljen koji se već dugo primjenjuje u industriji. Iako je za industrijsku primjenu preskup, pokazao je odlična adsorpcijska svojstva pri niskim koncentracijama sumporovih spojeva, u temperaturnom području 25 - 45 °C što zadovoljava kriterij sobne temperature. [Alhamed 2009] [Bu 2011] Riječ je o fizikalnoj adsorpciji čija učinkovitost ovisi o površinskim funkcionalnim skupinama. Y-zeoliti koji sadrže prijelazne metale pokazali su selektivnost prema sumporovim spojevima koje vežu π -interakcijama, jačim od obične fizikalne adsorpcije. Primjenom Cu(II) na Y-zeolitu uspješno je uklonjen tiofen iz ugljikovodičnih smjesa pri sobnoj temperaturi. Primjenom Cu-Mn i Cu-Ni na Y-zeolitu također se smanjio sadržaj S u uvjetima sličnim hidrodesulfurizacijskim. Budući da su ti adsorbensi iskazali i dobra regeneracijska svojstva, predložena je njihova integracija u HDS-proces. [Kim 2006]

2.2.5.2. Oksidacijska desulfurizacija

Oksidacijska se desulfurizacija (ODS) provodi u dva koraka. Prvi korak podrazumijeva oksidaciju sumporovih spojeva uz odgovarajuće oksidanse do sumporovih oksida i sulfona. U drugom se koraku nastali sulfonski spojevi uklanjaju kako bi se dobili produkti s niskim sadržajem sumpora. [Ma 2007] Uklanjanje se najčešće provodi ekstrakcijom pogodnim otapalom ili adsorpcijom na krutom adsorbensu. Kao i druge tehnike, tako i ta ima svoje prednosti i nedostatke. Sulfoni nastali oksidacijom imaju veću polarnost od odgovarajućih sulfida zbog čega se lakše uklanjaju iz frakcija. Problem predstavlja sulfonski otpad na kraju procesa budući da rafinerije nisu opremljene za zbrinjavanje kemijskog otpada.

Za oksidaciju treba i prikladan oksidans. U prvotnim su se istraživanjima primjenjivali oksidirajući dušikovi oksidi i kiseline (HNO₃ ili NO/NO₂), *t*-butil-hipoklorit, RuO₄ (otrovan), persulfatni oksidansi te sustav $H_2O_2 - H_2SO_4$. Međutim, primjena tih oksidansa nije se pokazala najboljom zbog velike količine kemijskog otpada, niskog cetanskog broja ugljikovodičnog produkta te povećanja troškova zbog velikog omjera oksidans/sumpor. Zbog

toga su se počeli istraživati peroksidni oksidansi poput H₂O₂, *t*-butil-hidroperoksida (TBHP) s katalizatorom ili peroksokiselina dobivenih *in-situ*. [Dehkordi 2009]

Prednost ODS u odnosu na HDS je provođenje reakcije u blagim uvjetima pri čemu se ne primjenjuje skupi vodik, a reaktivnost aromatskih sumporovih spojeva je općenito veća jer elektrofilnoj reakciji sa sumporovim atomom pomaže povećanje elektronske gustoće zbog vezanih aromatskih prstenova bogatih elektronima. Ukoliko je aromatski prsten supstituiran, povećava se elektronska gustoća što znači da se reaktivnost povećava u nizu obrnutom od onog kod HDS-a. Nedostatak ODS-a je već spomenuti sulfonski "otpad" jer rafinerije nisu opremljene za njegovo zbrinjavanje, kao i potreba za regeneracijom otapala ili adsorbensa nakon uklanjanja sulfona uz što je vezan, u konačnici, i prinos goriva. Troškovi rastu s povećanjem omjera oksidans/sumpor.

2.2.5.3. Biodesufurizacija

Biodesulfurizacija (BDS) je proces uklanjanja sumpora prisutnog u organskim sumporovim spojevima uz pomoć bakterija, a da pritom ne dođe do razgradnje ugljikova spoja. Reakcija se odvija u prisutnosti vode i kisika pri sobnoj temperaturi i tlaku. Da bi se BDS mogao odvijati potrebna je prisutnost biokatalizatora, tj. mikroorganizma, pa su istraživanja u tom području usmjerena na njihov razvoj. Godine 1900. izolirana je bakterija *Rhodococcus rhodochrous* sa stabilnim oksidacijsko-desulfurizacijskim metaboličkim putem. Zatim je izolirano još nekoliko bakterijskih sojeva koji mogu desulfurizirati dibenzotiofen (DBT) i alkilirane DBT-e, znači slabo reaktivne sumporove spojeve. [Chang 1998] [Lee 1995]

Prednost BDS-a leži u mogućnosti uklanjanja slabo reaktivnih sumporovih spojeva. BDS je posebno pogodan za uklanjanje sterički ometanih alkiliranih DBT-a za što je predložen i metabolički put, tzv. 4S-ruta. Tim se putem selektivno uklanjaju DBT-i bez razgradnje ugljikovodične strukture. Nedostatak je slaba aktivnost prirodnih bakterija, tolika da je za industrijsku primjenu brzinu reakcije potrebno povećati 500 puta. Potrebno je poboljšati toplinsku postojanost enzima i brzinu prijenosa S-spojeva, poboljšati djelotvornost separacije, regeneraciju biokatalizatora i njegov povratak u reaktor. [Mohebali 2008] Proces se pokazao nedjelotvornim za primjenu na dizelskim gorivima s malim koncentracijama sumpora. Kada se govori o odnosu BDS-a i HDS-a, predlaže se integracija BDS-a u HDS budući da je BDS dobar za uklanjanje alkiliranih dibenzotiofena, a samom se integracijom smanjuju procesni troškovi. Predlažu se dva načina integracije. Prvi je da se BDS postavi poslije HDS-a kako bi se uklonili spojevi koji su otporni na HDS. Drugi je da se BDS postavi prvi kako bi HDS bio učinkovitiji i trošio manje vodika. [Mohebali 2008]

2.2.5.4. Ekstrakcijska desulfurizacija

Od spomenutih alternativnh metoda za pročišćavanje goriva, posebna se pozornost usmjerava upravo na ekstrakcijsku desufurizaciju (EDS). Prednost EDS-a u odnosu na HDS je u tome što se ekstrakcija može provoditi pri blagim radnim uvjetima, sobnoj temperaturi i atmosferskom tlaku što vodi smanjenju utroška energije, te se ne zahtijeva upotreba skupog vodika. Uz zamjenu klasičnoga organskog otapala tzv. "zelenim" otapalom, s mogućnošću njegove ponovne uporabe, EDS zadovoljava kriterije "zelene" kemije, postavljene još 1998. godine. [Anastas 1998] Primjena ionskih kapljevina kao "zelenih" otapala neko se vrijeme činila obećavajućom, s obzirom na njihovu znatno nižu hlapljivost u odnosu na klasična otapala. Mnoge su ionske kapljevine pokazale potencijal u području desulfurizacije, [Jiang 2016] [Ibrahim 2017] denitrifikacije [Rogošić 2014] [Lian 2016] i dearomatizacije [Farzin Nejad 2011] [Larriba 2015] kapljevitih goriva. Međutim, nakon detaljnih razmatranja shvatilo se da se sintetiziraju iz toksičnih kemikalija i da su otrovne kad dođu u okoliš. S tehnološke strane, ostao je i problem njihova pročišćavanja radi ponovne upotrebe. [Martinez-Palou 2014] Navedeno je dovelo do pada interesa za njihovu daljnju primjenu, te su se istraživanja usmjerila na njihove "analoge", niskotemperaturna eutektična otapala.

2.3. Ekstrakcija

Ekstrakcija kapljevina-kapljevina (**Slika 2.4.**) je separacijska tehnika koja se zasniva na ravnotežnom raspodjeljivanju tvari između dvije kapljevite faze. Smjesa koja se separira, tzv. primarno otapalo predstavlja jednu fazu. Selektivno otapalo, tzv. sekundarno otapalo predstavlja drugu fazu. U primarnom otapalu može biti prisutan veći broj otopljenih komponenata, a sekundarno otapalo može biti smjesa otapala dizajnirana tako da bude selektivna za jednu ili više otopljenih komponenata, ovisno o njihovu kemijskom tipu.

Slika 2.4. Shema ekstrakcije kapljevina-kapljevina

Najjednostavniji ekstrakcijski postupak je jednostupanjska ekstrakcija u kojoj se početna otopina (primarno otapalo) s otopljenom komponentom miješa s nemješljivim pogodnim (sekundarnim) otapalom pri čemu se otopljena komponenta raspodjeljuje između dvije faze. Miješanje se provodi do postizanja ravnoteže nakon čega se zaustavlja i kapljevine se ostavljaju raslojavati do potpunoga bistrenja faza te uspostavljanja ravnotežnog stanja. Nastale dvije faze nazivaju se rafinatna faza (bogata primarnim otapalom) i ekstraktna faza (bogata sekundarnim otapalom i otopljenom komponentom). [Schweizer 1979] Nakon ekstrakcije slijedi regeneracija sekundarnog otapala koja podrazumijeva uklanjanje otopljene komponente. Izbor regeneracijskog postupka ovisi o prirodi i svojstvima sekundarnog otapala.

Djelotvornost ekstrakcije ovisi o izboru prikladnoga sekundarnog otapala, a konačan izbor slijedi kao kompromis između suprotstavljenih zahtjeva. Otapalo treba biti selektivno za ekstrakciju željenih komponenti iz početne otopine, ali i niske cijene, male mješljivosti ili potpune nemješljivosti s primarnim otapalom, nekorozivno i nezapaljivo. Također, razlika u gustoći među fazama treba biti dovoljno velika jer određuje brzinu razdvajanja faza, a međufazna površinska napetost ne smije biti preniska kako bi se faze uspješno odvajale. [Thornton 2011] Poželjno je da viskoznost otapala bude što manja zbog lakšeg dispergiranja. Brzine prijenosa tvari tada su veće zbog manjih otpora u kapljevini. Osim tehničkih zahtjeva, moderni trendovi ekološke osviještenosti uveli su dodatne kriterije, pa tako toksičnost otapala nije poželjna zbog zdravstvenih zahtjeva. Drugi je kriterij mogućnost regeneracije otapala koja omogućuje smanjenje količine kemijski štetnog otpada u okolišu. S tim ciljem poželjan je nizak tlak para otapala koji omogućuje destilacijsko uklanjanje ekstrahiranih tvari.

Razdvajanje komponenata primjenom ekstrakcije kapljevina-kapljevina ovisi o raspodjeli otopljene komponente između dvije kapljevite faze. Omjer koncentracija otopljene tvari u kapljevitim fazama u stanju ravnoteže iskazuje se koeficijentom raspodjele, *K*:

$$K_i = \frac{w_i^{\rm E}}{w_i^{\rm R}},\tag{2.1}$$

gdje su w_i^E i w_i^R maseni udjeli otopljene komponente *i* u ekstraktnoj i rafinatnoj fazi. Koeficijent raspodjele zapravo je mjera razlike u topljivosti otopljene tvari u te dvije faze, a glavni je parametar za utvrđivanje minimalnog omjera ekstrakcijsko otapalo : početna otopina potrebnog da se ukloni sva otopljena komponenta iz početne otopine. Primjerice, ako je koeficijent raspodjele približno jednak 1, to znači da su koncentracije otopljene komponente u obje faze jednake. Dovođenjem jednakog volumena sekundarnog otapala primarnom, u tri ekstrakcijska stupnja može se izdvojiti 87,5 % otopljene komponente (50 % + 25 % + 12,5 %). [Hrvatska enciklopedija]

Ako se iz početne otopine ekstrahiraju dvije komponente, separacijski se faktor, S_{ij} , iskazuje kao omjer koeficijenata raspodjele tih dviju komponenata:

$$S_{ij} = \frac{K_i}{K_j} = \frac{w_i^{\rm E} / w_i^{\rm R}}{w_j^{\rm E} / w_j^{\rm R}}.$$
 (2.2)

 S_{ij} pokazuje selektivnost otapala, tj. sposobnost kojom sekundarno otapalo ekstrahira otopljene komponente iz početne otopine. Poželjno je odabrati otapalo koje daje visoke vrijednosti S_{ij} .

Djelotvornost ekstrakcije pokazuje koliko se ključne komponentne ekstrahiralo iz početne otopine u ekstraktnu fazu, a izračunava se prema:

$$E_i = \frac{w_i^{\rm F} - w_i^{\rm R}}{w_i^{\rm F}}, \qquad (2.3)$$

gdje je w_i maseni udio komponente *i*, a F i R odnose se na početnu otopinu (engl. *feed*) i rafinatnu fazu. Što se veća količina komponente ekstrahirala, to će vrijednost djelotvornosti ekstrakcije biti veća. Uobičajeno se prikazuje u postocima (%).

2.3.1. Ravnoteža kapljevina-kapljevina

Ekstrakcijska separacija u industriji dobiva sve više na važnosti u odnosu na destilacijsku zbog važnog čimbenika – smanjenja utroška energije. On se prvenstveno odnosi na radne uvjete. Ekstrakcija se provodi pri sobnoj ili njoj bliskoj temperaturi te pri atmosferskom tlaku. Za razliku od pare, kapljevina je kondenzirana faza, pa nema utroška energije za isparavanje karakterističnog za destilaciju, a i dimenzije ekstrakcijskih uređaja znatno su manje od destilacijskih. Kapljevinu je znatno lakše održati u procesnom prostoru nego paru, pa se smanjuje opasnost od eksplozija i ekoloških incidenata. Pri raspravljanju prednosti ekstrakcije u odnosu na destilaciju treba međutim uzeti u obzir i ukupne troškove postupka, jer je i ekstrahiranu tvar potrebno naknadno odijeliti od sekundarnog otapala, što se često provodi baš destilacijom.

U ekstrakcijskom se procesu sustav sastoji od dviju ili više kapljevitih faza među kojima se odvijaju procesi prijenosa čija brzina ovisi o pokretačkoj sili prijenosa, o međufaznoj površini i o otporima. Pokretačka sila prijenosa mase razmjerna je razlici koncentracija, a prijenos mase teorijski se odvija do izjednačavanja koncentracija (prelaska sustava u jednu fazu) ili do postizanja ravnotežnih koncentracija. Za projektiranje ekstrakcijskog procesa nužno je prethodno poznavati (eksperimentalno odrediti ili izračunati) faznu ravnotežu kapljevina-kapljevina. [Rogošić 2013]

Uvjeti fazne ravnoteže kapljevina-kapljevina podrazumijevaju zadovoljenje osnovnih zakona termodinamike. Prvi je uvjet termičke ravnoteže koji proizlazi iz nultog zakona termodinamike:

$$T^{\mathrm{I}} = T^{\mathrm{II}} \,. \tag{2.4}$$

Temperature dviju kapljevitih faza, označenih s I i II u stanju termodinamičke ravnoteže su jednake.

Prvi zakon termodinamike daje skup bilančnih uvjeta za tvar i energiju. Pri uspostavljanju ravnoteže očuvana je ukupna množina tvari:

$$\sum_{i=1}^{nk} n_i^{\rm F} = \sum_{i=1}^{nk} n_i^{\rm I} + \sum_{i=1}^{nk} n_i^{\rm II} .$$
(2.5)

17

F označava ukupni ulaz, *i* označava komponentu, n_i označava množinu komponente, I i II označavaju dvije kapljevite faze, nk je ukupni broj komponenti. Jednadžba kaže da se sva tvar koja se nalazi u izoliranom ili zatvorenom sustavu raspodjeljuje između dviju kapljevitih faza u ravnoteži.

Ista analogija vrijedi i za svaku pojedinu komponentu, uz uvjet da u sustavu nema kemijskih reakcija:

$$n^{\rm F} z_i^{\rm F} = n^{\rm I} x_i^{\rm I} + n^{\rm II} x_i^{\rm II} \,. \tag{2.6}$$

F označava ukupni ulaz, *i* označava komponentu, *n* označava ukupnu množinu tvari, x_i označava molarni udio komponente, z_i označava molarni udio komponente *i* u sustavu kao cjelini, I i II označavaju dvije kapljevite faze.

Vrijede i bilančni uvjeti za pojedine faze, iskazani jednostavnim zbrojem množinskih udjela:

$$\sum_{i=1}^{nk} x_i^{\rm I} = 1, \qquad (2.7)$$

$$\sum_{i=1}^{nk} x_i^{\rm II} = 1.$$
 (2.8)

Bilanca energije za izolirani sustav gdje H predstavlja entalpiju, može se pisati kao:

$$H^{\rm F} = H^{\rm I} + H^{\rm II}, \qquad (2.9)$$

a za zatvoreni sustav, koji izmjenjuje energiju Q s okolinom, kao:

$$H^{\rm F} = H^{\rm I} + H^{\rm II} + Q. \tag{2.10}$$

Drugi zakon termodinamike daje maksimum entropije, *S*, kao ravnotežni uvjet izoliranog sustava:

$$S = \max., \tag{2.11}$$

$$dS = 0. (2.12)$$

Jednakovrijedan skup kriterija u višekomponentnom sustavu koji se razdjeljuje na dvije kapljevite faze jest:

$$T^{\mathrm{I}} = T^{\mathrm{II}}, \qquad (2.13)$$

$$p^{\mathrm{I}} = p^{\mathrm{II}}, \qquad (2.14)$$

$$\mu_i^{\mathrm{I}} = \mu_i^{\mathrm{II}}, \qquad (2.15)$$

gdje je p tlak, a μ_i kemijski potencijal komponente i.

U zatvorenim sustavima pri uvjetima stalne temperature i tlaka, ravnotežni uvjet je minimum Gibbsove energije:

$$G = \min_{.}, \qquad (2.16)$$

$$dG = 0. (2.17)$$

Za dvokomponentni sustav koji se razdvaja na dvije kapljevite faze slijedi:

$$g = \psi g^{\mathrm{I}} + (1 - \psi) g^{\mathrm{II}} = \psi (x_1^{\mathrm{I}} \mu_1^{\mathrm{I}} + x_2^{\mathrm{I}} \mu_2^{\mathrm{I}}) + (1 - \psi) (x_1^{\mathrm{II}} \mu_1^{\mathrm{II}} + x_2^{\mathrm{II}} \mu_2^{\mathrm{II}}) = \min, \qquad (2.18)$$

pri čemu je Ψ množinski udio kapljevite faze I. Jednadžba ukazuje na to da se proračun fazne ravnoteže kapljevina-kapljevina može provoditi traženjem globalnog minimuma molarne Gibbsove energije sustava kao funkcije x_i^{I} , x_i^{II} i Ψ . Međutim, u većini slučajeva je praktičnije rješavati ekvivalentan skup jednadžbi:

$$\mu_i^{\mathrm{I}} = \mu_i^{\mathrm{II}}, \qquad (2.19)$$

zajedno s bilančnim uvjetima.

Uvjet ravnoteže dalje se može raspisati uvođenjem standardnih kemijskih potencijala i aktivnosti, *a*:

$$\mu_i = \mu_i^\circ + RT \ln a_i, \qquad (2.20)$$

$$\mu_i^{I_{\circ}} + RT \ln a_i^{I} = \mu_i^{I_{\circ}} + RT \ln a_i^{II}, \qquad (2.21)$$

gdje *R* predstavlja opću plinsku konstantu. Standardno stanje za obje faze je isto:

$$\mu_i^{\mathrm{I}\circ} = \mu_i^{\mathrm{II}\circ},\tag{2.22}$$

iz čega slijedi:

$$\ln a_i^{\mathrm{I}} = \ln a_i^{\mathrm{II}}, \qquad (2.23)$$

odnosno:

$$a_i^{\mathrm{I}} = a_i^{\mathrm{II}}.\tag{2.24}$$

Iz te se jednadžbe vidi da se uvjet ravnoteže može iskazati i kao jednakost aktivnosti komponenata u objema fazama.

Uvođenjem koeficijenta aktivnosti, γ:

$$a_i = x_i \gamma_i, \tag{2.24}$$

dobiva se prikladan oblik jednadžbe fazne ravnoteže kapljevina-kapljevina:

$$x_i^{\mathrm{I}} \gamma_i^{\mathrm{I}} = x_i^{\mathrm{II}} \gamma_i^{\mathrm{II}}, \qquad (2.25)$$

koji se u konačnici može prikazati u obliku koeficijenta raspodjele, Ky:

$$K_{\gamma} = \frac{x_i^{\mathrm{I}}}{x_i^{\mathrm{II}}} = \frac{\gamma_i^{\mathrm{II}}}{\gamma_i^{\mathrm{I}}}$$
(2.26)

Oba načina proračuna fazne ravnoteže kapljevina-kapljevina, bilo traženjem globalnog minimuma molarne Gibbsove energije sustava kao funkcije x_i^{I} , x_i^{II} i Ψ bilo rješavanjem ekvivalentnog skupa jednadžbi, jednakovrijedna su, a mogu se objasniti i grafički na **Slici 2.5**.

Slika 2.5. Osnovni oblici ovisnosti Gibbsove energije dvokomponentnog sustava o sastavu; A (...) potpuno nemješljive komponente, B (-) potpuno mješljive komponente, C (-) djelomično mješljive komponente.

Krivulja A odgovara potpuno nemješljivim komponentama. Odsječci na osima čistih komponenti (*y*-osi) koje tvori tangenta na krivulju (kemijski potencijali) uvijek su viši od molarnih Gibssovih energija čistih komponenta. Krivulja B odgovara potpuno mješljivim komponentama. Odsječci na osima (kemijski potencijali) uvijek su niži od odgovarajućih molarnih Gibbsovih energija čistih komponenta. Krivulja C odgovara djelomično mješljivim komponentama. Sustav je u područjima sastava a – b te f – h jednofazan, a u području sastava b – f dvofazan. U dvofaznom području uvijek dolazi do razdvajanja otopine na dvije faze u ravnoteži. Ravnotežni sastavi b i f određeni su zajedničkom (dvostrukom) tangentom na krivulju. Fizički smisao te zajedničke tangente je jednakost kemijskih potencijala komponenata u obje faze, što je uvjet fazne ravnoteže kapljevina-kapljevina.

2.3.2. Trokutni dijagram

Ravnoteža kapljevina-kapljevina trokomponentnog sustava prikazuje se trokutnim ili ternarnim dijagramom (**Slika 2.6.**). U vrhovima trokuta nalaze se čiste komponente 1, 2 i 3. Na stranicama trokuta promatraju se dvokomponentne otopine 1–2, 2–3 i 3–1. Unutar trokuta promatraju se trokomponentne otopine 1–2–3. Otopine su prikazane s obzirom na sastav koji se može izražavati masenim ili molarnim udjelima. Krivulja unutar trokuta naziva se binodalna krivulja ili krivulja topljivosti. Binodalna krivulja dijeli jednofazno (stabilno) područje od dvofaznog (nestabilnog) područja. Područje ispod binodane krivulje odgovara

dvofaznim otopinama, a područje iznad krivulje jednofaznim otopinama. Ravne linije ispod binodalne krivulje nazivaju se vezne ili spojne linije, a povezuju sastave dviju faza u ravnoteži. Tako se trokomponentna otopina F po odgovajućoj veznoj liniji razdvaja na stabilne faze I i II koje odgovaraju rafinatnoj i ekstraktnoj fazi. Vezne linije iščezavaju u kritičnoj točci, K, gdje su sastavi rafinatne i ekstraktne faze jednaki.

Slika 2.6. Ravnoteža kapljevina-kapljevina trokomponentnog sustava. [Rogošić 2013]

Prema Treybalovoj podjeli, [Treybal 1981] postoje četiri tipa ternarnih sustava koji pokazuju djelomičnu mješljivost svih komponenata u kapljevitom stanju pri određenoj temperaturi:

- Tip I: Sustav s jednim parom djelomično mješljivih komponenti
- Tip II: Sustav s dva para djelomično mješljivih komponenti
- Tip III: Sustav s tri para djelomično mješljivih komponenti
- Tip IV: Sustav s pojavom čvrste faze

Na **Slici 2.7.** prikazan je ternarni sustav tipa I. Komponente A i B su djelomično mješljive. Dvokomponentni sustavi BC i CA su potpuno mješljivi. Postoji jedno homogeno i jedno heterogeno područje. **Slika 2.8.** prikazuje ternarne sustave tipa 2. U oba slučaja, a) i b), komponente B i C potpuno su mješljive, dok su parovi AB i AC djelomično mješljivi. Na slici a) područja djelomične mješljivosti ne preklapaju se i vide se po dvije nezavisne binodalne krivulje i odgovarajuće kritične točke. Na slici b) područja djelomične mješljivosti preklapaju se pa se u dijagramu razabiru dvije nezavisne grane jedne binodalne krivulje i nema kritičnih
točaka. Ternarni sustavi tipa III prikazani su na **Slici 2.9.** Svi dvokomponentni parovi (AB, BC i CA) djelomično su mješljivi. U slučaju a) područja nemješljivosti ne preklapaju se i jasno se mogu vidjeti tri binodalne krivulje s kritičnim točkama. U slučaju b) područja nemješljivosti parova AB i CA se preklapaju. U slučaju c) sva se tri područja nemješljivosti preklapaju rezultirajući pojavom trofaznog područja u ternarnom dijagramu. Sve otopine kojima sastav leži unutar trofaznog područja, razdvajaju se na faze čiji su sastavi označeni crnim kružićima.

Slika 2.7. Ternarni sustav tip I; 1 – jednofazna otopina, 2 – dvofazna otopima. [Rogošić 2013]

Slika 2.8. Ternarni sustav tip II; 1 – jednofazna otopina, 2 – dvofazna otopima [Rogošić 2013]

Slika 2.9. Ternarni sustav tip III; 1 – jednofazna otopina, 2 – dvofazna otopima, 3 – trofazna otopina. [Rogošić 2013]

2.4. Eutektični sustav

Izraz *eutektik* potječe od grčkih riječi $\varepsilon \phi$ (*eu* = lako) i $\tau \dot{\eta} \zeta \iota \zeta$ (*tēxis* = taljenje) i prvi ga je put još davne 1884. godine upotrijebio britanski fizičar Frederick Guthrie za opis "niže temperature ukapljivanja nego što je moguće u bilo kojem drugom omjeru". [Guthrie 1884] U današnje se vrijeme eutektični sustav definira kao homogena smjesa tvari koja se tali pri jednoj temperaturi koja je niža od tališta bilo koje pojedinačne komponente, za sve omjere miješanja komponenata. Ta minimalna temperatura taljenja naziva se eutektična točka i predstavlja sastav smjese. [Gamsjäger 2008] Pri toj temperaturi, super-rešetka otpušta sve svoje komponente zbog čega se eutektični sustav u potpunosti tali u kapljevinu. Nalazi se na sjecištu dviju linija taljenja, koje se prema termodinamici, uz pretpostavku čiste čvrste faze i zanemarivanje utjecaja temperature na toplinski kapacitet, opisuju sljedećom jednadžbom:

$$\ln(x_i\gamma_i) = \frac{\Delta h^{\text{talj}}}{R} \left(\frac{1}{T^{\text{talj}}} - \frac{1}{T}\right) + \frac{\Delta c_p^{\text{talj}}}{R} \left(\frac{T^{\text{talj}}}{T} - \ln\frac{T^{\text{talj}}}{T} - 1\right), \tag{2.27}$$

gdje je γ_i koeficijent aktivnosti komponente *i*, x_i molarni udio komponente *i*, *T* apsolutna temperatura, T^{talj} talište čiste komponente, Δh^{talj} entalpija taljenja čiste komponente, *R* opća plinska konstanta, Δc_p^{talj} razlika molarnog toplinskog kapaciteta komponente *i* u kapljevitoj i čvrstoj fazi.

Slika 2.10. prikazuje shematski prikaz binarnog eutektika s komponentama A i B. L označava kapljevinu, a E označava eutektičnu točku u sjecištu linija taljenja komponenata A i B.

Slika 2.10. Binarni eutektik. [Rogošić 2013]

Na shematskom prikazu mogu se uočiti sljedeća karakteristična područja: L – jednofazna kapljevina koja sadrži komponente A i B mješljive u svim molarnim omjerima; (A+L) – dvofazna smjesa koja sadrži kapljevinu L (A+B) i kristale komponente A; (L+B) – dvofazna smjesa koja sadrži kapljevinu L (A+B) i kristale komponente B; (A+E) – dvofazna krutina koja sadrži krupnije kristale čiste komponente A i eutektična zrna, sastavljena od sitnih uređenih kristalića obiju čistih komponenata; te (E+B) – dvofazna krutina koja sadrži krupnije kristale čiste komponente B i eutektična zrna. [Rogošić 2013] Kod takvog ponašanja binarnog eutektika pretpostavlja se da krutine A i B kristaliziraju zasebno kao čiste tvari. Kristalizacija otopina eutektičnoga sastava odvija se razmjerno velikom brzinom, pri čemu nastaju uređene, obično slojevite kristalne strukture, iako kod jako brzog očvršćivanja može nastati amorfna krutina. Udio pojedinih faza u smjesi, uključujući i udio eutektičnih zrna, može se odrediti pravilom poluge.

2.5. Niskotemperaturno eutektično otapalo

2.5.1. Definicija niskotemperaturnog eutektičnog otapala

Pojam niskotemperaturnog eutektičnog otapala uveli su Abbott i suradnici još 2003. godine. [Abbott 2003] Pokazali su da smjese supstituiranih kvarternih amonijevih soli, npr. kolin-klorida i drugih kristalnih krutina, npr. uree, tvore eutektik s talištem ispod sobne temperature. Stoga postoji područje sastava oko eutektičnog u kojoj su smjese kapljevite pri sobnoj temperaturi i mogu poslužiti kao izvanredna otapala. Kod niskotemperaturnih eutektičnih otapala (eng. *deep eutectic solvents*, DES) u pravilu se oblikuju vodikove veze između dviju komponenti. Prva je tzv. akceptor vodikove veze (eng. *hydrogen bond acceptor*, HBA), a druga donor vodikove veze (eng. *hydrogen bond donor*, HBD). Kako se i očekuje kod tvari koje kristaliziraju zasebno, talište DES-a niže je od tališta čistih komponenti od kojih je DES sastavljen. Postoji velik broj DES-ova koji se pri sobnoj temperaturi nalaze u kapljevitom stanju, pa se mogu primijeniti kao otapala za ekstrakciju pri razmjerno niskim temperaturama, [Garcia 2015] što je važno s ekonomskog gledišta u industrijskoj primjeni.

Kod niskotemperaturnog eutektičnog otapala eutektična je temperatura u pravilu niža od one koja se očekuje za idealnu kapljevitu smjesu, što je i prikazano na **Slici 2.11.** Sniženje tališta DES-a definira se kao razlika (ΔT_2) između idealne ($T^{E,ideal}$) i realne (T^E) eutektične temperature, a ne kao razlika (ΔT_1) između linearne kombinacije tališta čistih komponenata i realne eutektične temperature. [Smith 2014] U faznom dijagramu ravnoteže krutinakapljevina (eng. *solid-liquid equilibrium*, SLE) prisutnost eutektične točke karakteristika je svih smjesa komponenata koje su potpuno ili djelomično nemješljive u krutoj fazi. Karakterizacija s ΔT_1 može se primijeniti na bilo koju smjesu komponenata, osim onih koje tvore čvrste otopine ili stvaraju stabilne međumolekulske spojeve s talištima usporedivima s onima čistih prekursora. Prednost karakterizacije s ΔT_2 je u boljoj povezanosti s termodinamičkim izrazima za topljivost i neidealnost kapljevite faze. Neidealnost kapljevite faze često se analizira isključivo prema čvrstoći HBA-HBD interakcija, a upravo karakterizacijom s ΔT_2 omogućene su usporedbe relativnih intenziteta različitih interakcija prisutnih u smjesi HBA-HBA. [Martins 2019]

Slika 2.11. Usporedba ravnoteže krutina-kapljevina u idealnoj eutektičnoj smjesi (crvena linija) i niskotemperaturnom eutektičnom otapalu (tirkizna linija). [Martins 2019]

Osim sniženja tališta, DES karakterizira i njegov sastav. Kod eutektičnih smjesa eutektični je sastav određen sjecištem dviju krivulja taljenja. [Gamsjäger 2008] Oblik tih krivulja određen je karakterističnim veličinama taljenja, u prvom redu entalpijom taljenja i samim talištem, a tek u manjoj mjeri međudjelovanjima HBA i HBD. Stoga se sastavu eutektične točke zapravo ne može pripisati stehiometrijsko značenje. Zaključuje se da srednji sastav eutektičnoga kompleksa odgovara zadanom stehiometrijskom omjeru jer eutektični sastav od njega vrlo malo odstupa. Pri definiranju DES-a ne treba se ograničiti na eutektične sastave jer je cilj pronaći otapalo koje je kapljevina pri radnoj temperaturi procesa. Prema tome, može se reći da je niskotemperaturno eutektično otapalo bilo koja smjesa komponenata određenog sastava koja je u uvjetima radne temperature u kapljevitom stanju. Promatrajući **Sliku 2.11.**, svaka smjesa sastava između x_1 i x_2 smatra se niskotemperaturnim eutektičnim otapalom.

Niže talište smjese u odnosu na tališta pojedinačnih komponenti uzrokovano je delokalizacijom naboja koja nastaje stvaranjem vodikove veze između halidnog iona i protondonora. [Abbott 2001] Naime, smjese kolin-klorida i cinkova klorida u molarnim omjerima 1:1, 1:2 i 1:3 su prozirne kapljevine s talištima 65, 25 i 45 °C. Za razliku od njih, smjese s većim molarnim udjelom kolin-klorida pri sobnoj temperaturi nisu kapljevite. Sun i sur. [Sun 2013] su metodama molekulske dinamike izračunavali interakcijske energije kationa i aniona kolin-klorida prije i nakon dodatka uree. Dodatak uree doveo je do smanjenja energije međudjelovanja kationa i aniona soli (kolin-klorid) i povećanja energije međudjelovanja aniona i uree. Rezultat svih tih promjena su slabe energije međudjelovanja kationa i aniona soli, kationa i uree te aniona i uree što rezultira sniženjem tališta smjese kolin-klorid – urea. U radu iz 2004. [Abbott 2004a], Abbott navodi da se prilikom oblikovanja DES-a osim sniženja tališta opaža i smanjenje energije rešetke, zbog vodikovih veza i ion-dipolnih interakcija u kompleksnim ionima. Kako se moglo i očekivati, ternarni DES-ovi imaju niže talište u usporedbi s konvencionalnim binarnima [Liu2014] [Chemat2016] pa u posljednje vrijeme privlače sve više pozornosti.

2.5.2. Struktura niskotemperaturnog eutektičnog otapala

U odjeljku 2.5.1. već je objašnjeno da niskotemperaturna eutektična otapala u pravilu nastaju uz formiranje vodikovih veza između dvije komponente koje mogu biti u kapljevitom ili krutom stanju, tzv. akceptora vodikove veze i donora vodikove veze ili metalne soli, uz nastajanje kompleksa između donora vodikove veze i halidnog aniona kvarterne amonijeve soli. HBD i HBA ponašaju se kao Brønstedova kiselina i Brønstedova baza zbog razlike u vrijednosti p K_a komponenti. Tako do izmjene protona dolazi tamo gdje se HBD deprotonira i postaje anion, dok se HBA protonira i postaje kation. Vodikova veza jača je od dipol-dipolnih i disperzijskih veza, ali slabija od kovalentnih i ionskih veza. Nastaje kao specifičan tip dipoldipolnih privlačenja kada se H-atom vezan na jako elektronegativan atom nalazi u blizini drugoga elektronegativnog atoma koji ima slobodni elektronski par. [Chemat 2016] Nastajanje vodikove veze prikazano je shematski na **Slici 2.12.** na primjeru sustava kolinklorid – glicerol i kolin-klorid – etilen-glikol. Priprava eutektičnog otapala provodi se jednostavnim miješanjem dviju komponenti.

Slika 2.12. Nastajanje vodikove veze u sustavima kolin-klorid – glicerol i kolin-klorid – etilen-glikol.

Akceptor vodikove veze najčešće je kvarterna amonijeva sol, dok donor vodikove veze može biti amid, karboksilna kiselina, alkohol, poliol ili ugljikohidrat. U **Tablici 2.1.** prikazani su primjeri niskotemperaturnih eutektičnih otapala.

Tablica 2.1. Strukture nekih akceptora i donora vodikove veze za pripravuniskotemperaturnog eutektičnog otapala

Tablica 2.1. Strukture nekih akceptora i donora vodikove veze za pripravu niskotemperaturnog eutektičnog otapala

Wang i suradnici proučavali su vodikove veze u niskotemperaturnim eutektičnim otapalima na osnovi kolin-klorida i različitih poliola (1,2-butandiol, 1,3-butandiol, 1,4-butandiol, 2,3-butandiol, 1,3-propandiol, glicerol, 1,5-pentandiol, 1,2,5-pentantriol i ksilitol) pri različitim molarnim omjerima. [Wang 2019] Pokazano je da vodikova veza nastaje primarno između kloridnoga iona kolin-klorida i vodikova atoma OH-skupine u poliolima. Jakost vodikove veze opada s povećanjem broja C-atoma između dvije hidroksilne skupine u skupini ispitivanih butandiola i smanjenjem broja hidroksilnih skupina u poliolima. Također, uočeno je da sastav eutektične smjese utječe na jakost vodikove veze. S povećanjem udjela butandiola u eutektičnom otapalu slabi interakcija vodikove veze kolinskih kationa s Cl⁻. Najjače vodikove veze opažaju se kod molarnog omjera ChCl : butandiol od 1:2. Rezultati istraživanja mogu protumačiti i viskoznost niskotemperaturnih eutektičnih otapala te se mogu primijeniti i za razvoj novih eutektičnih otapala.

Dugo se godina optimalni DES za učinkovitu primjenu u određenom području istraživanja nastojao pronaći mijenjanjem sastava DES-a, odnosno različitim kombinacijama akceptorske i donorske komponente kod priprave DES-a. Prema Abbottovoj klasifikaciji, [Abbott 2014] postoje četiri tipa DES-a (**Tablica 2.2.**) s obzirom na prirodu uključenih komponenata.

Tip DES-a	Klasifikacija DES-a
Tip 1	Kvarterna amonijeva sol + metalni klorid
Tip 2	Kvarterna amonijeva sol + metalni kloridni hidrat
Tip 3	Kvarterna amonijeva sol + donor vodikove veze
Tip 4	Metalni klorid + donor vodikove veze

Tablica 2.2. Klasifikacija DES-a prema sastavu HBA i HBD grupe

U Tip 1 ubrajaju se smjese amonijevih soli i klorida Zn, Sn, Fe, Al, Ga ili In. [Smith 2014] No, kako je broj bezvodnih metalnih klorida koji mogu tvoriti smjese s talištem nižim od sobne temperature ograničen, u pripravu DES-a uključeni su i metalni kloridni hidrati, npr. smjesa kolin-klorida i CrCl₃·6H₂O [Abbott 2004b] (Tip 2). Naime, metalni halidni hidrati općenito imaju niža tališta od odgovarajućih bezvodnih soli. Smatra se da hidratna voda snizuje energiju rešetke i posljedično talište metalnih soli. Budući da su hidrati jeftiniji od bezvodnih soli, i cijena pogoduje njihovoj industrijskoj primjeni. Najrašireniji su DES-ovi tipa 3 zbog široke dostupnosti i niske cijene sastavnica. Sastavljeni su od amonijeve soli i donora vodikove veze. Kao HBD najčešće se koriste amidi, karboksilne kiseline i alkoholi. U tip 4 Abbott je svrstao i DES-ove nastale miješanjem metalnih soli s donorima vodikove veze iz tipa 3. Naime, iako se od anorganskih kationa zbog velike gustoće naboja očekuju visoka tališta soli i stoga je malo vjerojatno da mogu oblikovati niskotemperaturna eutektična otapala, te iako nije vjerojatno da metalne soli ioniziraju u nevodenom mediju, ZnCl₂ ipak s ureom, etilen glikolom, acetamidom i 1,6-heksandiolom formira DES-ove. [Abbott 2007a] U skupinu "prirodnih" DES-ova (eng. natural deep eutectic solvents, NADES), ubrajaju se smjese kvarternih amonijevih soli i HBD-komponenti - prirodnih metabolita poput aminokiselina, [Fukumoto 2005] šećera [Poletti 2007] [Imperato 2005] i organskih kiselina [Choi 2011].

2.5.3. Svojstva niskotemperaturnih eutektičnih otapala

Niskotemperaturna eutektična otapala smatraju se "dizajniranim" otapalima jer se različitim kombinacijama akceptorskih i donorskih komponenata može izravno utjecati na fizikalno-kemijska svojstva DES-a, [Garcia 2015] tako da je lako pripremiti DES s točno odgovarajućim svojstvima poželjnim za određenu primjenu. Osim izbora akceptorske i donorske komponente, utjecaj na svojstva DES-a ima i njihov molarni omjer. [Lopez-Porfiri 2016]

Određivanjem fizikalno-kemijskih svojstava utvrđeno je da se niskotemperaturna eutektična otapala ubrajaju u skupinu ekološki prihvatljivih, tj. "zelenih" otapala, prema kriterijima koje su postavili Gu i Jérôme. [Gu 2013] Zbog "zelene" prirode, odlična su alternativa klasičnim, organskim otapalima koja su hlapljiva, lako zapaljiva, toksična za ljude i okoliš, korozivna i teško se recikliraju. Sve veći trend razvoja "zelenih" tehnologija uzima u obzir sigurnost radnika, procesa, okoliša i održivost procesa, [Alfonsi 2008] a idealno otapalo treba biti kemijski i fizički postojano, male hlapljivosti, jednostavno za uporabu te jednostavno za recikliranje s mogućnošću njegove ponove uporabe. Zanemariv tlak para eutektičnih otapala čini ih nehlapljivima, nezapaljivima i neeksplozivnima. Biorazgradiva su i pripremaju se od netoksičnih i jeftinih tvari jednostavnim postupcima. [Radošević 2015] Osim navedenog, imaju nisko talište, visoku toplinsku i elektrokemijsku postojanost, dobru ionsku provodnost, povoljna solvatacijska svojstva te širok raspon kapljevitosti. Mogu biti hidrofilnog i hidrofobnog karaktera. [Cunha 2018] Mogu se regenerirati jednostavnim metodama.

Odabir DES-a kao otapala za proces ekstrakcije ovisi o fizikalnim svojstvima kao što su viskoznost, gustoća, polarnost i mješljivost komponenata. Eutektična temperatura, kako je objašnjeno u odjeljku 2.5.1., ovisi o izboru komponenta DES-a. Zhang je u svom istraživanju otkrio da se eutektična temperatura DES-ova na osnovi kolina i uree snižava u nizu aniona F $> NO_3^- > Cl^- > BF_4^-$ što se pak povezuje s jakošću vodikove veze. [Zhang 2012] Talište smjese iznosi > 50 °C pri molarnom omjeru 1:1, dok je puno niže, 12 °C, pri molarnom omjeru 1:2. Temperature niže od 50 °C puno su prihvatljivije jer je rad s DES-om tada puno sigurniji, zbog nižega tlaka para, i jeftiniji, zbom manjeg utroška energije za zagrijavanje. I viskoznost ovisi o izboru komponenata i njihovu molarnom omjeru u DES-u. Tako npr. ChCl-EG 1:4 pri 20 °C ima viskoznost od svega 19 mPa s, dok se ChCl-sorbitol 1:1 pri istoj temperaturi ima viskoznost od čak 12730 mPa s. Kod ChCl-Gly viskoznost se smanjuje s molarnim udjelom u nizu 1:4 > 1:3 > 1:2. U odnosu na vodu, DES-ovi pokazuju više vrijednosti gustoća, i to načešće u rasponu 1,041 – 1,630 g cm⁻³. S povećanjem molarnog udjela HBD-komponente, gustoća DES-a se općenito smanjuje. Manje polarni DES-ovi su u pravilu viskozniji. DES-ovi pripravljeni od derivata ugljikohidrata polarniji su od onih pripravljenih s kratkolančanim alkoholima i polarnim aprotičnim otapalima. [Rus 2012] Ionska provodnost također je niska ($< 2 \text{ mS cm}^{-1}$) kod jako viskoznih DES-ova.

2.5.4. Primjena niskotemperaturnih eutektičnih otapala

Niskotemperaturna eutektična otapala našla su primjenu u zaista velikom broju istraživačkih područja zahvaljujući slobodnom dizajniranju, tj. mogućnosti lake i učinkovite priprave otapala željenih svojstava i velike selektivnosti, prikladnih za određenu primjenu, što je opisano u prethodnom odjeljku. **Slika 2.13.** prikazuje broj objavljenih radova na temu upotrebe eutektičnog otapala u nekom istraživačkom polju, u razdoblju od 2010. – 2019. godine. Kako se vidi iz grafikona, najzastupljenija je multidisciplinarna kemija, zatim fizikalna kemija te kemijsko inženjerstvo.

1 071 Multidisciplinarna Kemija	357 ZNANOST O ZELENIM I ODRŽIVIM TEHNOLOGIJAMA	244 226 ENERGIJA I ELEKTR GORIVA KEMIJA		IRO- IA	187 TERMODINA- MIKA		162 PRIMIJE- NJENA KEMIJA	
	345 ANALITIČKA KEMLIA							
732 Fizikalna kemija		147 ZNANOST O TEHNOLOGIJI HRANE 142 ORGANSKA KEMIJA		132 BIOKEMIJA I MOLEKULSKA BIOLOGIJA 129 ZNANOST O POLIMERIMA		DST 0 ENALIMA EMAZE I FILMOVE JENJENA JENJENA		107
	296							Ă
	O MATERIJALIMA							
639 KEMIJSKO INŽENJERSTVO	250					ZNAN	ZNANC MATER ZA PRI	
	ATOMSKA, MOLEKULSKA I KEMIJSKA FIZIKA	140 BIOTEHNOLOGIJA I PRIMIJENJENA MIKROBIOLOGIJA		111 NANOZNA NANOTEH	ANOST I INOLOGIJA	94 імž ок	ENJE	RSTVO

Objavljen je velik broj preglednih radova o razvoju DES-ova, njihovoj pripremi i svojstvima [Martins 2019] [Liu 2014] [Tang 2013] [Zhang 2012] [Wei 2011] [Smith 2014] [Ge 2017]. U području sintetske kemije DES-ovi su ispitivani kao otapalo u organskim reakcijama, [Liu 2015] [Wang 2014] [Xiong 2016] za reakcije katalizirane lipazama, [Durand 2013] za reakcije katalizirane metalima, [Garcia-Alvarez 2015] kao otapalo za sintezu polimera i srodnih materijala, [Carriazo 2012] za biotransformacije i organokatalizu [Guajardo 2016] te kao održivi sustav otapala i katalizatora u organskim transformacijama. [Khandelwal 2016]

U području analitičke kemije DES-ovi su istraživani kao dio sredstava za ekstrakciju analita adsorbiranih na krutinu, prije njihova samog određivanja. Analiti su se određivali metodom tekućinske kromatografije visoke djelotvornosti uz UV-detektor [Khezeli 2015] ili maseni spektrometar, [Yang 2016] odnosno metodom plinske kromatografije uz plameno-

ionizacijski detektor [Tang 2014] ili maseni spektrometar [Nie 2017]. Cijeli se taj postupak provodi radi smanjenja vremena trajanja eksperimenta, prvenstveno u dijelu predobrade uzorka. DES-ovi su istraživani i kao modifikator mobilne faze u kromatografiji. [Tan 2015] DES-ovi na osnovi ChCl i fenola, glicerola, uree, glukoze i *p*-klorofenola pokazali su se učinkovitima za određivanje pesticida [Yousefi 2017] i metala [Naeemullah 2016] u vodenim uzorcima.

Kada je riječ o primjeni DES-ova u tehnologijama za obradu vode ili pak analitiku vodenih uzoraka, važan je čimbenik hidrofilnost odnosno hidrofobnost eutektičnog otapala. Hidrofilna se eutektična otapala upotrebljavaju uglavnom kao sredstvo za predkoncentriranje uzoraka što snižava granice detekcije sofisticiranih analitičkih tehnika i omogućuje rano otkrivanje mikroonečišćenja (metali, lijekovi, kozmetički preparati). Hidrofobna eutektična otapala imaju suprotnu primjenu, ona uklanjaju mikroonečišćenja iz vode. Dizajniranjem se mogu napraviti otapala nemješljiva s vodom, niskih viskoznosti čime je omogućen dobar međufazni prijenos tvari. Takva otapala u konačnici daju veliku učinkovitost uklanjanja mikroonečišćenja. [Florindo 2017] [van Osch 2015] Priprava polimera s molekulskim otiskom (eng. *molecularly imprinted polymer*, MIP) u otapalu modificiranom DES-om povećala je selektivnost MIP-a prema ciljanim analitima, levofloksacinu (94,5 %) i tetraciklinu (93,3%) u ekstraktu prosa opterećenom smjesom antibiotika. [Row 2017] MIP na osnovi kitozana pokazao je dobru selektivnost pri adsorpcijskom uklanjanju oksidiranih sumporovih komponenti iz goriva. [Ogunlaja 2014]

Niskotemperaturna eutektična otapala našla su primjenu u apsorpcijskim separacijskim tehnikama. Zbog svoje ionske prirode slabo su hlapljivi što smanjuje gubitak otapala pri separaciji, a zbog visoke polarnosti dobro otapaju polarne komponente plinskih smjesa. [Yucui 2018] Za apsorpciju kiselih plinova (SO₂) iz dima nastalog sagorijevanjem fosilnih goriva primijenjena su eutektična otapala na osnovi kolin-klorida u kombinaciji s glicerolom u omjeru 1:1 [Yang 2013] i u kombinaciji s tioureom, [Sun 2015] te otapala na osnovi kaprolaktama u kombinaciji s tetrabutilamonijevim bromidom [Guo 2010] i imidazolom. [Liu 2013] Sva ispitana eutektična otapala uspješno su uklonila SO₂ iz plinske smjese uz zadovoljavajući apsorpcijski kapacitet. Za adsorpciju CO₂ prikladnim su se pokazala eutektična otapala na osnovi kolin-klorida s različitim donorima vodikove veze: ureom (1:2), [Li 2008] glicerolom [Leron 2013] [Lin 2014] te etilen-glikolom i malonskom kiselinom. [Lin 2014]

Ekstrakcija bioaktivnih tvari pomoću eutektičnih otapala poželjna je novost jer se ekstrakcija dosad mahom provodila vodom čime su se separirali jedino hidrofilni i polarni bioaktivni spojevi. Ovisno o njihovoj kasnijoj primjeni u prehrambenoj, kozmetičkoj, farmaceutskoj ili agro industriji, mogu se ekstrahirati iz različitih dijelova biljaka ili biljnih pripravaka. Izdvajanje antocijana iz vinskog taloga primjenom eutektičnog otapala kolinklorid – jabučna kiselina pokazalo se učinkovitijim u odnosu na ekstrakciju konvencionalnim otapalom. [Bosiljkov 2017] Djelotvornost pri ekstrakciji antocijana iz kožice grožđa uz primjenu sustava kolin-klorid - limunska kiselina 4:1 jednaka je djelotvornosti uz primjenu 80 %-tnog etanola kao ekstrakcijskog sredstva. [Jeong 2015] Proantocijanidin iz lišća gingka (Ginkgo biloba) ekstrahiran je sustavom kolin-klorid – malonska kiselina 1:2 uz dodatak 55 % vode. Antioksidativna aktivnost tih ekstrakata usporediva je s onima dobivenim ekstrakcijom sa 70 %-tnim otopina acetona, metanola ili etanola u vodi. U svakom se primjeru klasično, ekološki neprihvatljivo otapalo može zamijeniti 'zelenim' eutektičnim otapalom bez gubitka iskorištenja. [Cao 2018] Biokomponente iz citronovca (Lippia citriodora) ekstrahirane su sustavom kolin-klorid – mliječna kiselina uz ekstrakcijsku djelotvornost od 17,23 mg g^{-1} za fenilpropanoide i 9,02 mg g⁻¹ za flavonoide što je znatno bolje od 15,63 i 5,43 mg g⁻¹ koliko je dobiveno ekstrakcijom s metanolom. [Ivanovic 2018] Djelotvornost ekstrakcije flavonoida: rutina, hesperidina, neohesperidina, naringenina, naringina, kvercetina, hesperitina i krizina veća od 70 % postignuta je s 30 %-tnom vodenom otopinom DES-sustava acetilkolin-klorid mliječna kiselina 2:1. [Bajkacz 2018]

U naftnoj i petrokemijskoj industriji eutektična otapala istražena su kao otapala pri proizvodnji biodizela iz opadnog ulja [Merza 2018] i otpadnih životinjskih masti [Sander 2018] uz istovremeno uklanjanje nusprodukta glicerola. Eutektična otapala, većinom na osnovi kolin-klorida, pokazala su se uspješnima pri razdvajanju azeotropnih smjesa [Jiang 2019] [Liu 2019] [Vuksanovic 2018] [Oliveira 2013]. U proizvodnji kapljevitih goriva koje zadovoljavaju zakonske norme o sadržaju štetnih tvari također su privukla pozornost, no tom je području posvećen zasebni (sljedeći) odlomak budući da se ovaj doktorski rad upravo bavi ekstrakcijskim pročišćavanjem benzina.

2.5.5. Primjena niskotemperaturnih eutektičnih otapala u ekstrakcijskom pročišćavanju kapljevitih goriva

Istraživački radovi iz ovog područja objavljeni u literaturi mogu se grupirati po različitim kategorijama: prema vrsti eutektičnog otapala, prema selektivnom spoju koji se ekstrahira, prema modelnom gorivu koje može biti jednokomponentno ili višekomponentno, prema realnom gorivu. Ovdje će se primijeniti kategorizacija prema ciljanoj vrsti spojeva koju su istraživači pokušali ukloniti iz modelnog goriva: sumporovi spojevi, dušikovi spojevi te aromatski spojevi.

2.5.5.1. Desulfurizacija

Ideju o primjeni eutektičnog otapala u ekstrakcijskoj desulfurizaciji goriva prvi su istražili Li i sur. [Li 2013] Pripremili su 16 eutektičnih otapala na osnovi amonijevih kvarternih soli te ispitali njihovu primjenjivost za izdvajanje dibenzotiofena, predstavnika sumporovih spojeva, iz modelnoga goriva – smjese dibenzotiofena i *n*-oktana. Uz optimiranje ekstrakcijskih parametara (temperatura, vrijeme ekstrakcije, omjer otapalo : modelno gorivo, početna koncentracija sumpora) izabrano je eutektično otapalo tetrabutilamonijev klorid polietilen-glikol (TBAC - PEG) kojim je ostvarena najveća djelotvornost ekstrakcije od 71,06 %. Rezultat je bio korak naprijed u odnosu na prethodnih 65 % što je bio maksimum ostvaren ionskom kapljevinom pri istim procesnim uvjetima. [Li 2012] Nadalje, pokazano je da je tim otapalom moguće ostvariti potpunu desulfurizaciju pri višestupanjskoj ekstrakciji, što do tada nije bilo moguće nijednom metodom. Otkriveno je da ekstrakcijski kapacitet opada s brojem ekstrakcijskih stupnjeva, no problem je jednostavno riješen čišćenjem eutektičnog otapala od ekstrahiranih sumporovih spojeva ispiranjem s dietil-eterom, što znači da je bilo moguće regenerirati otapalo. Plinska kromatografija pokazala se uspješnom metodom za određivanje koncentracije dibenzotiofena u modelnom gorivu, a ¹H NMR spektroskopija za ispitivanje postojanosti recikliranih otapala tijekom višestupanjske ekstrakcije. Općenito gledajući, rezultati su obećavali, pa se može reći da je to istraživanje otvorilo vrata primjeni eutektičnih otapala u području ekstrakcijske desulfurizacije goriva. Kako bi poboljšali djelotvornost desulfurizacije, klasičnim eutektičnim otapalima dodali su kloridne soli u različitim omjerima. [Li 2016a] Sustav TBAC – PEG – FeCl₃ dao je bolji rezultat (89,53 %) u odnosu na isto otapalo bez kloridnih soli, pa se moglo zaključiti da osim vodikovih veza važnu ulogu u povećanju djelotvornosti imaju i metalni ioni. [Shah 2019] [Xu 2018] Ista skupina istraživača dobila je visoke djelotvornosti desulfurizacije ulja primjenom eutektičnih otapala na osnovi karboksilnih kiselina: 81,7 % za uklanjanje tiofena, 80,5 % za uklanjanje dibenzotiofena te 97.6 % za uklanjanje tiofena iz goriva. [Li 2016b] Da su eutektična otapala s PEG-om učinovita za desulfurizaciju, pokazali su i drugi istraživači. [Rahma 2017] [Lima 2018] [Al-Azzawi 2019] Osim što se pokazao kao prikladna komponenta eutektičnog otapala, i čistim PEG-om bilo je moguće postići potpunu desulfurizaciju. [Li 2019] Kositrov(II) klorid u kombinaciji s 1,5-difenilkarbazidom kao sredstvom i kolin-kloridom kompleksirajućim kao HBA-komponentom tijekom jednostupanjske ekstrakcije uspješno odvaja tiofen, 3-metiltiofen i dibenzotiofen od n-oktana s djelotvornostima od 95,2, 94,5 i 92,1 %. [Shirazinia 2020] Sumporove spojeve manje složenih struktura od DBT, 2-metil-tiofen i 3-metil-tiofen, bilo je moguće izdvojiti iz smjese s *n*-heptanom primjenom sustava tetraheksilamonijev bromid – etilen-glikol 1:2 (THAB-EG) i tetraheksilamonijev bromid - glicerol 1:2 (THAB-Gly) pri čemu je veću djelotvornost pokazao THAB-EG. [Ali 2018a] Strukturno najmanje složen, ali jednako nepoželjan u gorivu je tiofen. Visoku selektivnost prema tiofenu za uklanjanje iz smjese s *n*-heksanom pokazala su eutektična otapala na osnovi tetrabutilamonijeva klorida (TMAC) i metiltrifenijfosfonijeva bromida (MTFFB) s EG ili Gly, [Warrag 2018a] zatim TBAC s EG, Gly ili malonskom kiselinom, [Shu 2016] te otapala na bazi betaina pri ekstrakciji iz šesterokomponentnoga modelnog goriva. [Zagajski Kučan 2018] Sadržaj sumpora u komercijalnom dizelu smanjen je ispod zakonskih normi primjenom eutektičnog otapala tipa 1 na osnovi FeCl₃. [Gano 2015]

Objavljeni radovi objasnili su mehanizam ekstrakcije sumporovih komponenti iz ugljikovodičnih smjesa, [Li 2013] [Gutiérrez 2018] na temelju kojeg je ustanovljeno da duljina [Warrag 2018b] i položaj alkilnog lanca vezanog na N-atom amonijeve soli [Jiang 2017] utječe na djelotvornost ekstrakcije. Što je alkilni lanac na kationu dulji, to je koeficijent raspodjele bolji, a selektivnost manja. Zamjena alkilne skupine fenilnom rezultirat će poboljšanjem selektivnosti i smanjenjem koeficijenta raspodjele. [Warrag 2018a]

2.5.5.2. Denitrifikacija

Proračunima na osnovi modela COSMO-RS (engl. *conductor-like screening model for real solvents*) testirana je djelotvornost 94 eutektična otapala pri ekstrakcijskoj denitrifikaciji dizela. Pritom su – iz koeficijenata aktivnosti pri beskonačnom razrjeđenju – za svako otapalo izračunati selektivnost i kapacitet te tzv. indeks performansi kao produkt prethodnih dviju vrijednosti. Nebazične dušikove komponente pokazale su veću selektivnost i kapacitet od bazičnih. Veću selektivnost pokazala su eutektična otapala na osnovi amonijevih soli, dok su fosfonijeve soli pokazale veći kapacitet. Eutektična otapala s kloridnim ionom pokazuju bolju selektivnost, a otapala s bromidnim ionom bolji kapacitet. Otapala s alkoholnim i amidnim HBD-komponentama pokazuju veću selektivnost, a bolji kapacitet pokazuju otapala s karboksilnim kiselinama. Ispitan je utjecaj molarnog omjera i pokazalo se da ima mali utjecaj na selektivnost i kapacitet. [Hizaddin 2014] Nakon pretraživanja, za eksperiment su odabrana

dva eutektična otapala na osnovi amonijeve i fosfonijeve soli: tetrabutilamonijev bromid etilen-glikol (TBAB-EG, 1:2) i tetrabutilfosfonijev bromid – etilen-glikol (TBPB-EG, 1:2); istraženo je uklanjanje aromatskih dušikovih komponenti (pirol, piridin, indolin i kinolin) iz modelnoga dizelskog goriva (n-heksadekan). Eksperimentima je određena ravnoteža kapljevina-kapljevina u odabranim sustavima i potvrđena su predviđanja na osnovi modela COSMO-RS te je dokazano da su odabrana eutektična otapala odlična za ekstrakcijsku denitrifikaciju, pri čemu je otapalo TBPB-EG pokazalo veću selektivnost i veći koeficijent raspodjele nego TBAB-EG, dok su se oba otapala pokazala selektivnijima za uklanjanje peteročlanih aromatskih prstenova s dušikom u odnosu na šesteročlane. [Hizaddin 2016] Ekstrakciju bazičnog piridina i nebazičnog karbazola iz smjese s n-heptanom ispitivali su Ali i suradnici. Sustav kolin-klorid - feniloctena kiselina molarnog omjera 1:2 s visokom vrijednosti djelotvornosti odlično uklanja i bazične (99,2%) i nebazične (98,2%) spojeve, pri čemu ne dolazi do kemijske reakcije neutralizacije. Naime, istraživanjem je utvrđeno da djelotvornost ekstrakcije piridina ovisi o entalpiji disocijacije protona, ΔH , HBD-komponente eutektičnog otapala. Ukoliko je vrijednost ΔH veća od 1400 kJ mol⁻¹, piridin će se ekstrahirati klasičnom fizikalnom ekstrakcijom. Ako je ΔH niža od 1400 kJ mol⁻¹, doći će do kemijske reakcije između eutektičnog otapala i piridina. [Ali 2016] Generalno gledajući, preciznom regulacijom kiselosti HBD-komponente eutektičnog otapala izravno se utječe na djelotvornost eutektičnih otapala pri denitrifikaciji, što je vrijedan doprinos razvoju učinkovitih eutektičnih otapala. Isti zaključak dobili su Li i suradnici pri ekstrakciji bazičnog kinolina i nebazičnog karbazola. Eutektična otapala s kiselinskim skupinama (-COOH, -SO₃H) u HBDkomponentama pokazuju visoku djelotvornost pri ekstrakciji kinolina, dok HBD-komponente koje sadrže neutralne OH- i bazične NH₂-skupine teško uklanjaju kinolin. HBD-komponente jače kiselosti bolje uklanjaju kinolin. [Li 2018]

Tetraheksilamonijev bromid i etilen-glikol u molarnom omjeru 1:2 pokazali su bolji afinitet za razdvajanje benzotiazola od *n*-heptana nego tetraheksilamonijev bromid i glicerol. Istovremeno se ekstrahirao i tiofen, ali je afinitet prema benzotiazolu bio veći, zbog prisutnosti dušika u strukturi otapala. Oba ispitana eutektična otapala dobra su za denitrifikaciju, a eksperimentalni podaci uspješno su opisani modelom NRTL. [Ali 2018b] Piridin i karbazol se jednako dobro mogu ukloniti iz binarne smjese s *n*-heptanom primjenom eutektičnog otapala tetrabutilfosfonijev bromid – sulfolan (TBPB-Sulf) molarnog omjera 1:4, uz malen gubitak ekstrakcijskog kapaciteta od 4 % (piridin) i 2 % (karbazol) tijekom pet ekstrakcijskih ciklusa. No, otapalo je moguće oporaviti vakuumskim isparavanjem ekstrahiranih komponenti. [Lima 2019] Uspješno odvajanje piridina iz šesterokomponentne ugljikovodične smjese koja imitira FCC-benzin moguće je primjenom eutektičnih otapala na osnovi betaina u kombinaciji s glicerolom, etilen-glikolom i propilen-glikolom. U jednom ekstrakcijskom stupnju s B-PG 1:3,5 postignuta je 80 %-tna djelotvornost ekstrakcije iz modelnoga otapala, te 36 %-tna iz uzorka realnog benzina. [Zagajski Kučan 2018] Važna karakteristika eutektičnog otapala kao ekstrakcijskog sredstva je selektivnost prema ključnoj komponenti i nemiješanje s ostalim komponentama u kapljevitim gorivima. Otapala na osnovi betaina i propilen-glikola nisu mješljiva s *n*-heksanom, *n*-heptanom, *i*-oktanom i toluenom u cijelom području sastava, dok Lima navodi 1,3 %-tnu topljivost *n*-heptana u TBAC-PEG400 kao jednu od najmanjih dosad objavljenih vrijednosti. [Lima 2018]

Mehanizam ekstrakcije kinolina interpretiran je u okviru teorije Lewisovih kiselina i baza. [Sarker 2018] Kinolin se može smatrati Lewisovom bazom sa slobodnim parom elektrona na N-atomu koje može dati Lewisovoj kiselini. [Ahmed 2014] Djelotvornost ekstrakcije kinolina ovisi o kiselosti HBD-komponente eutektičnog otapala, tj. o jačini kiselobaznih interakcija. Bolje preklapanje vrijednosti pozitivnog i negativnog elektronskog statičkog potencijala dviju komponenta povećava kiselo-baznu interakciju kinolina i HBD-komponente rezultirajući boljom ekstrakcijom. [Li 2018] Karbazol je nebazična komponenta, pa se mehanizam ekstrakcije ne može objasniti Lewisovom teorijom, već se mehanizam objašnjava kompatibilnošću polarnosti. [Li 2018]

2.5.5.3. Dearomatizacija

Prva primjena niskotemperaturnih eutektičnih otapala kao sredstava za ekstrakciju bila je u izdvajanju aromatskih spojeva iz aromatsko/alifatskih smjesa kao što je nafta. Eksperimentalni podaci o ravnoteži kapljevina-kapljevina pokazali su da je DES metiltrifenilfosfonijev bromid - etilen-glikol u različitim molarnim omjerima pogodno ekstrakcijsko sredstvo za razdvajanje benzena od n-heksana. S molarnim omjerom 1:6 postiže se veća ekstrakcijska djelotvornost u usporedbi s djelotvornošću sulfolana pri 25 °C koji se uobičajeno koristi u industriji, a s molarnim omjerom 1:4 veća djelotvornost od one Nformilmorfolina pri 47 °C. [Kareem 2012a] Tetrabutilfosfonijev bromid te etiltrifenilfosfonijev jodid u kombinaciji s etilen-glikolom ili sulfolanom pogodna su otapala za razdvajanje toluena od n-heptana. [Kareem 2012b] [Kareem 2013] Za industrijsku ekstrakcijsku dearomatizaciju primjenjuju se čisti etilen-glikol i sulfolan. Nedostatak je što dio otapala nepovratno zaostaje u rafinatnoj fazi nakon ekstrakcije. U varijanti kad su etilenglikol ili sulfolan sastavnica eutektičnog otapala, ne dolazi do otapanja etilen-glikola ili sulfolana u rafinatnoj fazi, što je važna prednost ekstrakcijskog sredstva. Toluen se uspješno može razdvojiti od n-heptana i sustavom tetraetilamonijev bromid – etilen-glikol. Bolja selektivnost prema toluenu ostvaruje se ekstrakcijskim sredstvom s kratkim bočnim lancima, s malim središnjim atomom kationa, s velikim anionom HBA-komponente eutektičnog otapala supstitucijskim položajem alkilnog lanca. te pogodnim Wang 2016] Sustav tetrabutilfosfonijev bromid - levulinska kiselina uspješno separira toluen iz smjese toluen/nheksan bez gubitka kapaciteta tijekom četiri ekstrakcijska stupnja uz regeneraciju otapala. [Hou 2015] Odlično slaganje eksperimentalnih podataka o ravnoteži kapljevina-kapljevina s modelima NRTL i UNIQUAC opaženo je u sustavu koji uključuje metiltrifenilfosfonijev bromid – etilen-glikol molarnog omjera 1:4, toluen ili kinolin te n-heptan, uz bolju selektivnost prema kinolinu. [Naik 2016]. S druge strane, sustav kolin-klorid - malonska kiselina preporučuje se za razdvajanje toluena od *n*-oktana. [Samarov 2018]

Osim za denitrifikaciju, model COSMO-RS uspješno predviđa eksperimentalne ravnotežne dijagrame i pri dearomatizaciji. U skladu s predviđanjima, sustav tetrabutilamonijev bromid – etilen-glikol pokazuje dobru selektivnost, ali mali koeficijent raspodjele za dearomatizaciju u sustavu etilbenzen – *n*-oktan – eutektično otapalo. [Hizaddin 2015] Dobro predviđanje uočeno je i u sustavima *n*-heksan – benzen – eutektično otapalo, s DES-ovima na osnovi tetrametilamonijeva klorida, tetraetilamonijeva klorida i tetraheksilamonijeva klorida s etilen-glikolom ili glicerolom. Najveći omjer raspodjele otopljene tvari ostvaruje se s otapalom sastavljenim od HBA-komponente s dugim alkilnim lancem u kombinaciji s etilen-glikolom kao HBD-komponentom. [Rodriguez 2017] Sustav kolin-klorid – levulinska kiselina 1:3 može se koristiti kao otapalo za dearomatizaciju u skladu s najstrožim propisima o sadržaju benzena u komercijalnom benzinu, jer se postiže skoro potpuna ekstrakcija benzena iz pirolizatnog benzina. [Larriba 2018]

EKSPERIMENTALNI DIO

3. EKSPERIMENTALNI DIO

3.1. Ciljevi eksperimentalnog istraživanja

- Pripremiti dva niza niskotemperaturnih eutektičnih otapala različitog sastava (molarnog omjera HBA:HBD) pri kojem će otapala biti kapljevita pri sobnim uvjetima, tj. pri 25 °C i atmosferskom tlaku.
- Provesti karakterizaciju otapala s obzirom na svojstva važna za njihovu primjenu u ekstrakciji.
- Odrediti ravnotežu kapljevina-kapljevina u trokomponentnim sustavima ugljikovodik(1) – tiofen/piridin(2) – eutektično otapalo(3).
- Provesti šaržnu kapljevinsku ekstrakciju sumporovih, dušikovih i aromatskih spojeva iz modelnog benzina i frakcija benzina dobivenih procesom fluidiziranog katalitičkog krekiranja (FCC-benzin) primjenom pripremljenih niskotemperaturnih eutektičnih otapala s ciljem pronalaska optimalnog sastava eutektičnog otapala za učinkovito i selektivno uklanjanje sumporovih, dušikovih i aromatskih spojeva iz benzina.

3.2. Materijali

3.2.1. Priprava modelnog benzina

Modelno gorivo je smjesa šest organskih komponenti koja svojim sastavom imitira FCC-benzin. Pripremljena je miješanjem čistih komponenata pri sobnoj temperaturi i atmosferskom tlaku, u staklenoj boci s ubrušenim čepom (**Tablica 3.1.**), a točan je sastav izračunat iz odvaga. Približni sastav modelnog goriva definiran je masenim udjelima [Casal 2010] prikazanima u **Tablici 3.2.** Tiofen, piridin i toluen u modelnom benzinu predstavnici su sumporovih, dušikovih i aromatskih spojeva iz realnog benzina.

Komponenta	Proizvođač	Čistoća	Molarna masa (g mol ⁻¹)	CAS broj
<i>n</i> -heksan	Carlo Erba Reagents	>98,5	86,18	110-54-3
<i>n</i> -heptan	Carlo Erba Reagents	99	100,21	142-82-5
<i>i</i> -oktan	Kemika	>99,5	114,23	540-84-1
toluen	Lach:ner	99,28	92,14	108-88-3
tiofen	Acros Organics	99	84,14	110-02-1
piridin	Carlo Erba Reagents	>99	79,10	110-86-1

Tablica 3.1. Popis kemikalija za pripravu modelnog benzina.

Komponenta	w /%
<i>n</i> -heksan	26
<i>n</i> -heptan	26
<i>i</i> -oktan	26
toluen	10
tiofen	6
piridin	6

Tablica 3.2. Sastav modelnog benzina.

3.2.2. Uzorci realnog benzina

Uzorci realnog benzina su uzorci FCC-benzina iz postrojenja INA – Rafinerije nafte Sisak. Količine ukupnog sumpora i količina ukupnog dušika u realnom benzinu određene prije ekstrakcijskih eksperimenata prikazane su u **Tablici 3.3.** Primijenjene analitičke metode za određivanje ukupnog S i ukupnog N opisane su kasnije, u odjeljcima 3.4.2 i 3.4.3.

Tablica 3.3. Sadržaj ukupnog S i N u FCC-benzinu.

uzorak	ukupni S / mas. %	ukupni N / (mg kg ⁻¹)
FCC benzin	0,076	77

3.2.3. Priprava niskotemperaturnih eutektičnih otapala

Pripravljena eutektična otapala dvokomponentne su smjese na osnovi kolin-klorida i glicerola u molarnom omjeru 1:1,5, 1:2 i 1:3 te na osnovi kolin-klorida i etilen-glikola u molarnom omjeru 1:2, 1:3 i 1:3,5. Označena su kao ChCl-Gly i ChCl-EG (**Tablica 3.4**.). Polazne komponente prikazane u **Tablici 3.5.** sušene su 8 h pri 60 °C u vakuumskom sušioniku. Nakon hlađenja, potrebne mase izračunate za zadane molarne omjere izravno su izvagane (analitička vaga Radwag AS 220.RS s preciznošću ± 0,0001) u tikvicu (250 mL) okruglog dna i miješane na rotacijskom uparivaču (Heidolph Laborota 4000, termostatirana vodena kupelj Heizbad WB) pri 70 °C i 250 mbar do postizanja homogene prozirne kapljevine. Dobivena eutektična otapala skladištena su u istim tikvicama, dobro zatvorenima ubrušenim čepom te dodatno omotanima parafilmom oko čepa.

HBA	HBD	DES	molarni omjer
kolin-klorid	glicerol	ChCl-Gly	1:1,5
kolin-klorid	glicerol	ChCl-Gly	1:2
kolin-klorid	glicerol	ChCl-Gly	1:3
kolin-klorid	etilen-glikol	ChCl-EG	1:2
kolin-klorid	etilen-glikol	ChCl-EG	1:3
kolin-klorid	etilen-glikol	ChCl-EG	1:3,5

Tablica 3.4. Pripravljena eutektična otapala.

Tablica 3.5. Popis kemikalija za pripravu eutektičnih otapala.

Komponenta	Proizvođač	Čistoća	Molarna masa (g mol ⁻¹)	CAS-broj
Kolin-klorid	Acros Organics	99	139,62	67-48-1
Glicerol	Kemika	>99,5	92,10	56-81-5
Etilen-glikol	VWR Chemicals	99,7	62,07	107-21-1

3.3. Karakterizacija niskotemperaturnih eutektičnih otapala

3.3.1. Određivanje gustoće

Gustoća uzoraka pripravljenih eutektičnih otapala mjerena je pri temperaturama 15 °C, 25 °C, 35 °C, 45 °C i 55 °C, metodom oscilirajuće U-cijevi na denzitometru Anton Paar Density Meter DMA 4500 M u laboratorijima INA – Rafinerij nafte Sisak, Kontrola kvalitete. Određeni volumen uzorka stavlja se u borosilikatnu staklenu cijev i pobuđuje se njena vibracija. Karakteristična frekvencija vibracije ovisi o gustoći uzorka. Gustoća se izračunava iz omjera oscilacijskog perioda U-cijevi s uzorkom i referentnog oscilatora. Konstanta osciliranja U-cijevi određuje se prije mjerenja pri svakoj mjernoj temperaturi, tijekom umjeravanja uređaja.

3.3.2. Određivanje dinamičke viskoznosti

Dinamička viskoznost uzoraka pripravljenih eutektičnih otapala mjerena je pri temperaturama 15 °C, 25 °C, 35 °C, 45 °C i 55 °C na reometru Brookfield DV-III Ultra Programmable, opremljenom softverom Reocalc V2.5, u laboratoriju Zavoda za mehaničko i toplinsko procesno inženjerstvo Fakulteta kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu. Temperatura uzorka smještenog u metalnoj posudi s plaštem održava se stalnom pomoću termostata Julabo CF41. U 8 mL uzorka uronjeno je rotirajuće vreteno SC4-21. Brzina vrtnje vretena povećava se s korakom 4 od 0 – 196 okretaja u minuti, a zatim se smanjuje obrnutim slijedom uz isti korak, pri čemu se mjeri smično naprezanje uzorka uz preciznost izmjerene viskoznosti od ± 1 %. Nagib pravca izračunat iz linearne ovisnosti smičnog naprezanja o smičnoj brzini predstavlja dinamičku viskoznost uzorka.

3.3.3. Određivanje indeksa loma

Indeks loma pripravljenih uzoraka eutektičnih otapala mjeren je pri temperaturama 15 °C, 25 °C, 35 °C, 45 °C i 55 °C na Abbeovu refraktometru Exacta Optech RMI u laboratoriju Zavoda za fizikalnu kemiju Fakulteta kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu. Abbeov refraktometar sadrži dvije kompenzirajuće Amicijeve prizme – osvjetljujuću (gornju) i refrakcijsku (donju) – koje su zakrenute tako da propuštaju samo zrake valne duljine D-linije natrija. Uzorak se nanosi u tankom sloju na površinu između dvije prizme. Svjetlost ulazi kroz osvjetljujuću prizmu, lomi se pod graničnim kutom na donjoj površini mjerne prizme, a zatim se teleskopom opaža položaj granice tamnog i svijetlog polja. Vrijednost indeksa loma očitava se izravno s mjerne ljestvice uređaja u rasponu $n_D = 1,3000 - 1,7000$ s točnošću od ±0,0002. Temperatura prizme refraktometra održava se stalnom pomoću termostata Julabo ED-5.

3.3.4. Određivanje električne provodnosti

Električna provodnost pripravljenih uzoraka eutektičnih otapala mjerena je pri temperaturama 15 °C, 25 °C, 35 °C, 45 °C i 55 °C na konduktometru Schott Instruments Lab 960 s internim temperaturnim senzorom u laboratoriju Zavoda za fizikalnu kemiju Fakulteta kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu. Temperatura ispitivanih uzoraka održava se stalnom pomoću termostata Julabo ED-5. Mjerni članak uroni se u ispitivani uzorak i narine se napon između dvije elektrode unutar mjernog članka. Električni otpor iz otopine uzrokuje pad napona koji uređaj očitava i pretvara u mikro- ili mili-Siemense po centimetru. Prije mjerenja uređaj se kalibrira s kontrolnim standardom od 0,01 mol L⁻¹ KCl radi određivanja aktualne vrijednosti konstante članka.

3.3.5. Određivanje toplinskih svojstava

Toplinska provodnost, temperaturna difuzivnost i toplinski kapacitet pripravljenih uzoraka eutektičnih otapala izmjereni su pri temperaturi 25 °C i atmosferskom tlaku na uređaju Linseis Transient Hot Bridge 1 u laboratoriju Zavoda za fizikalnu kemiju Fakulteta kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu. Uređaj mjeri automatski, bez

potrebe za prethodnim referentnim ili kalibracijskim mjerenjima. Opremljen je softverom koji automatski optimizira proces mjerenja, s naglaskom na kratko trajanje mjerenja i minimalnu mjernu nesigurnost. Također se prati i moguće klizanje temperature uzorka. Mjere se apsolutne vrijednosti s mjernim nesigurnostima koje softver izračunava u skladu s međunarodnim ISO-standardima. Mjerenje se provodi uranjanjem patentiranog osjetila tipa THB 6K99 u uzorak.

3.3.6. Određivanje ¹H NMR-spektara čistih eutektičnih otapala

Pripravljena eutektična otapala karakterizirana su nuklearnom magnetskom rezonancijom, ¹H NMR-metodom. ¹H NMR-spektri snimljeni su u deuteriranom kloroformu (CDCl₃) na NMR-spektrometru Bruker Avance 300 MHz (jačina magnetnog polja 7 T) s 0,03 %-tnim tetrametilsilanom kao unutarnjim standardom, u Centru za NMR Instituta Ruđer Bošković. NMR-spektrometar aplicira stalno vanjsko magnetsko polje na ispitivani uzorak. Pritom se pozitivno nabijene jezgre atoma s neparnim brojem protona (koje stoga imaju nesparen spin i neto magnetski moment) u jezgrama orijentiraju paralelno ili antiparalelno narinutom vanjskom magnetskom polju. U području valnih duljina koje odgovara radiovalovima moguća je apsorpcija energije pri čemu jezgra prelazi s osnovne energijske razine koja odgovara paralelnoj orijentaciji na pobuđenu razinu koja odgovara antiparalelnoj. Povratkom na osnovnu energijsku razinu emitira se signal na istoj frekvenciji. NMR dakle mjeri rezonantnu frekvenciju jezgre i izražava je u odnosu na referentnu rezonantnu frekvenciju protona u tetrametilsilanu (TMS). Kemijski pomak izražava se u dijelovima na milijun (ppm) u odnosu na rezonantnu frekvenciju TMS s vrijednošću pomaka jednakoj nuli. Rezonantna frekvencija jezgre ovisi o njenom kemijskom okruženju (strukturi molekule); što je elektronegativnije okruženje u kojem se jezgra nalazi, to je veća njena rezonantna frekvencija.

3.4. Analitičke metode

3.4.1. Određivanje sastava modelnog benzina

Početni sastav modelnog benzina i sastav rafinatne faze nakon provedenih ekstrakcijskih eksperimenata određivan je plinskim kromatografom GC-2010-Shimadzu, u laboratoriju tvrtke Comprehensive Water Technology. Instrument je opremljen robotom za automatsko uzorkovanje i prenošenje zadanog volumena uzorka (1 μ L) u komoru za isparavanje. Odatle uzorak nošen dušikom prolazi kapilarnom kolonom DB-624, Agilent

(duljina: 30 m, unutarnji promjer: 0,53 mm) do plameno-ionizacijskog detektora (FID, engl. *flame ionization detector*). U detektoru se uzorak spaljuje u vodikovu plamenu uz nastajanje iona i elektrona koji generiraju odzivni električni signal koji se bilježi kao kromatogram. Koncentracija iona razmjerna je masi komponente u plinskoj struji.

Maseni udjeli komponenata modelnoga goriva izračunavaju se izravno u softverskom dijelu (GC Solution) plinskog kromatografa na osnovi prethodno određenih kalibracijskih krivulja. Kalibracijske krivulje napravljene su po načelu matrice. Sedam otopina različitog, ali točno poznatog sastava, sastavljenih od šest komponenti modelnoga goriva, analizirane su na plinskom kromatografu po sljedećem temperaturnom programu kolone: 5 minuta pri 30 °C, zagrijavanje do 50 °C brzinom od 40 °C min⁻¹, 13 minuta pri 50 °C, zagrijavanje do 100 °C brzinom od 40 °C min⁻¹, te 4 minute pri 100 °C. Na pojedinačnim grafičkim prikazima za svaku komponentu prikazane su dobivene vrijednosti površine ispod pika u ovisnosti o masenom udjelu komponente. Dobivene ovisnosti opisane su jednadžbom pravca koja služi za kasnije određivanje nepoznatog sastava svih otopina modelnog goriva.

3.4.2. Određivanje količine ukupnog sumpora

Količina ukupnog sumpora u realnom benzinu prije i nakon provedene ekstrakcije određena je primjenom valno disperzivne fluorescentne spektrometrije prema standardnoj metodi ISO 8754. Uzorak se pobuđuje rendgenskim zračenjem i fluorescira (emitira energiju tijekom ozračivanja) također u području valnih duljina rendgenskog zračenja. Intenzitet fluorescencije razmjeran je udjelu sumpora u uzorku. Mjerenja su provedena na fluorescentnom spektrometru rendgenskih zraka Oxford LAB-X 3000 s točnošću $\pm 0,0002$, u laboratorijima INA – Rafinerije nafte Sisak, Kontrola kvalitete.

3.4.3. Određivanje količine ukupnog dušika

Količina ukupnog dušika u realnom benzinu prije i nakon provedene ekstrakcije određena je s točnošću 0,0002 na kemiluminiscentnom spektrometru Antek Instr. 720 C prema standardnoj metodi ASTM D4629. Ugljikovodični se uzorak isparava i spaljuje. Razvijeni se dušik prevodi u NO u atmosferi bogatoj kisikom. Reakcijski se produkti odnose strujom inertnoga plina (helij ili argon) i uvode, nakon uklanjanja vode, u reakcijsku komoru gdje se u uvjetima sniženog tlaka uz dodatak ozona NO prevodi u pobuđeni NO₂^{*} koji emitira svjetlo (kemiluminiscencija) pri relaksaciji u osnovno, stabilno stanje. Svjetlosni se signal

hvata fotomultiplikatorom i prevodi u koncentraciju dušika pomoću kalibracijske krivulje. Mjerenja su provedena u laboratorijima INA – Rafinerije nafte Sisak, Kontrola kvalitete.

3.5. Ekstrakcijski eksperimenti u kvazi-trokomponentnim sustavima

Svi ekstrakcijski eksperimenti u kvazi-trokomponentnim sustavima provedeni su u laboratoriju za fizikalnu kemiju Zavoda za fizikalnu kemiju Fakulteta kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu.

3.5.1. Određivanje topljivosti ugljikovodika u eutektičnom otapalu

Za provjeru topljivosti *n*-heksana, *n*-heptana, *i*-oktana i toluena u eutektičnom otapalu pripremljene su dvokomponentne smjese ugljikovodika i ChCl-Gly 1:2 u volumnom omjeru 1:1 (10 mL + 10 mL) te miješane u termostatiranoj električnoj tresilici (GFL Shaking Incubator 3031) 24 h pri 25 °C, atmosferskom tlaku i 220 okretaja u minuti. Nakon miješanja slijedilo je 24-satno raslojavanje ravnotežnih faza pri 25 °C te odjeljivanje slojeva. Ekstraktni sloj podvrgnut je ¹H NMR-analizi kako bi se utvrdila nazočnost ili izočnost odgovarajućeg ugljikovodika u eutektičnom otapalu.

Za provjeru topljivosti piridina i tiofena u eutektičnom otapalu, u 10 mL ChCl-Gly 1:2 dodano je 10 mL dvokomponentne smjese ugljikovodika i piridina ili tiofena (u masenom omjeru 1:1). Smjese su miješane u termostatiranoj električnoj tresilici (GFL Shaking Incubator 3031) 24 h pri 25 °C, atmosferskom tlaku i 220 okretaja u minuti. Nakon miješanja slijedilo je 24-satno raslojavanje ravnotežnih faza pri 25 °C te odjeljivanje slojeva. Ekstraktni sloj podvrgnut je ¹H NMR-analizi kako bi se utvrdila nazočnost ili izočnost piridina ili tiofena u eutektičnom otapalu.

3.5.2. Određivanje maksimalne topljivosti ugljikovodika u eutektičnom otapalu

Topljivost *n*-heksana, *n*-heptana, *i*-oktana, toluena, piridina i tiofena u eutektičnom otapalu određena je titracijskom metodom [Othmer 1941] pri čemu su ravnotežni sastavi određeni gravimetrijski (vaganjem). U izvaganu staklenu bočicu od 10 mL dodana je točna masa eutektičnog otapala, ChCl-Gly ili ChCl-EG, i titrirana ugljikovodikom do prve pojave zamućenja što je dokaz prisutnosti druge faze u otopini. Iz odvaga eutektičnog otapala i topljivog ugljikovodika izračunat je maseni udio otopljenog ugljikovodika u eutektičnom otapalu.

3.5.3. Određivanje maksimalne topljivosti eutektičnog otapala u ugljikovodiku

Topljivost eutektičnih otapala kolin-klorid – glicerol i kolin-klorid – etilen-glikol u ugljikovodiku određena je titracijskom metodom [Othmer 1941] pri čemu su ravnotežni sastavi određeni gravimetrijski (vaganjem). U izvaganu staklenu bočicu od 10 mL dodana je točna masa ugljikovodika i titrirana eutektičnim otapalom do prve pojave zamućenja što je dokaz prisutnosti druge faze u otopini. Iz odvaga ugljikovodika i eutektičnog otapala izračunat je maseni udio eutektičnog otapala u dvokomponentnoj smjesi koji odgovara maksimalnoj topljivosti eutektičnog otapala u ugljikovodiku.

3.5.4. Određivanje kalibracijskih krivulja

U staklenim bočicama od 5 mL pripremljene su dvokomponentne smjese piridina ili tiofena i odgovarajućeg ugljikovodika sastava prikazanog u **Tablici 3.6.** prema ukupnoj masi otopine 3 g. Ugljikovodik je bio *n*-heksan, *n*-heptan, *i*-oktan ili toluen. Na Abbeovu refraktometru (Exacta Optech RMI) izmjerena je vrijednost indeksa loma (u triplikatu) pri temperaturi prizme refraktometra od 25 °C. Kalibracijske krivulje prikazane su kao ovisnost masenog udjela, *w*, piridina ili tiofena o srednjoj vrijednosti izmjerenog indeksa loma, *n*_D; *w*(piridin ili tiofen) = $f(n_D)$.

Tablica 3.6. Dvokomponentne smjese piridin ili tiofen – ugljikovodik.

Komponenta	w	w	w	W	W	W	w	w	w	w	w
piridin ili tiofen	1,0	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,0
ugljikovodik	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,	0,8	0,9	1,0

3.5.5. Određivanje veznih linija

Vaganjem su pripremljene kvazi-trokomponentne otopine ugljikovodika, piridina ili tiofena i eutektičnog otapala u staklenim bočicama od 10 mL s čepovima za organska otapala kako bi se ograničilo nepoželjno isparavanje komponenti i promjena sastava otopine. Mase ugljikovodika i eutektičnog otapala bile su približno jednake, dok je masa piridina ili tiofena mijenjana tako da se pokrije cijelo područje sastava, tj. da maseni udio piridina ili tiofena u smjesi bude u području 0 – 100 %. Da bi se pokrilo cijelo područje, pripremljeno je po 14 kvazi-trokomponentnih otopina za svaki sustav, prikazanih u **Tablici 3.7.** Pripremljene smjese miješane su u termostatiranoj električnoj tresilici (GFL Shaking Incubator 3031) 24 h pri 25 °C, atmosferskom tlaku i 220 okretaja u minuti. Nakon miješanja, smjese su ostavljene 24 h pri 25 °C kako bi se razdvojile ravnotežne faze. Indeks loma rafinatne faze svakog uzorka

izmjeren je Abbeovim refraktometrom u triplikatu, a potom je preko kalibracijskih krivulja njegova srednja vrijednost preračunata u masene udjele komponenata u smjesi. Sastav ekstraktne faze određen je iz bilance tvari, iz poznatog ukupnog sastava i sastava rafinatne faze, uz pretpostavku da u ekstraktnoj fazi nema otopljenih alifatskih ugljikovodika što je dokazano preliminarnim eksperimentima.

Komponenta 1	Komponenta 2	Komponenta 3	Komponenta 1	Komponenta 2	Komponenta 3
<i>n</i> -heksan	piridin	ChCl-Gly 1:1,5	<i>n</i> -heksan	tiofen	ChCl-Gly 1:1,5
<i>n</i> -heptan	piridin	ChCl-Gly 1:1,5	<i>n</i> -heptan	tiofen	ChCl-Gly 1:1,5
<i>i</i> -oktan	piridin	ChCl-Gly 1:1,5	<i>i</i> -oktan	tiofen	ChCl-Gly 1:1,5
toluen	piridin	ChCl-Gly 1:1,5	toluen	tiofen	ChCl-Gly 1:1,5
<i>n</i> -heksan	piridin	ChCl-Gly 1:2	<i>n</i> -heksan	tiofen	ChCl-Gly 1:2
<i>n</i> -heptan	piridin	ChCl-Gly 1:2	<i>n</i> -heptan	tiofen	ChCl-Gly 1:2
<i>i</i> -oktan	piridin	ChCl-Gly 1:2	<i>i</i> -oktan	tiofen	ChCl-Gly 1:2
toluen	piridin	ChCl-Gly 1:2	toluen	tiofen	ChCl-Gly 1:2
<i>n</i> -heksan	piridin	ChCl-Gly 1:3	<i>n</i> -heksan	tiofen	ChCl-Gly 1:3
<i>n</i> -heptan	piridin	ChCl-Gly 1:3	<i>n</i> -heptan	tiofen	ChCl-Gly 1:3
<i>i</i> -oktan	piridin	ChCl-Gly 1:3	<i>i</i> -oktan	tiofen	ChCl-Gly 1:3
toluen	piridin	ChCl-Gly 1:3	toluen	tiofen	ChCl-Gly 1:3
<i>n</i> -heksan	piridin	ChCl-EG 1:2	<i>n</i> -heksan	tiofen	ChCl-EG 1:2
<i>n</i> -heptan	piridin	ChCl-EG 1:2	<i>n</i> -heptan	tiofen	ChCl-EG 1:2
<i>i</i> -oktan	piridin	ChCl-EG 1:2	<i>i</i> -oktan	tiofen	ChCl-EG 1:2
toluen	piridin	ChCl-EG 1:2	toluen	tiofen	ChCl-EG 1:2
<i>n</i> -heksan	piridin	ChCl-EG 1:3	<i>n</i> -heksan	tiofen	ChCl-EG 1:3
<i>n</i> -heptan	piridin	ChCl-EG 1:3	<i>n</i> -heptan	tiofen	ChCl-EG 1:3
<i>i</i> -oktan	piridin	ChCl-EG 1:3	<i>i</i> -oktan	tiofen	ChCl-EG 1:3
toluen	piridin	ChCl-EG 1:3	toluen	tiofen	ChCl-EG 1:3
<i>n</i> -heksan	piridin	ChCl-EG 1:3,5	<i>n</i> -heksan	tiofen	ChCl-EG 1:3,5
<i>n</i> -heptan	piridin	ChCl-EG 1:3,5	<i>n</i> -heptan	tiofen	ChCl-EG 1:3,5
<i>i</i> -oktan	piridin	ChCl-EG 1:3,5	<i>i</i> -oktan	tiofen	ChCl-EG 1:3,5
toluen	piridin	ChCl-EG 1:3,5	toluen	tiofen	ChCl-EG 1:3,5

Tablica 3.7. Kombinacije kvazi-trokomponentnih sustava ugljikovodik(1) – piridin ili tiofen(2) – eutektično otapalo(3).

3.6. Ekstrakcijski eksperimenti u kvazi-sedmerokomponentnim sustavima

Ekstrakcijski eksperimenti u kvazi-sedmerokomponentnim sustavima na modelnom benzinu provedeni su u laboratoriju za termodinamiku realnih sustava Zavoda za fizikalnu kemiju Fakulteta kemijskog inženjerstva Sveučilišta u Zagrebu. Svi ekstrakcijski eksperimenti provedeni su na modelnom gorivu, pri različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin), karakterističnim za određene eksperimente, kako se opisuje dalje u tekstu. Kao laboratorijski ekstraktor za sve ekstrakcijske eksperimente opisane u ovom odjeljku poslužila je staklena bočica od 50 mL s čepom za organska otapala kako bi se maksimalno spriječilo isparavanje komponenata modelnog benzina. Miješanje se provodilo na laboratorijskoj magnetskoj mješalici s grijanjem (IKA C-MAG HS 7) pri vremenu ekstrakcije od 150 minuta koje je određeno preliminarnim eksperimentima. Brzina od 750 okretaja u minuti prilagođena je eksperimentima u najviskoznijem eutektičnom otapalu. Ta je brzina bila dovoljna da se – naizgled – ostvari potpuno dispergiranje faza. Nakon provedene ekstrakcije, ravnotežne faze ostavljene su 24 h pri 25 °C i atmosferskom tlaku da se razdvoje. Maseni udio svih komponenti modelnog benzina u rafinatnoj fazi (gornji sloj) određen je snimanjem kromatografskog spektra uzorka rafinatne faze na plinskom kromatografu GC-2010-Shimadzu.

Maseni udio komponenata u ekstraktnoj fazi (donji sloj) potom je izračunat iz bilance tvari na sljedeći način. Komponente su obrojčene prema: *n*-heksan – 1, *n*-heptan – 2, *i*-oktan – 3, toluen – 4, tiofen – 5, piridin – 6, DES – 7. Nije opažena prisutnost DES-a u rafinatnoj fazi, pa je maseni udio postavljen na nisku vrijednost, $w_7^R \le 1 \times 10^{-6}$. Pretpostavljeno je da ekstraktna faza sadrži praktički sav DES te da ne sadrži alifatske ugljikovodike, odnosno maseni udio alifatskih ugljikovodika u ekstraktnoj fazi postavljen je na $w_i^E = 1 \times 10^{-6}$. Maseni udio rafinatne faze, Ψ^R , izračunat je prema:

$$\Psi^{\rm R} = \frac{w_i^{\rm F} - w_i^{\rm E}}{w_i^{\rm R} - w_i^{\rm E}}, \qquad (3.1)$$

gdje *i* označava komponentu, a gornji indeksi F, E, R ukupnu smjesu, ekstraktnu, odnosno rafinatnu fazu. Za svaki se ugljikovodik dobije svoja vrijednost Ψ^{R} ; odgovarajuća vrijednost za cijeli sustav dobije se kao srednja vrijednost triju određenih pojedinačnih vrijednosti. Nakon toga se maseni udjeli ekstraktabilnih komponenata (toluen, tiofen i piridin) i DES-a izračunavaju prema:

$$w_{i}^{\rm E} = \frac{w_{i}^{\rm F} - \Psi^{\rm R} w_{i}^{\rm R}}{1 - \Psi^{\rm R}}.$$
(3.2)

Maseni udjeli obiju faza zatim su normalizirani tako da im zbroj iznosi 1.

3.6.1. Određivanje vremena ekstrakcije

Izravnim vaganjem potrebnih masa modelnog benzina i eutektičnog otapala u bočice od 10 mL pripremljene su kvazi-sedmerokomponentne otopine masenih omjera *m*(eutektično

otapalo) / m(modelni benzin) od 1:4, 1:2, 3:4 i 1:1. Ekstrakcija je provedena u jednom stupnju u trajanju od 10 minuta, nakon čega je sastav faza određen prema postupku opisanom u odjeljku 3.6. Ekstrakcija je zatim nastavljena tijekom idućih 10 minuta, ponovo je određen sastav faza i tako redom do postizanja stalnog sastava faza, odnosno stalne ekstrakcijske djelotvornosti. Eksperimenti su provedeni sa svim pripremljenim eutektičnim otapalima.

3.6.2. Jednostupanjska ekstrakcija – utjecaj masenog omjera m(eutektično otapalo) / m(modelni benzin) na djelotvornost ekstrakcije

Izravnim vaganjem potrebnih masa modelnog benzina i eutektičnog otapala u laboratorijski ekstraktor pripremljene su kvazi-sedmerokomponentne otopine svih ispitivanih masenih omjera m(eutektično otapalo) / m(modelni benzin) od 1:4, 1:2, 3:4 i 1:1. Prema postupku opisanom u odjeljku 3.6., sastav obiju faza određen je nakon provedenog jednog stupnja ekstrakcije. Eksperimenti su provedeni sa svim pripremljenim eutektičnim otapalima.

3.6.3. Višestupanjska ekstrakcija - određivanje maksimalne djelotvornosti

Kvazi-sedmerokomponentne otopine masenog omjera m(eutektično otapalo) / m(modelni benzin) od 1:4 pripremljene su izravnim vaganjem potrebnih masa obiju komponenata u laboratorijski ekstraktor. Ekstrakcije su provođene u više ekstrakcijskih stupnjeva sve dok nije postignuta jednaka vrijednost djelotvornosti ekstrakcije kao i s najvećim masenim omjerom m(eutektično otapalo) / m(modelni benzin) od 1:1 u jednom stupnju. Ravnotežni sastav faza određivan je nakon svakog ekstrakcijskog stupnja. Ekstrakcije su provedene prema postupku opisanom u odjeljku 3.6., pri čemu su iza svakog ekstrakcijskog stupnja faze raslojene i odvojene te je rafinatna faza (gornji sloj, modelni benzin) uvedena u sljedeći ekstrakcijski stupanj. Rafinatnoj fazi pritom je dodana potrebna masa svježeg eutektičnog otapala tako da maseni omjer m(eutektično otapalo) / m(modelni benzin) bude 1:4. Ti su eksperimenti provedeni s eutektičnim otapalima ChCl-Gly 1:3 i ChCl-EG 1:3,5.

3.6.4. Višestupanjska ekstrakcija – određivanje ekstrakcijskog kapaciteta eutektičnog otapala

U laboratorijski ekstraktor izravno su izvagane potrebne mase eutektičnog otapala i modelnog benzina za maseni omjer *m*(eutektično otapalo) / *m*(modelni benzin) od 1:1. Ekstrakcija se provodila u četiri ekstrakcijska stupnja prema postupku opisanom u odjeljku 3.6. Nakon svakog ekstrakcijskog stupnja faze su razdvojene te je određen njihov sastav.

Ekstraktna faza (donji sloj, eutektično otapalo) uvedena je u sljedeći ekstrakcijski stupanj bez prethodnog pročišćavanja tako da joj je dodana potrebna masa svježeg modelnog benzina u masenom omjeru m(eutektično otapalo) / m(modelni benzin) od 1:1. Eksperimenti su provedeni sa svim pripremljenim eutektičnim otapalima.

3.6.5. Višestupanjska ekstrakcija – regeneracija eutektičnog otapala

Mase eutektičnog otapala i modelnog benzina potrebne za maseni omjer m(eutektično otapalo) / m(modelni benzin) od 1:1 izvagane su izravno u laboratoijski ekstraktor te je provedena ekstrakcija u četiri stupnja po postupku iz odjeljka 3.6. Između svakog ekstrakcijskog stupnja odredio se sastav ravnotežnih faza, a ekstraktna faza (donji sloj, eutektično otapalo) pročišćavana je nakon njihova razdvajanja. Eutektično otapalo prebačeno je u tikvicu okrugla dna i uparavano oko 2 h pri tlaku 250 mbar i temperaturi 70 °C na rotacijskom uparivaču Heidolph Laborota 4000 povezanom s termostatiranom vodenom kupelji Heizbad WB i vakuumskom pumpom. Nakon prvog ekstrakcijskog stupnja i uparavanja ekstrahiranih komponenti, ¹H NMR-tehnikom provjerena je čistoća eutektičnog otapala. Pročišćenom eutektičnom otapalu dodana je potrebna masa svježeg modelnog benzina za maseni omjer m(eutektično otapalo) / m(modelni benzin) od 1:1. Eksperimenti su provedeni sa svim pripremljenim eutektičnim otapalima.

3.7. Ekstrakcijski eksperimenti s realnim FCC-benzinom

Ekstrakcijski eksperimenti s realnim FCC-benzinom provedeni su kao jednostupanjske ekstrakcije s masenim omjerom *m*(eutektično otapalo) / *m*(realni benzin) od 1:4. Potrebne mase eutektičnog otapala i realnog benzina izvagane su izravno u bočicu od 50 mL s čepom za organska otapala. Miješanje je provedeno na magnetskoj miješalici (IKA C-MAG HS 7) tijekom 150 min pri 750 okretaja u minuti, 25 °C i atmosferskom tlaku. Nakon miješanja, smjesa je ostavljena 24 h pri 25 °C i atmosferskom tlaku da se razdvoje ravnotežne faze. U uzorcima realnog benzina prije i nakon ekstrakcije (rafinatna faza, gornji sloj) određena je količina ukupnog S i količina ukupnog N prema analitičkim metodama opisanim u odjeljcima 3.4.2. i 3.4.3. Ekstrakcijski eksperimenti s realnim benzinom provedeni su sa svim pripremljenim eutektičnim otapalima.

REZULTATI I RASPRAVA

4. REZULTATI I RASPRAVA

4.1. Materijali

4.1.1. Modelni benzin

U literaturi se za istraživanje ekstrakcijskog pročišćavanja goriva upotrebljavaju različita modelna goriva, ovisno o vrsti rafinerijskog produkta koji se modelira. U ovom je istraživanju za modelno gorivo odabran modelni benzin sastava preuzetog iz literature, [Casal 2010] koji oponaša procesnu struju FCC-benzina koja služi za namješavanje komercijalnog motornog benzina. [ASTM] [Grinbaum 2006] Ključne komponente modelnog benzina koje su ciljano uklanjane ekstrakcijom eutektičnim otapalima su piridin kao predstavnik dušikovih spojeva u benzinu, tiofen kao predstavnik sumporovih spojeva u benzinu te toluen kao predstavnik aromatskih spojeva u benzinu. Najveću koncentraciju u realnom FCC-benzinu imaju alifatski ugljikovodici (~60 %), koje u modelnom gorivu predstavljaju *n*-heksan, *n*-heptan i *i*-oktan.

Ekstrakcija kapljevina-kapljevina za uklanjanje sumporovih, dušikovih ili aromatskih spojeva iz ugljikovodičnih smjesa pomoću eutektičnih otapala u literaturi se istražuje na jednostavnim modelnim otopinama. Najčešće je riječ o dvokomponentnim sustavima gdje je jedna komponenta ključna, a druga potpuno netopljiva u eutektičnom otapalu. [Mulyono 2014] [Kareem 2012a] [Li 2013] Prednost odabira višekomponentne modelne otopine u odnosu na dvokomponentnu je mogućnost istraživanja interakcija među ključnim komponentama na njihovu topljivost u eutektičnom otapalu.

4.1.2. Realni benzin

Realni benzin upotrijebljen u ovom istraživanju je frakcija FCC-benzina već obrađena hidrodesulfurizacijskim procesom te kao takva prikladna za laboratorijska istraživanja. Naime, neobrađena goriva sadrže previsoke koncentracije štetnih spojeva te se radi preventivne zaštite ljudskog zdravlja laboratorijski u pravilu ne istražuju bez poduzimanja posebnih zaštitnih mjera.

4.1.3. Niskotemperaturna eutektična otapala

Ideja je ovoga rada zamjena klasičnih, organskih otapala koja se u industriji koriste kao selektivna ekstrakcijska otapala ekološki prihvatljivijim, "zelenim" otapalima. Zašto? Razlog je taj što su klasična organska otapala lako hlapljiva, zapaljiva i toksična. Osim kriterija netoksičnosti prema čovjeku i okolišu, otapalo treba selektivno otapati ključne komponente i istodobno biti nemješljivo ili vrlo slabo mješljivo s ostalim ugljikovodičnim komponentama goriva. Uz selektivnost, bitan je i ekstrakcijski kapacitet otapala. Zahtijeva se visok kapacitet ekstrakcije ključnih komponenata. Također, kriterij bitan s ekonomskog gledišta jest mogućnost ponovne uporabe ekstrakcijskog otapala kao i njegova jednostavna priprema. Prema svim navedenim kriterijima izbor optimalnog ekstrakcijskog otapala može biti zahtjevan i kompliciran. Niskotemperaturna eutektična otapala na osnovi kolin-klorida (ChCl) i glicerola (Gly) ili etilen-glikola (EG) odabrana su za ovo istraživanje prvenstveno jer zadovoljavaju kriterij netoksičnosti. Radošević i sur. [Radošević 2015] ispitali su in vitro toksičnost ChCl-Gly 1:2 na ribljim i ljudskim stanicama, fitotoksičnost pomoću eksperimenata s klijanjem pšenice i biorazgradivost pomoću mikroorganizama uobičajeno prisutnih u otpadnim vodama, a rezultati su pokazali da je ispitano eutektično otapalo netoksično i biorazgradivo i stoga se može primjenjivati u području zelene tehnologije. ChCl-EG 1:2 u jednostavnom i brzom testu za toksičnost nije inhibirao rast četiri vrste bakterija čime je dokazana njegova netoksičnost, [Zhao 2015] a vrlo dobra biorazgradivost (81,9 %) postignuta je klasičnim testom u zatvorenoj boci. Općenito, dobra biorazgradivost niskotemperaturnih eutektičnih otapala važna je radi smanjenja njihova štetnog utjecaja na okoliš. Ostala važna svojstva izabranih eutektičnih otapala ispitana su eksperimentalno.

4.2. Karakterizacija niskotemperaturnih eutektičnih otapala

Za potencijalno korištenje DES-ova u različitim industrijskim i laboratorijskim procesima važno je poznavati njihova fizikalna svojstva. Od svih fizičkih svojstava izmjerenih u ovom radu, gustoća i viskoznost su od najveće važnosti za ekstrakciju. Razdvajanje faza nakon ekstrakcije bit će učinkovitije što je razlika u gustoći faza veća. To znači da će razdvajanje biti brže s DES-om veće gustoće. Viskoznost faza određuje režim miješanja DES-a i goriva, modelnoga ili realnoga. Općenito, miješanje je lakše s manje viskoznim DES-om, što rezultira boljim međufaznim kontaktom zbog boljeg dispergiranja. S druge strane, bolje dispergiranje povezano je s bržim prijenosom tvari dok se sustav približava faznoj ravnoteži. Kako svojstva kapljevitih faza ne ovise znatno o tlaku, najvažniji parametar procesa separacije kapljevina-kapljevina je temperatura sustava. Postizanje odgovarajuće temperature ovisi o dovedenoj ili odvedenoj toplini, tako da je važno poznavati toplinska svojstva ekstrakcijskih sredstava. Što se tiče indeksa loma, on nije izravno povezan s ekstrakcijskim procesom u primjeni. Međutim, u rijetkim slučajevima kad se indeks loma rafinatne i ekstraktne faze izjednači, postaje nemoguće vizualno odrediti prisutnost dviju faza

u sustavu. Poznavanje električne provodnosti je važno u svakoj primjeni koja uključuje električnu struju: najizravniji primjer vjerojatno je pročišćavanje ekstraktanta elektrokoagulacijom.

4.2.1. Gustoća

Uspješnost razdvajanja slojeva ravnotežnih faza nakon ekstrakcije određena je razlikom gustoće između rafinatne i ekstraktne faze koja treba iznositi barem 0,05 g mL⁻¹. Stoga je poznavanje gustoće eutektičnog otapala bitno već u startu, kod odabira otapala za neki ekstrakcijski proces.

Gustoća svih ispitivanih eutektičnih otapala na osnovi kolin-korida i glicerola u ispitivanom temperaturnom rasponu od 15 – 55 °C linearno se smanjuje s porastom temperature, što prikazuje **Slika 4.1**. Gustoća raste s porastom molarnog udjela glicerola u eutektičnom otapalu. Slične vrijednosti gustoće za ChCl-Gly 1:2 i ChCl-Gly 1:3 objavili su Yadav [Yadav 2014] i Singh [Singh 2018]. **Slika 4.2.** prikazuje također linearno smanjenje gustoće s porastom temperature u rasponu od 15 – 55 °C za skupinu eutektičnih otapala na bazi kolin-klorida i etilen-glikola. Međutim, kod tih eutektičnih otapala, gustoća se smanjuje s porastom udjela etilen-glikola u eutektičnom otapalu. Slične vrijednosti gustoća za ChCl-EG 1:2 mogu se pronaći i kod drugih autora. [Shahbaz 2011] [Leron 2012] [Troter 2017] Sustav ChCl-Gly ima veću gustoću od sustava ChCl-EG, pa se može pretpostaviti da će se s njime ostvariti brže raslojavanje faza. Temperaturna ovisnost gustoće svih ispitivanih eutektičnih otapala može se opisati jednadžbom pravca:

$$\rho / (g \operatorname{cm}^{-3}) = A \cdot (T / {}^{\circ} C) + B$$
(4.1)

gdje je ρ gustoća (g cm⁻³), a *T* temperatura (°C). Parametri empirijskoga modela *A* i *B* prikazani su u **Tablici 4.1**.

Slika 4.1. Ovisnost gustoće ChCl-Gly 1:1,5, ChCl-Gly 1:2 i ChCl-Gly 1:3 o temperaturi.

Slika 4.2. Ovisnost gustoće ChCl-EG 1:2, ChCl-EG 1:3 i ChCl-EG 1:3,5 o temperaturi.
Eutektično otapalo	A	В	R^2
ChCl-Gly 1:1,5	$-5,43 \cdot 10^{-4}$	1,19	0,9999
ChCl-Gly 1:2	$-5,61 \cdot 10^{-4}$	1,20	0,9999
ChCl-Gly 1:3	$-5,71 \cdot 10^{-4}$	1,22	0,9999
ChCl-EG 1:2	$-5,66 \cdot 10^{-4}$	1,13	0,9998
ChCl-EG 1:3	$-5,86 \cdot 10^{-4}$	1,13	0,9999
ChCl-EG 1:3,5	$-5,90 \cdot 10^{-4}$	1,12	0,9993

Tablica 4.1. Parametri *A* i *B* empirijskoga modela ovisnosti gustoće o temperaturi, regresijski koeficijent R^2 .

4.2.2. Dinamička viskoznost

U prethodnim istraživanjima, Arrheniusova jednadžba, bilo u izvornom obliku ili u obliku ovisnosti logaritma dinamičke viskoznosti o inverznoj temperaturi, pokazala se prikladnom za opis temperaturne ovisnosti dinamičke viskoznosti kod sličnih sustava. [Abbott 2011] [Jibril 2014] [Abbott 2007b]

$$\ln(\eta / \text{mPa s}) = B + \frac{A}{(T / ^{\circ}\text{C})}$$
(4.2)

pri čemu su $A = E_{\eta}/R$ i $B = \ln \eta_0$, gdje η označava dinamičku viskoznost, η_0 je predeksponencijalna konstanta, E_{η} je (negativna) aktivacijska energija viskoznog toka, R je opća plinska konstanta i T je temperatura. Parametri modela η_0 i E_{η} prvenstveno ovise o prirodi HBD-komponente eutektičnog otapala. Ovisnost dinamičke viskoznosti o temperaturi prema opisanom modelu, prikazana je na **Slici 4.3.** za eutektična otapala na osnovi kolinklorida i glicerola, a na **Slici 4.4.** za eutektična otapala na osnovi kolin-klorida i etilen-glikola. Parametri modela svih ispitanih eutektičnih otapala prikazani su u **Tablici 4.2.**

Slika 4.3. Ovisnost dinamičke viskoznosti ChCl-Gly 1:1,5, ChCl-Gly 1:2 i ChCl-Gly 1:3 o temperaturi.

Slika 4.4. Ovisnost dinamičke viskoznosti ChCl-EG 1:2, ChCl-EG 1:3 i ChCl-EG 1:3,5 o temperaturi.

A	В	R^2
5722,071	-20,246	0,9999
5484,266	-19,380	0,9986
6241,381	-22,025	0,9957
4277,025	-17,396	0,9704
3582,173	-15,573	0,9970
3495,909	-15,406	0,9971
	<i>A</i> 5722,071 5484,266 6241,381 4277,025 3582,173 3495,909	A B 5722,071 -20,246 5484,266 -19,380 6241,381 -22,025 4277,025 -17,396 3582,173 -15,573 3495,909 -15,406

Tablica 4.2. Parametri modela ovisnosti dinamičke viskoznosti o temperature A i B, regresijski koeficijent R^2 .

Viskoznost, kao i gustoća, ovisi o strukturi eutektičnog otapala, tj. o vrsti i kombinaciji HBA i HBD-komponenti koje tvore eutektično otapalo. Prema dobivenim rezultatima vidi se da smjese kolin-klorida i glicerola daju viskoznija eutektična otapala u odnosu na smjese kolin-klorida i etilen-glikola. Pri 25 °C viskoznosti sustava ChCl-Gly nalaze se u rasponu 0,3163 – 0,3690 mPa s, dok su za sustav ChCl-EG mnogo manje, 0,0249 – 0,0417 mPa s. Velika viskoznost je značajka eutektičnih otapala koja nije poželjna s gledišta ekstrakcijske primjene. Zhang i sur. veliku viskoznost pripisuju prisutnosti razgranate mreže vodikovih veza među molekulama, što rezultira slabijom pokretljivošću slobodnih vrsta unutar eutektičnog otapala. [Zhang 2012] S obzirom na to da ekstrakcijski procesi zahtijevaju odabir otapala niže viskoznosti, ChCl-Gly molarnog omjera 1:3 može se odabrati kao poželjno otapalo iz grupe eutektičnih otapala na osnovi glicerola jer pokazuje najnižu vrijednost viskoznosti pri 25 °C (0,3163 mPa s). U usporedbi s prethodno objavljenim rezultatima za ChCl-Gly 1:2, slične vrijednosti viskoznosti dobili su Abbott [Abbott 2007b] i Yadav [Yadav 2014]. U skupini eutektičnih otapala na osnovi etilen-glikola, najnižu vrijednost viskoznosti pri 25 °C (0,0249 mPa s) ima ChCl-EG 1:3,5, pa se u toj skupini otapala navedeni molarni omjer kolin-korida i etilen-glikola u odnosu na druge ispitane omjere smatra poželjnijim za ekstrakcijski postupak. Izmjerene vrijednosti za ChCl-EG 1:2 dobro se slažu s podatcima što su ih objavili Mjalli i Abdel-Jabbar. [Mjalli 2014]

Uspoređujući vrijednosti viskoznosti u obje skupine otapala, sustav ChCl-EG postiže niže vrijednosti nego sustav ChCl-Gly. Osim toga, sustav ChCl-EG postiže niže vrijednosti viskoznosti i u usporedbi sa sustavom ChCl-Gly i podatcima koje su objavili Singh i sur. [Singh 2018]. Prema navedenom, sustav ChCl-EG općenito se može smatrati boljim ekstrakcijskim sredstvom u usporedbi sa sustavom ChCl-Gly.

4.2.3. Indeks loma

Slika 4.5. pokazuje linearno smanjenje vrijednosti indeksa loma s povišenjem temperature za sva ispitana eutektična otapala u sustavu ChCl-Gly. Indeks loma ChCl-Gly 1:2 pri 25 °C iznosi 1,4838 što je slično vrijednosti 1,48675 objavljenoj u radu Lerona i sur. [Leron 2012a] I Troter je objavio vrijednost za ChCl-Gly 1:2 veću od 1,48. [Troter 2017] Linearno smanjenje vrijednosti indeksa loma s temperaturom uočeno je i u sustavu ChCl-EG kod svih ispitanih eutektičnih otapala, što je prikazano na Slici 4.6. Do smanjenja indeksa loma dolazi i povećanjem udjela etilen-glikola u eutektičnom otapalu. Pregledom literature pronađeno je slaganje izmjerenih podataka za ChCl-EG 1:2 pri 25 °C (1,4680) s podatcima koje su objavili Leron i sur. (1,46823), [Leron 2012a] dok je vrijednost u radu Trotera i sur. mnogo veća (> 1,48). [Troter 2017] Temperaturna ovisnost indeksa loma eutektičnih otapala oba sustava, ChCl-Gly i ChCl-EG, opisana je jednadžbom pravca:

$$n_D = A \cdot \left(T \,/\,^{\circ} \mathbf{C} \right) + B \tag{4.3}$$

gdje je n_D indeks loma (natrijeve D-linije), *T* je temperatura (°C), *A* i *B* su parametri modela empirijskoga modela prikazani u **Tablici 4.3**.

Tablica 4.3. Parametri modela ovisnosti indeksa loma o temperature A i B, regresijski koeficijent R^2 .

Eutektično otapalo	A	В	R^2
ChCl-Gly 1:1,5	- 1,34·10 ⁻⁴	1,4872	0,9850
ChCl-Gly 1:2	- 1,68 · 10 ⁻⁴	1,4881	0,9989
ChCl-Gly 1:3	-1,89·10 ⁻⁴	1,4845	0,9928
ChCl-EG 1:2	-1,40·10 ⁻⁴	1,4716	0,9951
ChCl-EG 1:3	-1,64·10 ⁻⁴	1,4641	0,9915
ChCl-EG 1:3,5	-1,53·10 ⁻⁴	1,4609	0,9989

Slika 4.5. Ovisnost indeksa loma ChCl-Gly 1:1,5, ChCl-Gly 1:2 i ChCl-Gly 1:3 o temperaturi.

Slika 4.6. Ovisnost indeksa loma ChCl-EG 1:2, ChCl-EG 1:3 i ChCl-EG 1:3,5 o temperaturi.

4.2.4. Električna provodnost

Porast električne provodnosti s temperaturom u temperaturnom rasponu 15 - 55 °C za sustav ChCl-Gly pri svim ispitanim molarnim omjerima prikazan je na **Slici 4.7**. Vrijednosti električne provodnosti nalaze se u nizu: ChCl-Gly 1:1,5 > ChCl-Gly 1:2 > ChCl-Gly 1:3, a opaženi niz odgovara ionskoj prirodi kolin-klorida. Izmjerene vrijednosti podudaraju se s prijašnjim objavljenim podatcima o električnoj provodnosti za ChCl-Gly 1:2 pri 25 °C koje se nalaze u intervalu 0,985 – 1,749 mS cm⁻¹. [Abbott 2011] [Ghareh 2013] [AlOmar 2016]

Na **Slici 4.8.** prikazana je funkcijska ovisnost električne provodnosti sustava ChCl-EG pri svim ispitanim molarnim omjerima i može se uočiti porast električne provodnosti s porastom temperature kao i kod sustava ChCl-Gly. Zhao i sur. izmjerili su provodnost ChCl-EG 1:2 pri 30 °C od 9730 μ S cm⁻¹ što se nalazi u rasponu vrijednosti mjerenja u ovom radu. [Zhao 2015] Za obje skupine otapala funkcijska ovisnost može se dobro opisati kvadratnom jednadžbom:

$$\kappa / (\mathrm{mS}\,\mathrm{cm}^{-1}) = A \cdot (T / \,^{\circ}\mathrm{C})^{2} + B \cdot (T / \,^{\circ}\mathrm{C}) + C, \qquad (4.4)$$

gdje su κ električna provodnost (mS cm⁻¹), a *T* temperatura (°C). Parametri modela *A*, *B* i *C* prikazani su u **Tablici 4.4**.

Slika 4.7. Ovisnost električne provodnosti ChCl-Gly 1:1,5, ChCl-Gly 1:2 i ChCl-Gly 1:3 o temperaturi.

Slika 4.8. Ovisnost električne provodnosti ChCl-EG 1:2, ChCl-EG 1:3 i ChCl-EG 1:3,5 o temperaturi.

A	В	С	R^2
0,0039	-0,0200	0,9566	0,9999
0,0008	0,0173	0,2163	0,9969
0,0038	-0,1065	1,2660	0,9979
0,0044	0,1650	1,4526	0,9986
0,0050	0,0914	3,9153	0,9998
0,0044	0,1636	3,1229	0,9998
	A 0,0039 0,0008 0,0038 0,0044 0,0050 0,0044	$\begin{array}{c ccc} A & B \\ \hline 0,0039 & -0,0200 \\ 0,0008 & 0,0173 \\ 0,0038 & -0,1065 \\ 0,0044 & 0,1650 \\ 0,0050 & 0,0914 \\ 0,0044 & 0,1636 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Tablica 4.4. Parametri modela ovisnosti električne provodnosti o temperaturi, regresijski koeficijent R^2 .

Poznata je činjenica da eutektična otapala imaju dobru električnu provodnost kao posljedicu niske viskoznosti, zbog velike mobilnosti vrsta koje nose naboj u eutektičnom otapalu. [Abbott 2007b] [Abbott 2004] Uspoređujući izmjerene električne provodnosti sustava ChCl-Gly i ChCl-EG, pri 25 °C, viskoznija eutektična otapala, tj. sustav ChCl-Gly, pokazuju niže vrijednosti električne provodnosti $(1,12 - 2,93 \text{ mS cm}^{-1})$ u odnosu na manje viskozna otapala tj. sustav ChCl-EG (8,61 – 9,99 mS cm⁻¹). Isto ponašanje potvrđuju i podatci za cijelo temperaturno područje 15 – 55 °C: vrijednosti električne provodnosti viskoznijih eutektičnih otapala variraju u intervalu 0,473 – 11,66 mS cm⁻¹, dok veću električnu provodnost (4,79 – 25,3 mS cm⁻¹) imaju manje viskozna eutektična otapala.

4.2.5. Toplinska svojstva

Toplinska su svojstva važna za bilo koji separacijski proces, uključujući ekstrakciju, budući da određuju količinu topline koju treba dovesti sustavu ili odvesti iz njega da bi se doveo do željene temperature, kao i s tim povezanu brzinu prijenosa topline.

Eksperimentalni podatci o toplinskoj provodnosti, temperaturnoj difuzivnosti i toplinskom kapacitetu pri temperaturi 25 °C i atmosferskom tlaku za ChCl-Gly 1:1,5, ChCl-Gly 1:2 i ChCl-Gly 1:3 prikazani su u **Tablici 4.5**. Vrijednosti toplinske vodljivosti nalaze se u rasponu od 0,230 – 0,245 W (m K)⁻¹, što je niže u usporedbi s čistim glicerolom $[0,270 \text{ W (m K)}^{-1}]$ [DiracDelta] i smanjuju se sa smanjenjem udjela glicerola u eutektičnom otapalu. Slično je i s toplinskim kapacitetom. Vrijednosti toplinskog kapaciteta čistog glicerola iznosi 2,4 J (g K)⁻¹. [DiracDelta] Vrijednosti temperaturne difuzivnosti slične su za sva ispitivana eutektična otapala na osnovi kolin-klorida i glicerola.

Ista tablica daje i podatke za ChCl-EG 1:2, ChCl-EG 1:3 i ChCl-EG 1:3,5. S povećanjem udjela etilen-glikola u eutektičnom otapalu uočeno je povećanje toplinske provodnosti i temperaturne difuzivnosti, dok se toplinski kapacitet smanjuje. Pregledom literature uočeno je da su podatci o toplinskim svojstvima ChCl-EG rijetki. Leron i Li [Leron 2012b] objavili su vrijednost toplinskog kapaciteta ChCl-EG 1:2 pri 30 °C od 190,8 J mol⁻¹ K⁻¹; vrijednost je gotovo dvostruko veća od vrijednosti u ovom radu izmjerene pri 25 °C. Razlog može biti primjena drugog mjernog instrumenta. Naime, u mjerenjima opisanim u ovom radu primijenjen je uređaj koji služi prvenstveno za određivanje toplinske provodnosti i može se pretpostaviti da je manje pouzdan u usporedbi s diferencijalnim pretražim kalorimetrom koji su koristili Leron i Li. Toplinska provodnost ChCl-EG 1:3 pri 25 °C prema Yan et al. [Yan 2017] iznosi 0,195 W mol⁻¹ K⁻¹, što je nešto manje od vrijednosti izmjerene u ovom radu.

Tablica 4.5. Toplinska svojstva: toplinska provodnost λ , temperaturna difuzivnost *a* i specifični toplinski kapacitet pri stalnom tlaku, c_p , eutektičnih otapala pri 25 °C i atmosferskom tlaku.

Eutektično otapalo	$\lambda / [W (m K)^{-1}]$	$a / (\text{mm}^2 \text{ s}^{-1})$	$c_p / [J (g K)^{-1}]$
ChCl-Gly 1:1,5	0,23105	0,10618	1,8321
ChCl-Gly 1:2	0,23204	0,09716	2,0101
ChCl-Gly 1:3	0,24100	0,09749	2,0567
ChCl-EG 1:2	0,22710	0,16744	1,2046
ChCl-EG 1:3	0,23085	0,19502	1,0547
ChCl-EG 1:3,5	0,23851	0,21590	0,9851

4.2.6. ¹H NMR-spektri čistih eutektičnih otapala

Na **Slikama 4.9. (a), (b)** i **(c)** prikazani su ¹H NMR-spektri čistih eutektičnih otapala sustava ChCl-Gly, a na **Slikama 4.10. (a), (b)** i **(c)** prikazani su ¹H NMR-spektri čistih eutektičnih otapala sustava ChCl-EG. Oni u ovom doktorskom radu služe isključivo za usporedbu s ¹H NMR-spektrima pročišćenih eutektičnih otapala radi određivanja čistoće regeneriranih eutektičnih otapala.

4.3. Sastav modelnog benzina

Slika 4.11. prikazuje kromatogram modelnog benzina kao dio metode posebno razvijene u ovom istraživanju za određivanje sastava modelnog benzina i rafinatne faze nakon ekstrakcije. Na kromatogramu se jasno vidi šest karakterističnih kromatografskih pikova koji odgovaraju komponentama modelnog benzina, po redoslijedu izlaska:

1.	$t_{\rm R} = 9,863$	<i>n</i> -heksan
2.	$t_{\rm R} = 16,318$	<i>i</i> -oktan
3.	$t_{\rm R} = 16,944$	tiofen
4.	$t_{\rm R} = 17,506$	<i>n</i> -heptan
5.	$t_{\rm R} = 22,694$	toluen
6.	$t_{\rm R} = 23,141$	piridin.

Softverski dio programa GC Solution iz vrijednosti površine ispod pika preko jednadžbe kalibracijske krivulje izračunava maseni udio komponente u šesterokomponentnoj otopini.

Slika 4.11. Plinski kromatogram modelnog benzina.

4.4. Ekstrakcijski eksperimenti

4.4.1. Topljivost ugljikovodika u eutektičnom otapalu

Prije glavnih ekstrakcijskih eksperimenata trebalo je provjeriti jesu li eutektična otapala uopće prikladna za ekstrakciju ključnih komponenata iz modelnog benzina. To znači da bi alifatske komponente modelnog benzina (*n*-heksan, *n*-heptan, *i*-oktan) i aromatska komponenta trebale biti potpuno ili gotovo potpuno netopljive u eutektičnom otapalu, a ključne bi komponente, tiofen i piridin, trebale biti što topljivije u eutektičnom otapalu. Jedino bi tada imalo smisla upotrebljavati eutektično otapalo kao ekstrakcijsko sredstvo za planirano istraživanje, s obzirom na cilj istraživanja: uklanjanje piridina i tiofena, kao predstavnika štetnih komponenata, iz modelnog benzina. ¹H NMR-spektri prikazuju sastav eutektičnog otapala ChCl-Gly 1:2 nakon miješanja s *n*-heksanom (**Slika 4.12.a**), *n*-heptanom (**Slika 4.12.b**), *i*-oktanom (**Slika 4.12.c**) i toluenom (**Slika 4.12.d**). Iz spektara je vidljivo da *n*-heksan, *n*-heptan i *i*-oktan uopće nisu topljivi u eutektičnom otapalu, dok se kod toluena naziru minimalni pikovi karakteristični za toluen (2,34 i 7,0 – 7,38 ppm), ali tek kod maksimalnog rastezanja ordinate spektra (**Slika 4.13**.). Može se zaključiti da se topljivost toluena u eutektičnom otapalu s praktičnog gledišta može zanemariti.

Slika 4.12. ¹H NMR spektri ChCl-Gly 1:2 nakon miješanja s (a) *n*-heksanom (a), (b) *n*-heptanom, (c) *i*-oktanom (c) i (d) toluenom; vertikalna skala 0,05.

Slika 4.13. ¹H NMR-spektar ChCl-Gly 1:2 nakon miješanja s toluenom, povećanje spektra po vertikalnoj skali >>1,00.

4.4.2. Maksimalna topljivost ugljikovodika u eutektičnom otapalu

Pri titraciji DES-ova s *n*-heksanom, *n*-heptanom, *i*-oktanom i toluenom po Othmerovoj metodi, pojava zamućenja uočena je već s prvom dodanom kapi tijekom titracije čime je ponovno potvrđena netopljivost alifatskih komponenti modelnog benzina u eutektičnom otapalu, što je i razumljivo uzimajući u obzir nepolarnost alifatskih komponenti u odnosu na izrazitu polarnost eutektičnih otapala. Prema tim eksperimentima, toluen je potpuno netopljiv u otapalu. Međutim, u odjeljku 4.4.1. gdje su dani rezultati preliminarne provjere topljivosti komponenti modelnog benzina, raspravljeno je pojavljivanje pikova karakterističnih za toluen u ¹H NMR-spektru. Kako je u eksperimentima koji su rezultirali ¹H NMR-spektrima količina toluena pri miješanju s eutektičnim otapalom bila znatno veća, a vrijeme miješanja 24 h, treba dopustiti mogućnost da je Othmerova metoda kinetički ograničena, odnosno da treba vremena da se prva dodana kap toluena otopi u eutektičnom otapalu.

Titracije s piridinom i tiofenom pokazale su topljivost obiju komponenata u eutektičnom otapalu. Na osnovi eksperimenata određene su njihove maksimalne topljivosti izražene preko masenih udjela u dvokomponentnoj smjesi piridin/tiofen – eutektično otapalo, koje su prikazane u **Tablici 4.6.** Iz prikazanih rezultata vidljiva je znatno veća topljivost

piridina nego tiofena u svim eutektičnim otapalima, što odmah ukazuje na veću prikladnost ispitivanih eutektičnih otapala za denitrifikaciju nego za desulfurizaciju.

Eutektično otapalo	w (piridin)/%	w (tiofen)/%
ChCl-Gly 1:1,5	74,4	5,7
ChCl-Gly 1:2	76,0	5,1
ChCl-Gly 1:3	76,6	3,9
ChCl-EG 1:2	63,0	9,2
ChCl-EG 1:3	74,6	10,2
ChCl-EG 1:3,5	78,8	10,6

Tablica 4.6. Maksimalna topljivost piridina i tiofena u eutektičnom otapalu.

4.4.3. Maksimalna topljivost eutektičnog otapala u ugljikovodicima

Prilikom titracije svih komponenti modelnog benzina svim pripravljenim eutektičnim otapalima, pojava zamućenja uočena je već s prvom kapi dodanog eutektičnog otapala što je dokaz netopljivosti eutektičnog otapala u modelnom benzinu.

4.4.4. Kalibracijske krivulje

Izrada kalibracijskih krivulja za određivanje sastava rafinatne faze prvi je korak u eksperimentima određivanja veznih linija. Kalibracijske su krivulje prikazane kao ovisnost masenog udjela piridina/tiofena o indeksu loma u cijelom području sastava za osam različitih dvokomponentnih sustava, dobivenih kombinacijama piridina ili tiofena s *n*-heksanom, *n*-heptanom, *i*-oktanom ili toluenom.

Povećanje vrijednosti indeksa loma s povećanjem udjela piridina ili tiofena u dvokomponentnom sustavu vidljivo je u svim sustavima (**Slike 4.14.** i **4.15.**). Vrijednosti indeksa loma su 1,3721 – 1,5263 u svim sustavima osim onima s toluenom, gdje je raspon vrijednosti manji, 1,4935 – 1,5259. Radi postizanja veće preciznosti, indeks loma u sustavima s toluenom mjeren je na većem broju otopina (21) različitog sastava, dok je u ostalim sustavima pripremljeno 11 otopina.

Slika 4.14. Kalibracijske krivulje za sustave ugljikovodik (1) – piridin (2).

Slika 4.15. Kalibracijske krivulje za sustave ugljikovodik (1) – tiofen (2).

Dobivene se ovisnosti indeksa loma o sastavu mogu prikazati općenitim modelom:

$$w_{2} = A \cdot n_{D}^{3} + B \cdot n_{D}^{2} + C \cdot n_{D} + D, \qquad (4.5)$$

čiji su parametri te odgovarajući korelacijski koeficijenti R^2 prikazani u **Tablici 4.7.**

sustav	A	В	С	D	R^2
n-heksan (1) – piridin (2)	-	-18,4	60,2	-48,0	0,9989
<i>n</i> -heptan (1) – piridin (2)	220,4	-978,6	1454,9	-723,5	0,9999
<i>i</i> -oktan (1) – piridin (2)	262,1	-1155,7	1705,5	-841,6	0,9997
toluen (1) – piridin (2)	-	-	79,7	-119,1	0,9953
n-heksan (1) – tiofen (2)	-	-21,0	67,2	-52,6	0,9993
<i>n</i> -heptan (1) – tiofen (2)	161,3	-727,4	1099,0	-555,1	0,9999
<i>i</i> -oktan (1) – tiofen (2)	141,4	-644,0	982,8	-501,5	0,9999
toluen (1) – tiofen (2)	-	-208,9	661,6	-522,1	0,9999

Tablica 4.7. Parametri modela ovisnosti masenog udjela piridina i tiofena o indeksu loma.

Linearna ovisnost indeksa loma o sastavu karakteristična je za sustav toluen (1) – piridin (2), polinom 2. stupnja za sustave *n*-heksan (1) – piridin (2), *n*-heksan (1) – tiofen (2) i toluen (1) – tiofen (2), te polinom 3. stupnja za sustave *n*-heptan (1) – piridin (2), *i*-oktan (1) – piridin (2), *n*-heptan (1) – tiofen (2) i *i*-oktan (1) – tiofen (2). Korelacijski koeficijent R^2 veći je od 0,999 za skoro sve sustave.

Dobivene kalibracijske jednadžbe koriste se za izračunavanje sastava rafinatne faze dvokomponentne otopine nepoznatog sastava iz poznate vrijednosti izmjerenog indeksa loma pri 25 °C, $n_{\rm D}$.

4.4.5. Vezne linije

Rezultati ekstrakcijskih eksperimenata (ekstrakcija kapljevina-kapljevina) trokomponentnih sustava općenito se prikazuju kao vezne linije u trokutnim dijagramima ili ravnotežni sastavi faza u tablicama.

Vezne linije određene u ukupno 48 kvazi-trokomponentnih sustava, prikazane su u **Tablici 4.8.** za sustave ugljikovodik (1) – piridin (2) – eutektično otapalo (3) i u **Tablici 4.9.** za sustave ugljikovodik (1) – tiofen (2) – eutektično otapalo (3). U sustavima s piridinom procijenjena je relativno visoka vrijednost mjerne nesigurnosti, $u(w) \le 0,005$ za početne sastave i sastave rafinatne faze, te $u(w) \le 0,01$ za sastave ekstraktne faze. U sustavima s

tiofenom, procijenjena mjerna nesigurnost od $u(w) \le 0,005$ za početne sastave i sastave rafinatne faze nije bila dovoljna za određivanje sastava ekstraktne faze s dovoljnom točnošću primjenom bilance tvari, zbog relativno velikog nagiba veznih linija.

Vezne linije u kvazi-trokomponentnim sustavima s piridinom nije bilo moguće određivati u cijelom području sastava (0 – 100 % piridina) jer je kod većih masenih udjela piridina (> 40 %) došlo do razdvajanja u više od dvije faze, vjerojatno zbog nestabilnosti eutektičnog otapala, što se fizički vidjelo kao dva sloja kapljevine i igličasti kristalići, ili ponegdje bjelkasti talog u donjem sloju. Kod tih sastava nije bilo moguće odrediti konzistentan skup veznih linija jer su se one presijecale. U sustavima s tiofenom situacija je bila još znatno složenija, jer je u tim sustavima dolazilo do nastajanja bijelog taloga već pri 5 – 10 % tiofena (tj. uz znatno manji maseni udio nego kod piridina), naročito uz eutektična otapala iz klase ChCl-EG. Stoga je pokriven samo dio raspona sastava u trokutnom dijagramu, koje odgovara jasnom razdvajanju nestabilnih otopina u dvije stabilne ravnotežne faze.

Rezultati prikazuju da je ravnotežna topljivost tiofena u eutektičnom otapalu (ekstraktna faza) znatno manja od njegove topljivosti u alifatskim ugljikovodicima (rafinatna faza). Kod piridina situacija je obratna, njegova je topljivost u eutektičnom otapalu veća nego u alifatskim ugljikovodicima. Prema tome, može se očekivati da će sva ispitivana otapala biti prikladnija za uklanjanje dušikovih nego sumporovih spojeva iz modelnog benzina. Također se očekuje da će biti prikladnija i za denitrifikaciju nego desulfurizaciju realnog benzina, pogotovo za komponente koje su kemijski slične sumporovoj i dušikovoj komponenti modelnog goriva (tiofenu i piridinu).

Konzistentni skupovi veznih linija opisani su modelima koeficijenta aktivnosti NRTL i UNIQUAC.

<i>n</i> -heksan (1) – piridin (2) – ChCl-EG 1:2 (3)						<i>n</i> -hepta	n (1) – p	iridin (2) - ChC	I-EG 1:2	(3)	
početna	ı smjesa	rafinat	na faza	ekstrak	tna faza	početna	očetna smjesa rafinatna faza ek			ekstrak	ekstraktna faza	
<i>w</i> ₂	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	W_2	<i>W</i> ₃	
0,047	0,479	0,049	0,000	0,045	0,955	0,051	0,451	0,046	0,000	0,056	0,944	
0,094	0,464	0,085	0,000	0,102	0,898	0,102	0,455	0,084	0,000	0,118	0,882	
0,141	0,419	0,120	0,000	0,162	0,838	0,152	0,402	0,128	0,000	0,176	0,824	
0,192	0,414	0,152	0,000	0,226	0,774	0,206	0,384	0,167	0,000	0,245	0,755	
0,243	0,378	0,191	0,000	0,289	0,711	0,250	0,353	0,206	0,000	0,294	0,706	
0,294	0,377	0,232	0,000	0,340	0,660	0,303	0,355	0,253	0,000	0,345	0,655	
0,353	0,304	0,277	0,000	0,422	0,578	0,352	0,301	0,295	0,000	0,407	0,593	
0,401	0,303	0,341	0,000	0,450	0,550	0,402	0,300	0,335	0,000	0,456	0,544	
0,438	0,280	0,340	0,000	0,511	0,489	0,504	0,249	0,386	0,000	0,583	0,417	
0,480	0,271	0,383	0,000	0,546	0,454	0,553	0,202	0,398	0,000	0,659	0,341	
0,522	0,237	0,411	0,000	0,599	0,401							
0,577	0,222	0,442	0,000	0,654	0,346							
<i>i</i> -oktan	(1) - pirit	idin (2) -	- ChCl-	EG 1:2 (.	3)	toluen ((1) – pirio	din (2) –	ChCl-E	G 1:2 (3)	
<i>i</i> -oktan početna	(1) – piri a smjesa	idin (2) - rafinat	– ChCl-l na faza	EG 1:2 (. ekstrak	3) tna faza	toluen (početna	(1) – pirio a smjesa	din (2) – rafinat	ChCl-E na faza	CG 1:2 (3) ekstrak) tna faza	
$\frac{i \text{-oktan}}{\text{početna}}$	$\frac{(1) - \text{pirf}}{\text{smjesa}}$ $\frac{W_3}{W_3}$	$\frac{1}{1}$ idin (2) - rafinat w_2	- ChCl- na faza W ₃	$\frac{\text{EG 1:2 (1)}}{\text{ekstrak}}$ $\frac{W_2}{W_2}$	3) tna faza w ₃	toluen (početna W ₂	$\frac{(1) - \text{pirio}}{\alpha \text{ smjesa}}$ $\frac{w_3}{w_3}$	$\frac{\dim (2) - \pi}{\operatorname{rafinat}}$	ChCl-E na faza W ₃	$\frac{123}{\text{ekstrak}}$) tna faza w ₃	
	$\frac{(1) - \text{pirf}}{x \text{ smjesa}}$ $\frac{w_3}{0,446}$	$\frac{\text{idin}(2)}{\text{rafinat}}$ $\frac{w_2}{0,055}$	$\frac{-\text{ChCl-}}{\text{na faza}}$ $\frac{w_3}{0,000}$	$\frac{\text{EG 1:2}}{\text{ekstrak}}$ $\frac{w_2}{0,025}$	3) tna faza w ₃ 0,975	toluen (početna w_2 0,049	$\frac{(1) - \text{pirio}}{\alpha \text{ smjesa}}$ $\frac{w_3}{0,454}$	$\frac{\dim (2) - \pi \operatorname{finat}}{w_2}$ 0,058		$\frac{2G \ 1:2 \ (3)}{\text{ekstrak}}$ $\frac{w_2}{0,038}$) tna faza <u>W₃</u> 0,962	
$ \frac{i - oktan}{početna} \frac{w_2}{0,041} 0,092 $	$ \begin{array}{r} (1) - pirit \\ \overline{u \ smjesa} \\ \hline w_3 \\ \overline{0,446} \\ 0,468 \end{array} $	$\frac{\text{idin}(2)}{\text{rafinat}}$ $\frac{w_2}{0,055}$ 0,089	$ \frac{- \text{ChCl-}}{\text{na faza}} \\ \frac{w_3}{0,000} \\ 0,000 $		$ \frac{3}{100000000000000000000000000000000000$	toluen (početna <i>W</i> ₂ 0,049 0,095	$\frac{(1) - \text{pirid}}{\text{smjesa}}$ $\frac{w_3}{0,454}$ $0,451$	$\frac{\dim (2) - \pi \operatorname{finat}}{\operatorname{w_2}}$ 0,058 0,122		$ \frac{G 1:2 (3)}{ekstrak} \frac{w_2}{0,038} 0,066 $) tna faza w_3 0,962 0,934	
	$ \begin{array}{r} (1) - pirit \\ \overline{u \ smjesa} \\ \hline w_3 \\ \overline{0,446} \\ 0,468 \\ 0,420 \\ \end{array} $	$ \frac{\text{idin } (2) - \frac{1}{2}}{\text{rafinat}} \\ \frac{w_2}{0,055} \\ 0,089 \\ 0,118 $	$ - ChCl-] na faza \overline{w_3} 0,000 $		3) tna faza <u>w₃</u> 0,975 0,905 0,843	toluen (početna w ₂ 0,049 0,095 0,139	$ \begin{array}{r} (1) - \text{pirio} \\ a \text{ smjesa} \\ \hline w_3 \\ 0,454 \\ 0,451 \\ 0,409 \\ \end{array} $	$\frac{\text{din}(2) - \text{rafinat}}{\text{w}_2}$ 0,058 0,122 0,164	ChCl-E na faza <u>W3</u> 0,000 0,000 0,000	$ \frac{123}{2} = \frac{122}{2} \frac{(3)}{2} = \frac{122}{2} \frac{(3)}{2} = \frac{122}{2} \frac{(3)}{2} \frac{122}{2} \frac{(3)}{2} \frac{122}{2} \frac{(3)}{2} \frac{(3)}{$) tna faza <u>w₃</u> 0,962 0,934 0,891	
	$ \begin{array}{r} (1) - \text{pirf} \\ \hline a \text{ smjesa} \\ \hline w_3 \\ \hline 0,446 \\ 0,446 \\ 0,420 \\ 0,424 \\ \end{array} $	$ \frac{\text{rafinat}}{w_2} \\ 0,055 \\ 0,089 \\ 0,118 \\ 0,143 $	- ChCl- na faza <u>W3</u> 0,000 0,000 0,000 0,000		3) tna faza w ₃ 0,975 0,905 0,843 0,775	toluen (početna 0,049 0,095 0,139 0,192	$ \begin{array}{r} (1) - \text{pirio} \\ a \text{ smjesa} \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline $	$\frac{\text{din}(2) - \text{rafinat}}{\text{w}_2}$ 0,058 0,122 0,164 0,210	ChCl-E na faza <u>W3</u> 0,000 0,000 0,000 0,000	$ \frac{CG 1:2 (3)}{ekstrak} \\ \frac{w_2}{0,038} \\ 0,066 \\ 0,109 \\ 0,174 $) tna faza w ₃ 0,962 0,934 0,891 0,826	
$ \frac{i - \text{oktan}}{\text{početna}} \frac{w_2}{0,041} 0,092 0,137 0,188 0,230 $	(1) - pirta smjesa0,4460,4680,4200,4200,4240,382	$\frac{w_2}{0,055}$ 0,089 0,118 0,143 0,169	- ChCl- na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000	EG 1:2 (2 ekstrak <u>w2</u> 0,025 0,095 0,157 0,225 0,284	3) tna faza w ₃ 0,975 0,905 0,843 0,775 0,716	toluen (početna 0,049 0,095 0,139 0,192 0,231	$ \begin{array}{r} (1) - \text{pirio}\\ x \text{ smjesa}\\\hline \hline \hline$	$\frac{\text{din} (2) - \text{rafinat}}{\text{w}_2}$ 0,058 0,122 0,164 0,210 0,239	ChCl-E na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000	$ \frac{CG 1:2 (3)}{ekstrak} \\ \frac{w_2}{0,038} \\ 0,066 \\ 0,109 \\ 0,174 \\ 0,224 $) tna faza <u>W₃</u> 0,962 0,934 0,891 0,826 0,776	
$ \begin{array}{r} i - \text{oktan} \\ \hline \hline \hline \hline $	$(1) - pirt a smjesa w_3 0,446 0,468 0,420 0,420 0,424 0,382 0,380 0,380$	$ \frac{1}{1} 1$	- ChCl- na faza 0,000 0,000 0,000 0,000 0,000 0,000 0,000	EG 1:2 (3 ekstrak w ₂ 0,025 0,095 0,157 0,225 0,284 0,367	$ \frac{1}{1} $ tha faza $ \frac{w_3}{0,975} $ 0,905 0,843 0,775 0,716 0,633	toluen (početna 0,049 0,095 0,139 0,192 0,231 0,305	$\begin{array}{c} (1) - \text{pirio}\\ a \text{ smjesa}\\ \hline w_3\\ 0,454\\ 0,451\\ 0,409\\ 0,412\\ 0,375\\ 0,359\\ \end{array}$	$\frac{\text{din} (2) - \text{rafinat}}{\text{w}_2}$ 0,058 0,122 0,164 0,210 0,239 0,255	ChCl-E na faza 0,000 0,000 0,000 0,000 0,000 0,000	$\frac{12}{2} \frac{(3)}{(3)} \frac{(3)}{$) tna faza 0,962 0,934 0,891 0,826 0,776 0,654	
<i>i</i> -oktan početna <i>w</i> ₂ 0,041 0,092 0,137 0,188 0,230 0,297 0,342	(1) - pirt a smjesaw30,4460,4680,4200,4240,3820,3800,322	$\begin{array}{c} \text{idin (2)} - \\ \hline \text{rafinat} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ $	- ChCl-] na faza	EG 1:2 (2 ekstrak <u>w2</u> 0,025 0,095 0,157 0,225 0,284 0,367 0,439	3) tna faza <u>w₃</u> 0,975 0,905 0,843 0,775 0,716 0,633 0,561	toluen (početna w ₂ 0,049 0,095 0,139 0,192 0,231 0,305	$ \begin{array}{r} (1) - \text{pirio}\\ \hline w_3 \\ \hline 0,454 \\ 0,451 \\ 0,409 \\ 0,412 \\ 0,375 \\ 0,359 \\ \end{array} $	$\frac{\text{din} (2) - \text{rafinat}}{\text{w}_2}$ 0,058 0,122 0,164 0,210 0,239 0,255	ChCl-E na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000	$\begin{array}{c} \hline G \ 1:2 \ (3) \\ \hline \\ ekstrak \\ \hline \\ \hline \\ \hline \\ 0,038 \\ 0,066 \\ 0,109 \\ 0,174 \\ 0,224 \\ 0,346 \\ \end{array}$) tna faza <u>W₃</u> 0,962 0,934 0,891 0,826 0,776 0,654	
<i>i</i> -oktan početna 0,041 0,092 0,137 0,188 0,230 0,297 0,342 0,399	(1) - pirta smjesa0,4460,4680,4200,4200,4240,3820,3820,3800,3220,317	$\begin{array}{r} \text{idin (2) -} \\ \hline \text{rafinat} \\ \hline \hline w_2 \\ \hline 0,055 \\ 0,089 \\ 0,118 \\ 0,143 \\ 0,169 \\ 0,190 \\ 0,212 \\ 0,224 \\ \end{array}$	- ChCl- na faza	EG 1:2 (3 ekstrak w ₂ 0,025 0,095 0,157 0,225 0,284 0,367 0,439 0,499	$ \frac{1}{1} $ tha faza $ \frac{w_3}{0,975} $ 0,905 0,843 0,775 0,716 0,633 0,561 0,501	toluen (početna 0,049 0,095 0,139 0,192 0,231 0,305	$\begin{array}{r} (1) - \text{pirio}\\ \hline x \text{ smjesa}\\ \hline w_3\\ \hline 0,454\\ 0,451\\ 0,409\\ 0,412\\ 0,375\\ 0,359\\ \end{array}$	$\frac{\text{din} (2) - \text{rafinat}}{\text{w}_2}$ 0,058 0,122 0,164 0,210 0,239 0,255	ChCl-E na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000	$ \frac{12}{2} \frac{(3)}{(3)} \frac{(3)}$) tna faza <u>W₃</u> 0,962 0,934 0,891 0,826 0,776 0,654	
<i>i</i> -oktan početna <i>w</i> ₂ 0,041 0,092 0,137 0,188 0,230 0,297 0,342 0,399 0,447	(1) - piria smjesa	$\begin{array}{r} \text{idin (2)} - \\ \hline \text{rafinat} \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\$	- ChCl-] na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	EG 1:2 (3 ekstrak w ₂ 0,025 0,095 0,157 0,225 0,284 0,367 0,439 0,499 0,573	$\frac{1}{1}$ $\frac{1}$	toluen (početna 0,049 0,095 0,139 0,192 0,231 0,305	$ \begin{array}{r} (1) - \text{pirio}\\ a \text{ smjesa}\\ \hline w_3\\ 0,454\\ 0,451\\ 0,409\\ 0,412\\ 0,375\\ 0,359\\ \end{array} $	$\frac{\text{din} (2) - \text{rafinat}}{\text{v}_2}$ 0,058 0,122 0,164 0,210 0,239 0,255	ChCl-E na faza 0,000 0,000 0,000 0,000 0,000 0,000	$ \frac{12 (3)}{\text{ekstrak}} $ $ \frac{w_2}{0,038} $ 0,066 0,109 0,174 0,224 0,346) tna faza <u>w₃</u> 0,962 0,934 0,891 0,826 0,776 0,654	
<i>i</i> -oktan početna 0,041 0,092 0,137 0,188 0,230 0,297 0,342 0,399 0,447 0,493	(1) - pirit x smjesa 0,446 0,468 0,420 0,424 0,382 0,382 0,380 0,322 0,317 0,258 0,258	$\begin{array}{r} \begin{array}{c} \mbox{idin} (2) - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	- ChCl- na faza	EG 1:2 (3 ekstrak w2 0,025 0,095 0,157 0,225 0,284 0,367 0,439 0,439 0,499 0,573 0,612		toluen (početna w ₂ 0,049 0,095 0,139 0,192 0,231 0,305	$ \begin{array}{r} (1) - \text{pirio}\\ \hline \mathbf{x} \text{ smjesa}\\ \hline W_3\\ \hline 0,454\\ 0,451\\ 0,409\\ 0,412\\ 0,375\\ 0,359\\ \end{array} $	$\frac{\text{din} (2) - \text{rafinat}}{\text{w}_2}$ 0,058 0,122 0,164 0,210 0,239 0,255	ChCl-E na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000	$ \frac{12}{26} \frac{12}{2} \frac{3}{2} $) tna faza <u>W₃</u> 0,962 0,934 0,891 0,826 0,776 0,654	
<i>i</i> -oktan početna 0,041 0,092 0,137 0,188 0,230 0,297 0,342 0,399 0,447 0,493 0,518	$(1) - piria smjesa w_3 0,446 0,468 0,420 0,424 0,382 0,380 0,322 0,317 0,258 0,258 0,226$	$\begin{array}{r} \begin{array}{c} \mbox{idin} (2) - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	- ChCl- na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	EG 1:2 (3 ekstrak w2 0,025 0,095 0,157 0,225 0,284 0,367 0,439 0,499 0,573 0,612 0,652	3) tna faza w ₃ 0,975 0,905 0,843 0,775 0,716 0,633 0,561 0,501 0,427 0,388 0,348	toluen (početna 0,049 0,095 0,139 0,192 0,231 0,305	$ \begin{array}{r} (1) - \text{pirio} \\ \overline{\text{a smjesa}} \\ \hline \hline \hline W_3 \\ 0,454 \\ 0,451 \\ 0,409 \\ 0,412 \\ 0,375 \\ 0,359 \end{array} $	$\frac{\text{din} (2) - \text{rafinat}}{\text{w}_2}$ 0,058 0,122 0,164 0,210 0,239 0,255	ChCl-E na faza <u>W</u> 3 0,000 0,000 0,000 0,000 0,000 0,000	2G 1:2 (3) ekstrak w2 0,038 0,066 0,109 0,174 0,224 0,346) tna faza <u>W₃</u> 0,962 0,934 0,891 0,826 0,776 0,654	

Tablica 4.8. Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s piridinom.

<i>n</i> -heksan (1) – piridin (2) – ChCl-EG 1:3 (3)						<i>n</i> -hepta	n (1) – p	iridin (2) - ChCl	I-EG 1:3	(3)
početna	a smjesa	rafinat	na faza	ekstrak	tna faza	početna	ı smjesa	rafinat	na faza	ekstraktna faza	
<i>W</i> ₂	<i>W</i> ₃	W_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	W_2	<i>W</i> ₃	w_2	<i>W</i> ₃
0,050	0,491	0,043	0,000	0,056	0,944	0,048	0,471	0,033	0,000	0,062	0,938
0,094	0,473	0,067	0,000	0,117	0,883	0,093	0,482	0,063	0,000	0,118	0,882
0,143	0,415	0,101	0,000	0,183	0,817	0,138	0,427	0,090	0,000	0,182	0,818
0,193	0,405	0,135	0,000	0,244	0,756	0,190	0,417	0,124	0,000	0,244	0,756
0,238	0,377	0,164	0,000	0,301	0,699	0,234	0,378	0,152	0,000	0,303	0,697
0,307	0,374	0,221	0,000	0,367	0,633	0,289	0,388	0,193	0,000	0,354	0,646
0,358	0,303	0,273	0,000	0,431	0,569	0,348	0,328	0,239	0,000	0,429	0,571
0,458	0,240	0,363	0,000	0,544	0,456	0,385	0,320	0,221	0,000	0,485	0,515
0,504	0,239	0,384	0,000	0,590	0,410	0,437	0,271	0,281	0,000	0,544	0,456
0,550	0,200	0,432	0,000	0,642	0,358	0,455	0,280	0,287	0,000	0,554	0,446
						0,495	0,236	0,308	0,000	0,614	0,386
						0,566	0,236	0,323	0,000	0,667	0,333
<i>i</i> -oktan	(1) - piri	idin (2) -	– ChCl-l	EG 1:3 (3	3)	toluen ((1) – pirio	din (2) –	- ChCl-E	G 1:3 (3)
<i>i</i> -oktan početna	(1) – piri a smjesa	idin (2) - rafinat	– ChCl-l na faza	EG 1:3 (3 ekstrak	3) tna faza	toluen (početna	(1) – pirio 1 smjesa	din (2) – rafinat	- ChCl-E na faza	G 1:3 (3 ekstrak) tna faza
$\frac{i - oktan}{početna}$	$\frac{(1) - \text{pirm}}{\alpha \text{ smjesa}}$ $\frac{W_3}{W_3}$	$\frac{1}{1}$ idin (2) - rafinat w_2	– ChCl-l na faza w ₃	EG 1:3 ($\frac{1}{2}$ ekstrak w_2	$\frac{3}{w_3}$	toluen (početna w_2	(1) – pirio 1 smjesa <i>w</i> 3	$\frac{\dim (2) - \pi}{\operatorname{rafinat}}$	- ChCl-E na faza W ₃	$\frac{G 1:3 (3)}{\text{ekstrak}}$) tna faza w ₃
$ \frac{i - oktan}{početna} $ $ \frac{w_2}{0,047} $	$\frac{(1) - \text{pirm}}{\text{a smjesa}}$ $\frac{w_3}{0,468}$	$\frac{1}{1}$ $\frac{1}$	$\frac{-\text{ChCl-l}}{\text{na faza}}$ $\frac{w_3}{0,000}$	$\frac{\text{EG 1:3 (.1)}}{\text{ekstrak}}$ $\frac{w_2}{0,048}$	$\frac{3)}{\frac{w_3}{0,952}}$	toluen (početna w_2 0,047	$\frac{(1) - \text{pirio}}{x \text{ smjesa}}$ $\frac{w_3}{0,465}$	$\frac{\dim (2) - \pi \operatorname{finat}}{w_2}$	$\frac{-\text{ChCl-E}}{\text{na faza}}$ $\frac{W_3}{0,000}$	$\frac{G \ 1:3 \ (3)}{ekstrak}$ $\frac{W_2}{0,047}$	$\frac{1}{\frac{w_3}{0,953}}$
$ \frac{i - \text{oktan}}{\text{početna}} \frac{w_2}{0,047} 0,094 $	$ \begin{array}{r} (1) - pirm \\ a smjesa \\ \hline w_3 \\ 0,468 \\ 0,464 \end{array} $	$\frac{1}{1} \frac{1}{1} \frac{1}$	$ \frac{-\text{ChCl-l}}{\text{na faza}} \\ \frac{W_3}{0,000} \\ 0,000 $		$\frac{3}{100000000000000000000000000000000000$	toluen (početna w_2 0,047 0,092	$\frac{(1) - \text{pirio}}{\text{a smjesa}}$ $\frac{w_3}{0,465}$ 0,476	$\frac{\sin (2) - \pi \sin x}{x^2}$ $\frac{w_2}{0,047}$ 0,069	$ \frac{-\text{ChCl-E}}{\text{na faza}} \\ \frac{W_3}{0,000} \\ 0,000 $	$ G 1:3 (3) ekstrak \frac{w_2}{0,047} 0,112 $) tna faza w_3 0,953 0,888
$ \frac{i - \text{oktan}}{\text{početna}} \frac{w_2}{0,047} 0,094 0,142 $	$ \begin{array}{r} (1) - \text{pirm} \\ a \text{ smjesa} \\ \hline w_3 \\ 0,468 \\ 0,464 \\ 0,411 \end{array} $	$ \frac{\text{idin } (2)}{\text{rafinat}} - \frac{w_2}{0,046} \\ 0,071 \\ 0,100 $	$ - ChCl-J = \frac{1}{100} - ChCl-J = \frac{1}{100} - M_{3} = \frac{1}{100} $		$\frac{3)}{\frac{w_3}{0,952}}$ 0,886 0,816	toluen (početna w_2 0,047 0,092 0,145	$\frac{(1) - \text{pirid}}{\text{a smjesa}}$ $\frac{w_3}{0,465}$ 0,476 0,403	$\frac{\text{din}(2) - \frac{1}{\text{rafinat}}}{\frac{w_2}{0,047}}$ 0,069 0,103		$\frac{G \ 1:3 \ (3)}{\text{ekstrak}} \\ \frac{w_2}{0,047} \\ 0,112 \\ 0,187 \\ \end{array}$) tna faza $\frac{w_3}{0,953}$ 0,888 0,813
	$ \begin{array}{c} (1) - \text{pirm} \\ \hline a \text{ smjesa} \\ \hline w_3 \\ \hline 0,468 \\ 0,464 \\ 0,411 \\ 0,413 \\ \end{array} $	$ \frac{1}{1} 1$	- ChCl-1 na faza $ $	EG 1:3 (3) ekstrak $ $	3) tna faza <u>w₃</u> 0,952 0,886 0,816 0,759	toluen (početna w_2 0,047 0,092 0,145 0,192	$ \frac{(1) - \text{pirio}}{\text{a smjesa}} \\ \frac{w_3}{0,465} \\ 0,476 \\ 0,403 \\ 0,415 $	$\frac{\text{din} (2) - \frac{1}{\text{rafinat}}}{\frac{w_2}{0,047}}$ 0,069 0,103 0,130		$ G 1:3 (3) ekstrak \frac{w_2}{0,047} 0,112 0,187 0,243 $) tna faza w ₃ 0,953 0,888 0,813 0,757
	$ \begin{array}{c} (1) - \text{pirm} \\ \hline \text{a smjesa} \\ \hline w_3 \\ \hline 0,468 \\ 0,464 \\ 0,411 \\ 0,413 \\ 0,377 \\ \end{array} $	$ \frac{\text{idin } (2) - rafinat}{w_2} \\ \hline 0,046 \\ 0,071 \\ 0,100 \\ 0,134 \\ 0,157 $	<u>- ChCl-l</u> na faza <u>W₃</u> 0,000 0,000 0,000 0,000 0,000	EG 1:3 (3) ekstrak $ $	3) tna faza <u>w₃</u> 0,952 0,886 0,816 0,759 0,692	toluen (početna w_2 0,047 0,092 0,145 0,192 0,239	$\frac{(1) - \text{pirid}}{\text{a smjesa}}$ $\frac{w_3}{0,465}$ 0,476 0,403 0,415 0,367	$\frac{\text{din} (2) - \frac{1}{\text{rafinat}}}{\frac{w_2}{0,047}}$ 0,069 0,103 0,130 0,183	ChCl-E na faza 0,000 0,000 0,000 0,000 0,000 0,000	$ \begin{array}{r} G 1:3 (3) \\ \hline ekstrak \\ \hline w_2 \\ \hline 0,047 \\ 0,112 \\ 0,187 \\ 0,243 \\ 0,292 \\ \end{array} $) tna faza <u>W₃</u> 0,953 0,888 0,813 0,757 0,708
	$ \begin{array}{c} (1) - \text{pirm} \\ \hline a \text{ smjesa} \\ \hline w_3 \\ \hline 0,468 \\ 0,464 \\ 0,411 \\ 0,413 \\ 0,377 \\ 0,373 \\ \end{array} $	$ \frac{\text{idin (2)} - \text{rafinat}}{w_2} \\ \hline 0,046 \\ 0,071 \\ 0,100 \\ 0,134 \\ 0,157 \\ 0,180 $	- ChCl-l na faza <u>w₃</u> 0,000 0,000 0,000 0,000 0,000 0,000	$ EG 1:3 (3) ekstrak \frac{w_2}{0,048} 0,114 0,184 0,241 0,308 0,382 $	3) tna faza w ₃ 0,952 0,886 0,816 0,759 0,692 0,618	toluen (početna w_2 0,047 0,092 0,145 0,192 0,239 0,304	$ \begin{array}{r} (1) - \text{pirio} \\ a \text{ smjesa} \\ \hline \hline \hline \hline \hline \hline \hline $	$\frac{\text{din} (2) - rafinat}{w_2}$ 0,047 0,069 0,103 0,130 0,183 0,196	 ChCl-E na faza w₃ 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 	$ G 1:3 (3) ekstrak \frac{W_2}{0,047} 0,112 0,187 0,243 0,292 0,382 $) tna faza w ₃ 0,953 0,888 0,813 0,757 0,708 0,618
<i>i</i> -oktan početna <u>w2</u> 0,047 0,094 0,142 0,192 0,239 0,302 0,350	$\begin{array}{c} (1) - \text{pirm} \\ \hline \text{a smjesa} \\ \hline w_3 \\ \hline 0,468 \\ 0,464 \\ 0,411 \\ 0,413 \\ 0,377 \\ 0,373 \\ 0,325 \end{array}$	$ \frac{\text{idin } (2) - \text{rafinat}}{\text{w}_2} \\ \hline 0,046 \\ 0,071 \\ 0,100 \\ 0,134 \\ 0,157 \\ 0,180 \\ 0,178 $	- ChCl-1 na faza <u>W₃</u> 0,000 0,000 0,000 0,000 0,000 0,000	EG 1:3 (3) = 0.0000000000000000000000000000000000	3) tna faza <u>W₃</u> 0,952 0,886 0,816 0,759 0,692 0,618 0,538	toluen (početna w_2 0,047 0,092 0,145 0,192 0,239 0,304 0,352	$ \begin{array}{r} (1) - \text{pirio} \\ a \text{ smjesa} \\ \hline \hline \hline \hline \hline \hline \hline $	$\frac{\text{din} (2) - rafinat}{\text{rafinat}}$ $\frac{w_2}{0,047}$ 0,069 0,103 0,130 0,130 0,183 0,196 0,210	 ChCl-E na faza w₃ 0,000 	$\begin{array}{c} G 1:3 (3) \\ \hline ekstrak \\ \hline w_2 \\ \hline 0,047 \\ 0,112 \\ 0,187 \\ 0,243 \\ 0,292 \\ 0,382 \\ 0,466 \end{array}$) tna faza <u>W₃</u> 0,953 0,888 0,813 0,757 0,708 0,618 0,534
	$\begin{array}{c} (1) - \text{pirm} \\ \hline \textbf{a smjesa} \\ \hline w_3 \\ \hline 0,468 \\ 0,464 \\ 0,411 \\ 0,413 \\ 0,377 \\ 0,373 \\ 0,325 \\ 0,327 \\ \end{array}$	$\begin{array}{r} \text{idin (2) -} \\ \hline rafinat \\ \hline w_2 \\ \hline 0,046 \\ 0,071 \\ 0,100 \\ 0,134 \\ 0,157 \\ 0,180 \\ 0,178 \\ 0,202 \end{array}$	- ChCl-l na faza - W ₃ 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	EG 1:3 (2) = 0.000 + 0.00000	3) tna faza w ₃ 0,952 0,886 0,816 0,759 0,692 0,618 0,538 0,495	toluen (početna w_2 0,047 0,092 0,145 0,192 0,239 0,304 0,352	$ \begin{array}{r} (1) - \text{pirio} \\ a \text{ smjesa} \\ \hline \hline \hline \hline \hline $	$\frac{\text{din} (2) - rafinat}{w_2}$ 0,047 0,069 0,103 0,130 0,183 0,196 0,210	ChCl-E na faza <u>w₃</u> 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$ \begin{array}{r} G 1:3 (3) \\ \hline ekstrak \\ \hline w_2 \\ \hline 0,047 \\ 0,112 \\ 0,187 \\ 0,243 \\ 0,292 \\ 0,382 \\ 0,466 \\ \end{array} $) tna faza <u>W₃</u> 0,953 0,888 0,813 0,757 0,708 0,618 0,534
<i>i</i> -oktan početna w ₂ 0,047 0,094 0,142 0,192 0,239 0,302 0,302 0,350 0,403 0,469	$\begin{array}{c} (1) - \text{pirm} \\ \hline \text{a smjesa} \\ \hline w_3 \\ \hline 0,468 \\ 0,464 \\ 0,411 \\ 0,413 \\ 0,377 \\ 0,373 \\ 0,325 \\ 0,327 \\ 0,276 \\ \end{array}$	$\begin{array}{r} \begin{array}{c} \mbox{idin} (2) - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	- ChCl-1 na faza	$\begin{array}{c} \text{EG 1:3 (3)} \\ \hline \text{ekstrak} \\ \hline \hline w_2 \\ \hline 0,048 \\ 0,114 \\ 0,184 \\ 0,241 \\ 0,308 \\ 0,382 \\ 0,382 \\ 0,462 \\ 0,505 \\ 0,584 \\ \end{array}$	3) tna faza <u>W₃</u> 0,952 0,886 0,816 0,759 0,692 0,618 0,538 0,495 0,416	toluen (početna w_2 0,047 0,092 0,145 0,192 0,239 0,304 0,352	$ \begin{array}{r} (1) - \text{pirio} \\ \overline{\text{smjesa}} \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	$\frac{\text{din} (2) - rafinat}{\text{rafinat}}$ $\frac{w_2}{0,047}$ 0,069 0,103 0,130 0,130 0,183 0,196 0,210	ChCl-E na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$ \begin{array}{r} G 1:3 (3) \\ ekstrak \\ \hline \hline $) tna faza <u>W₃</u> 0,953 0,888 0,813 0,757 0,708 0,618 0,534
<i>i</i> -oktan početna w ₂ 0,047 0,094 0,142 0,192 0,239 0,302 0,350 0,403 0,469 0,544	$\begin{array}{c} (1) - \text{pirm} \\ \hline \mathbf{x} \text{ smjesa} \\ \hline w_3 \\ \hline 0,468 \\ 0,464 \\ 0,411 \\ 0,413 \\ 0,377 \\ 0,373 \\ 0,325 \\ 0,325 \\ 0,327 \\ 0,276 \\ 0,306 \\ \end{array}$	$\begin{array}{r} \text{idin (2) -} \\ \hline \text{rafinat} \\ \hline w_2 \\ \hline 0,046 \\ 0,071 \\ 0,100 \\ 0,134 \\ 0,157 \\ 0,180 \\ 0,178 \\ 0,202 \\ 0,241 \\ 0,245 \end{array}$	- ChCl-1 na faza	$\begin{array}{c} \text{EG 1:3 (3)} \\ \hline \text{ekstrak} \\ \hline w_2 \\ \hline 0,048 \\ 0,114 \\ 0,184 \\ 0,241 \\ 0,308 \\ 0,382 \\ 0,462 \\ 0,505 \\ 0,584 \\ 0,618 \\ \end{array}$	3) tna faza <u>w₃</u> 0,952 0,886 0,816 0,759 0,692 0,618 0,538 0,495 0,416 0,382	toluen (početna w_2 0,047 0,092 0,145 0,192 0,239 0,304 0,352	$ \begin{array}{r} (1) - \text{pirio} \\ \overline{\text{a smjesa}} \\ \hline \hline \hline \hline \hline \text{w}_3 \\ \hline 0,465 \\ 0,476 \\ 0,403 \\ 0,415 \\ 0,367 \\ 0,359 \\ 0,298 \\ \end{array} $	$\frac{\text{din} (2) - rafinat}{w_2}$ 0,047 0,069 0,103 0,130 0,130 0,183 0,196 0,210	ChCl-E na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000	$ \begin{array}{r} G 1:3 (3) \\ \hline ekstrak \\ \hline w_2 \\ \hline 0,047 \\ 0,112 \\ 0,187 \\ 0,243 \\ 0,292 \\ 0,382 \\ 0,466 \\ \end{array} $) tna faza <u>W₃</u> 0,953 0,888 0,813 0,757 0,708 0,618 0,534
<i>i</i> -oktan početna w ₂ 0,047 0,094 0,142 0,192 0,239 0,302 0,302 0,350 0,403 0,403 0,544 0,522	$\begin{array}{c} (1) - \text{pirm} \\ \hline x \text{ smjesa} \\ \hline w_3 \\ \hline 0,468 \\ 0,464 \\ 0,411 \\ 0,413 \\ 0,377 \\ 0,373 \\ 0,325 \\ 0,327 \\ 0,276 \\ 0,306 \\ 0,220 \\ \end{array}$	$\begin{array}{r} \begin{array}{c} \mbox{idin} (2) - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	- ChCl-l na faza	$\begin{array}{c} \text{EG 1:3 (3)} \\ \hline \text{ekstrak} \\ \hline \hline w_2 \\ \hline 0,048 \\ 0,114 \\ 0,184 \\ 0,241 \\ 0,308 \\ 0,382 \\ 0,462 \\ 0,505 \\ 0,584 \\ 0,618 \\ 0,660 \\ \end{array}$	3) tna faza <u>W₃</u> 0,952 0,886 0,816 0,759 0,692 0,618 0,538 0,495 0,416 0,382 0,340	toluen (početna w_2 0,047 0,092 0,145 0,192 0,239 0,304 0,352	$ \begin{array}{r} (1) - \text{pirio} \\ \overline{\text{a smjesa}} \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	$\frac{\text{din} (2) - \text{rafinat}}{\text{w}_2}$ 0,047 0,069 0,103 0,130 0,130 0,183 0,196 0,210	ChCl-E na faza <u>W₃</u> 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$ \begin{array}{r} G 1:3 (3) \\ ekstrak \\ \hline $) tna faza <u>W₃</u> 0,953 0,888 0,813 0,757 0,708 0,618 0,534

Tablica 4.8. (nastavak) Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s piridinom.

<i>n</i> -heksan (1) – piridin (2) – ChCl-EG 1:3,5 (3)						<i>n</i> -hepta	n(1) - p	iridin (2) – ChCl	-EG 1:3,	5 (3)
početna	i smjesa	rafinat	na faza	ekstrak	tna faza	početna	a smjesa	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃
0,046	0,449	0,043	0,000	0,049	0,951	0,048	0,449	0,034	0,000	0,063	0,937
0,099	0,450	0,071	0,000	0,126	0,874	0,099	0,453	0,062	0,000	0,133	0,867
0,149	0,416	0,099	0,000	0,195	0,805	0,146	0,404	0,090	0,000	0,202	0,798
0,201	0,404	0,128	0,000	0,261	0,739	0,206	0,395	0,122	0,000	0,276	0,724
0,250	0,351	0,166	0,000	0,328	0,672	0,249	0,358	0,154	0,000	0,332	0,668
0,300	0,349	0,194	0,000	0,382	0,618	0,307	0,362	0,189	0,000	0,389	0,611
0,346	0,305	0,250	0,000	0,431	0,569	0,353	0,304	0,227	0,000	0,454	0,546
0,398	0,305	0,300	0,000	0,470	0,530	0,407	0,311	0,245	0,000	0,503	0,497
0,452	0,255	0,344	0,000	0,539	0,461	0,440	0,274	0,282	0,000	0,545	0,455
0,500	0,256	0,362	0,000	0,585	0,415	0,480	0,275	0,296	0,000	0,578	0,422
0,556	0,201	0,377	0,000	0,671	0,329	0,552	0,195	0,307	0,000	0,693	0,307
0,593	0,206	0,385	0,000	0,694	0,306						
<i>i</i> -oktan	(1) – piri	idin (2) -	– ChCl-I	EG 1:3,5	(3)	toluen ((1) - pirio	din (2) –	ChCl-E	G 1:3,5 ((3)
početna	i smjesa	rafinat	na faza	ekstrak	tna faza	početna	a smjesa	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	w_2	W_3	w_2	<i>W</i> ₃	W_2	<i>W</i> ₃	w_2	W_3	W_2	<i>W</i> ₃
0,047	0,453	0,052	0,000	0,042	0,958	0,048	0,455	0,061	0,000	0,034	0,966
0,096	0,455	0,072	0,000	0,119	0,881	0,099	0,454	0,132	0,000	0,063	0,937
0,147	0,405	0,097	0,000	0,196	0,804	0,150	0,403	0,162	0,000	0,137	0,863
0,199	0,402	0,117	0,000	0,267	0,733	0,203	0,402	0,183	0,000	0,222	0,778
0,247	0,351	0,145	0,000	0,338	0,662	0,250	0,354	0,228	0,000	0,273	0,727
0,300	0,349	0,160	0,000	0,401	0,599	0,307	0,353	0,231	0,000	0,367	0,633
0,345	0,305	0,211	0,000	0,451	0,549						
0,397	0,304	0,226	0,000	0,505	0,495						
0,450	0,249	0,240	0,000	0,588	0,412						
0,502	0,250	0,261	0,000	0,623	0,377						
0,578	0,211	0,277	0,000	0,702	0,298						
<i>n</i> -heksa	ın (1) – p	iridin (2)-ChC	l-Gly 1:1	,5 (3)	<i>n</i> -hepta	un (1) – p	iridin (2) – ChCl	l-Gly 1:1	,5 (3)
početna	ı smjesa	rafinat	na faza	ekstrak	tna faza	početna	a smjesa	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃
0,051	0,427	0,064	0,000	0,035	0,965	0,051	0,462	0,042	0,000	0,060	0,940
0,101	0,459	0,129	0,000	0,073	0,927	0,101	0,465	0,094	0,000	0,107	0,893
0,152	0,417	0,191	0,000	0,107	0,893	0,154	0,396	0,141	0,000	0,168	0,832
0,209	0,401	0,234	0,000	0,183	0,817	0,200	0,410	0,187	0,000	0,211	0,789
0,244	0,371	0,270	0,000	0,216	0,784	0,251	0,352	0,237	0,000	0,266	0,734
0,293	0,361	0,357	0,000	0,218	0,782	0,297	0,348	0,295	0,000	0,298	0,702
0,364	0,280	0,428	0,000	0,260	0,740	0,352	0,298	0,379	0,000	0,317	0,683
						0,389	0,314	0,444	0,000	0,328	0,672

Tablica 4.8. (nastavak) Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s piridinom.

<i>i</i> -oktan (1) – piridin (2) – ChCl-Gly 1:1,5 (3)						toluen ((1) – pirio	din (2) –	ChCl- (Gly 1:1,5	(3)
početna	ı smjesa	rafinat	na faza	ekstrak	tna faza	početna	ı smjesa	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	w_2	<i>w</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃
0,050	0,453	0,065	0,000	0,032	0,968	0,051	0,459	0,055	0,000	0,046	0,954
0,099	0,455	0,127	0,000	0,070	0,930	0,100	0,456	0,127	0,000	0,071	0,929
0,153	0,391	0,188	0,000	0,107	0,893	0,158	0,376	0,207	0,000	0,087	0,913
0,202	0,392	0,212	0,000	0,206	0,794	0,201	0,409	0,284	0,000	0,103	0,897
0,255	0,350	0,278	0,000	0,227	0,773	0,249	0,362	0,308	0,000	0,174	0,826
0,296	0,352	0,317	0,000	0,274	0,726	0,299	0,355	0,343	0,000	0,251	0,749
0,346	0,304	0,357	0,000	0,333	0,667	0,360	0,298	0,390	0,000	0,321	0,679
0,393	0,307	0,407	0,000	0,379	0,621	0,396	0,306	0,422	0,000	0,368	0,632
n-heksa	un (1) – p	iridin (2) - ChC	l-Gly 1:2	2 (3)	<i>n</i> -hepta	n (1) – p	iridin (2) - ChC	l-Gly 1:2	(3)
početna	ı smjesa	rafinat	na faza	ekstrak	tna faza	početna	ı smjesa	rafinat	na faza	ekstrak	tna faza
<i>W</i> ₂	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	W_2	<i>W</i> ₃
0,053	0,413	0,061	0,000	0,043	0,957	0,051	0,422	0,055	0,000	0,047	0,953
0,101	0,428	0,106	0,000	0,096	0,904	0,105	0,429	0,102	0,000	0,108	0,892
0,155	0,393	0,153	0,000	0,158	0,842	0,156	0,370	0,153	0,000	0,160	0,840
0,209	0,374	0,210	0,000	0,208	0,792	0,203	0,378	0,202	0,000	0,204	0,796
0,240	0,423	0,245	0,000	0,236	0,764	0,253	0,334	0,255	0,000	0,250	0,750
0,303	0,345	0,323	0,000	0,282	0,718	0,306	0,337	0,318	0,000	0,292	0,708
0,350	0,301	0,390	0,000	0,296	0,704	0,357	0,284	0,382	0,000	0,322	0,678
						0,407	0,287	0,465	0,000	0,328	0,672
<i>i</i> -oktan	(1) - pir	idin (2) -	- ChCl-	Gly 1:2 (3)	toluen ((1) - pirio	din (2) –	ChCl-C	Gly 1:2 (3	5)
početna	i smjesa	rafinat	na faza	ekstrak	tna faza	početna	ı smjesa	rafinat	na faza	ekstrak	tna faza
<i>W</i> ₂	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃
0,046	0,472	0,069	0,000	0,023	0,977	0,049	0,483	0,031	0,000	0,066	0,934
0,098	0,441	0,106	0,000	0,090	0,910	0,102	0,429	0,116	0,000	0,087	0,913
0,155	0,423	0,149	0,000	0,161	0,839	0,155	0,424	0,191	0,000	0,117	0,883
0,206	0,379	0,193	0,000	0,220	0,780	0,208	0,380	0,260	0,000	0,142	0,858
0,250	0,377	0,239	0,000	0,261	0,739	0,254	0,400	0,321	0,000	0,185	0,815
0,309	0,334	0,294	0,000	0,325	0,675	0,291	0,357	0,342	0,000	0,232	0,768
0,380	0,260	0,376	0,000	0,385	0,615	0,335	0,355	0,401	0,000	0,265	0,735
0,407	0,283	0,403	0,000	0,412	0,588	0,398	0,306	0,470	0,000	0,308	0,692
						0,452	0,316	0,528	0,000	0,379	0,621

Tablica 4.8. (nastavak) Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s piridinom.

n-heksa	un (1) – p	iridin (2) - ChC	l-Gly 1:3	3 (3)	<i>n</i> -hepta	n (1) – p	iridin (2) - ChC	l-Gly 1:3	(3)
početna	i smjesa	rafinat	na faza	ekstrak	tna faza	početna	a smjesa	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	W_2	<i>W</i> ₃
0,051	0,469	0,051	0,000	0,051	0,949	0,050	0,459	0,047	0,000	0,052	0,948
0,127	0,590	0,079	0,000	0,149	0,851	0,100	0,455	0,083	0,000	0,117	0,883
0,197	0,511	0,120	0,000	0,236	0,764	0,151	0,401	0,118	0,000	0,185	0,815
0,244	0,486	0,157	0,000	0,285	0,715	0,200	0,400	0,149	0,000	0,246	0,754
0,305	0,425	0,199	0,000	0,358	0,642	0,251	0,348	0,190	0,000	0,310	0,690
0,342	0,400	0,238	0,000	0,395	0,605	0,296	0,360	0,230	0,000	0,350	0,650
0,386	0,355	0,291	0,000	0,441	0,559	0,351	0,297	0,281	0,000	0,418	0,582
0,426	0,329	0,366	0,000	0,463	0,537	0,389	0,313	0,325	0,000	0,439	0,561
0,481	0,269	0,457	0,000	0,502	0,498	0,442	0,261	0,434	0,000	0,450	0,550
						0,476	0,264	0,495	0,000	0,456	0,544
<i>i</i> -okt	an (1) –	piridin (2) - ChC	Cl-Gly 1:	3 (3)	tolu	en (1) – p	oiridin (2	2) – ChC	Cl-Gly 1:	3 (3)
početna	ı smjesa	rafinat	na faza	ekstrak	tna faza	početna	ı smjesa	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	w_2	<i>W</i> ₃	W_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃
0,050	0,462	0,052	0,000	0,048	0,952	0,051	0,455	0,953	0,000	0,055	0,945
0,098	0,458	0,079	0,000	0,116	0,884	0,097	0,458	0,876	0,000	0,069	0,931
0,152	0,393	0,110	0,000	0,196	0,804	0,148	0,402	0,822	0,000	0,113	0,887
0,202	0,401	0,145	0,000	0,252	0,748	0,203	0,403	0,729	0,000	0,123	0,877
0,254	0,346	0,180	0,000	0,324	0,676	0,255	0,353	0,697	0,000	0,194	0,806
0,291	0,352	0,204	0,000	0,362	0,638	0,301	0,353	0,634	0,000	0,222	0,778
0,344	0,305	0,242	0,000	0,432	0,568	0,346	0,306	0,610	0,000	0,286	0,714
0,400	0,309	0,305	0,000	0,468	0,532	0,407	0,308	0,514	0,000	0,308	0,692
0,456	0,254	0,373	0,000	0,527	0,473	0,453	0,256	0,485	0,000	0,359	0,641
0,505	0,264	0,418	0,000	0,562	0,438	0,496	0,257	0,455	0,000	0,437	0,563
0,546	0,207	0,494	0,000	0,596	0,404	0,546	0,211	0,408	0,000	0,477	0,523
0.598	0.212	0,537	0,000	0,641	0,359	0,613	0,203	0,346	0,000	0,568	0,432

Tablica 4.8. (nastavak) Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s piridinom.

<i>n</i> -heksan (1) – tiofen (2) – ChCl-EG 1:2 (3)				<i>n</i> -hepta	n (1) – ti	ofen (2) -	- ChCl-	<i>i</i> -oktan	(1) - tiof	fen (2) –	ChCl-
ChCl-E	EG 1:2 (3)		EG 1:2	(3)			EG 1:2	(3)		
poč	etna	rafinat	na faza	početna	ı smjesa	rafinat	na faza	početna	ı smjesa	rafinat	na faza
smj	jesa										
w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃	w_2	<i>W</i> ₃
0,046	0,476	0,082	0,000	0,048	0,485	0,101	0,000	0,047	0,487	0,098	0,000
0,097	0,466	0,166	0,000	0,110	0,512	0,225	0,000	0,097	0,468	0,196	0,000
0,150	0,410	0,225	0,000	0,168	0,464	0,315	0,000	0,154	0,409	0,287	0,000
0,205	0,408	0,317	0,000	0,226	0,448	0,422	0,000	0,208	0,400	0,385	0,000
0,257	0,352	0,374	0,000	0,279	0,402	0,480	0,000	0,249	0,365	0,439	0,000
0,317	0,361	0,477	0,000	0,327	0,391	0,553	0,000	0,298	0,375	0,529	0,000
0,362	0,321	0,517	0,000	0,399	0,321	0,604	0,000	0,359	0,308	0,573	0,000
0,407	0,309	0,579	0,000	0,453	0,321	0,682	0,000	0,406	0,307	0,644	0,000
0,460	0,259	0,617	0,000	0,546	0,283	0,772	0,000	0,473	0,268	0,697	0,000
0,499	0,261	0,684	0,000	0,633	0,216	0,813	0,000	0,590	0,223	0,796	0,000
0,604	0,212	0,774	0,000	0,709	0,181	0,865	0,000	0,704	0,161	0,862	0,000
0,679	0,167	0,829	0,000	0,796	0,120	0,904	0,000				
0,774	0,128	0,901	0,000								
toluen ((1) - tiof	(2)	ChCl	halraa	(1) 4	- f ()		1 4	(1)	(0)	C1 C1
```	(1) (101)	$\operatorname{cn}(2) = \mathbf{v}$	CIICI-	<i>n</i> -neksa	ın (1) – u	oien (2) ·	_	<i>n</i> -nepta	n (1) – ti	ofen (2) -	- ChCl-
EG 1:2	(3)	$\operatorname{cll}(2) = 0$	CIICI-	<i>n</i> -neksa ChCl-E	G 1:3 (3)	oren $(2)$	_	n-nepta EG 1:3	n(1) - tion (3)	ofen (2) -	- ChCl-
EG 1:2 poče	$\frac{(1)^{2}}{(3)}$ etna	rafinat	na faza	ChCl-E početna	G 1:3 (3) smjesa	rafinat	na faza	n-nepta EG 1:3 početna	$\frac{n(1) - ti}{(3)}$	ofen (2) - rafinat	na faza
EG 1:2 poče smj	(1) tion (3) etna jesa	rafinat	na faza	h-neksa ChCl-E početna	G 1:3 (3) smjesa	rafinat	– na faza	n-nepta EG 1:3 početna	n(1) - tion (3) a smjesa	rafinat	na faza
EG 1:2 počo smj W ₂	$\frac{(1)}{(3)}$ etna jesa $w_3$	rafinat $w_2$	na faza $\frac{W_3}{W_3}$	<i>w</i> ₂	$\frac{G \ 1:3 \ (3)}{w_3}$	rafinat $w_2$	na faza w ₃	n-nepta EG 1:3 početna W2	$\frac{n(1) - tio}{(3)}$ n smjesa $w_3$	ofen (2) - rafinat $w_2$	$\frac{-\text{ChCl-}}{\text{na faza}}$
$     EG 1:2     poče     smj          \frac{W_2}{0,045} $	$\frac{(1)}{(3)}$ etna jesa $\frac{W_3}{0,467}$	rafinat $\frac{w_2}{0,066}$	$\frac{1}{W_3}$	$w_2$ 0,042	$\frac{G \ 1:3 \ (3)}{1 \ smjesa}$	rafinat $w_2$ 0,071	$\frac{1}{W_3}$	$\frac{n-\text{hepta}}{\text{EG 1:3}}$ početna $\frac{w_2}{0,043}$	n (1) – the (3) n smjesa $\frac{W_3}{0,469}$	rafinat $ \frac{W_2}{0,085} $	$\frac{-\text{ChCl}}{\text{na faza}}$
$     EG 1:2     poče     smj     w_2     0,045     0,100 $	$   \begin{array}{c}     (1) & \text{trop} \\     (3) \\     etna \\     jesa \\     \hline     \hline           $	$ \frac{w_2}{0,066} $ 0,173	$\frac{W_3}{0,000}$	$\frac{h-heksa}{ChCl-E}$ početna w ₂ 0,042 0,100	$\frac{G \ 1:3 \ (3)}{0.475}$	rafinat $\frac{w_2}{0,071}$ 0,160	$\frac{w_3}{0,000}$	<i>n</i> -nepta EG 1:3 početna <i>w</i> ₂ 0,043 0,106	$\frac{(1) - ti}{(3)}$ n smjesa $\frac{w_3}{0,469}$ 0,520	rafinat $w_2$ 0,085 0,215	$ \frac{w_3}{0,000} $
EG 1:2 poče smj w ₂ 0,045 0,100 0,152	$(1)  \text{trop} \\ (3) \\ \text{etna} \\ \text{jesa} \\ \hline \\ 0,467 \\ 0,470 \\ 0,404 \\ \end{array}$	rafinat $\frac{w_2}{0,066}$ 0,173 0,251	ma faza <u>w₃</u> 0,000 0,000 0,000	<i>w</i> ₂ 0,042 0,100 0,202	$\frac{G \ 1:3 \ (3)}{0,475}$ $\frac{W_3}{0,462}$ $0,405$	$\frac{w_2}{0,071}$ 0,160 0,311		$     \begin{array}{r}       n-hepta \\       EG 1:3 \\       početna \\       \hline       w_2 \\       0,043 \\       0,106 \\       0,166 \\       \end{array} $	n (1) – the (3) n smjesa $w_3$ 0,469 0,520 0,448	rafinat $w_2$ 0,085 0,215 0,307	- ChCI- na faza <u>W₃</u> 0,000 0,000 0,000
EG 1:2 poče smj w ₂ 0,045 0,100 0,152 0,202	$(1)^{-1} \text{ trop} \\ (3)^{-1} \text{ etna} \\ \hline $		w3           0,000           0,000           0,000           0,000           0,000           0,000	<i>w</i> ₂ 0,042 0,202 0,247	$\frac{G \ 1:3 \ (3)}{0.475}$ $\frac{W_3}{0.475}$ $0.462$ $0.405$ $0.367$	rafinat $w_2$ 0,071 0,160 0,311 0,366	ma faza <u>W3</u> 0,000 0,000 0,000 0,000	$   \begin{array}{r}     n-hepta \\     EG 1:3 \\     početna \\     \hline     w_2 \\     0,043 \\     0,106 \\     0,166 \\     0,220 \\   \end{array} $	n (1) – the (3) n smjesa $w_3$ 0,469 0,520 0,448 0,447	rafinat $w_2$ 0,085 0,215 0,307 0,404	- ChCI- na faza <u>w₃</u> 0,000 0,000 0,000 0,000
$\begin{array}{r} \text{EG 1:2} \\ \hline \text{poče} \\ \text{smj} \\ \hline \\ \hline \\ \hline \\ 0,045 \\ 0,100 \\ 0,152 \\ 0,202 \\ 0,243 \\ \end{array}$	$(1)  \text{trop} \\ (3) \\ \hline \text{etna} \\ \hline \text{jesa} \\ \hline \\ 0,467 \\ 0,470 \\ 0,404 \\ 0,392 \\ 0,372 \\ \hline \\ 0,372 \\ \hline \\ (1)  \text{trop} \\ (2)  \text{trop} \\ (3)  \text{trop} \\ (3$	$ \frac{w_2}{0,066} \\ 0,173 \\ 0,251 \\ 0,324 \\ 0,386 $	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	<i>w</i> ₂ 0,042 0,100 0,202 0,247 0,301	$\frac{G \ 1:3 \ (3)}{0,475}$ $\frac{w_3}{0,462}$ $0,462$ $0,405$ $0,367$ $0,378$	rafinat $w_2$ 0,071 0,160 0,311 0,366 0,451	ma faza <u> </u>	$   \begin{array}{r} n-hepta \\       EG 1:3 \\       početna \\       \hline       \\       w_2 \\       0,043 \\       0,106 \\       0,166 \\       0,220 \\       0,274 \\   \end{array} $	n (1) - the (3) n smjesa $w_3$ 0,469 0,520 0,448 0,447 0,392	rafinat $w_2$ 0,085 0,215 0,307 0,404 0,462	- ChCI- na faza 0,000 0,000 0,000 0,000 0,000 0,000
$\begin{array}{c} \text{EG 1:2} \\ \text{poče} \\ \text{smj} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$(1)  \text{trop} \\ (3) \\ \hline (3) \hline \hline (3) $	w2           0,066           0,173           0,251           0,324           0,386           0,459	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	<i>w</i> ₂ 0,042 0,100 0,202 0,247 0,301 0,374	$\frac{W_3}{0,475}$ 0,462 0,405 0,367 0,378 0,299	$ \frac{w_2}{0,071} $ 0,160 0,311 0,366 0,451 0,517		$ \frac{W_2}{0,043} $ 0,106 0,166 0,220 0,274 0,316	n (1) – the (3) n smjesa $w_3$ 0,469 0,520 0,448 0,447 0,392 0,387	w2         0,085         0,215         0,307         0,404         0,462         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,528         0,	- ChCl- na faza 0,000 0,000 0,000 0,000 0,000 0,000 0,000
EG 1:2 poče smj <u>W2</u> 0,045 0,100 0,152 0,202 0,243 0,294 0,365	$(1)  \text{field} \\ (3) \\ \text{etna} \\ \text{ijesa} \\ \hline \\ \hline \\ 0,467 \\ 0,470 \\ 0,404 \\ 0,392 \\ 0,372 \\ 0,370 \\ 0,296 \\ \hline $	rafinat w ₂ 0,066 0,173 0,251 0,324 0,386 0,459 0,508	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	<i>w</i> ₂ 0,042 0,100 0,202 0,247 0,301 0,374 0,412	$\frac{G \ 1:3 \ (3)}{0,475}$ $\frac{w_3}{0,475}$ $0,462$ $0,405$ $0,367$ $0,378$ $0,299$ $0,306$	rafinat $w_2$ 0,071 0,160 0,311 0,366 0,451 0,517 0,580	ma faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$   \begin{array}{r} n-hepta \\       EG 1:3 \\       početna \\       \hline                             $	n (1) - the (3) n smjesa $w_3$ 0,469 0,520 0,448 0,447 0,392 0,387 0,306	rafinat $w_2$ 0,085 0,215 0,307 0,404 0,462 0,528 0,628	- ChCI- na faza 0,000 0,000 0,000 0,000 0,000 0,000 0,000
$\begin{array}{c} \text{EG 1:2} \\ \text{poče} \\ \text{smj} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ $	$(1)  \text{trop} \\ (3) \\ \text{etna} \\ \text{jesa} \\ \hline \\ 0,467 \\ 0,470 \\ 0,404 \\ 0,392 \\ 0,372 \\ 0,370 \\ 0,296 \\ 0,295 \\ \hline $	w2           0,066           0,173           0,251           0,324           0,386           0,459           0,508           0,572	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	w2           0,042           0,100           0,202           0,247           0,301           0,374           0,412           0,496	$\frac{W_3}{0,475}$ 0,462 0,405 0,367 0,378 0,299 0,306 0,263	$ \frac{w_2}{0,071} $ 0,160 0,311 0,366 0,451 0,517 0,580 0,671		$   \begin{array}{r} n-\text{hepta} \\ EG 1:3 \\ početna \\ \hline                                   $	n (1) – the $(3)$ n smjesa $w_3$ 0,469 0,520 0,448 0,447 0,392 0,387 0,306 0,280	rafinat $ \frac{w_2}{0,085} $ 0,215 0,307 0,404 0,462 0,528 0,628 0,743	w3         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,
EG 1:2 poče smj <u>w2</u> 0,045 0,100 0,152 0,202 0,243 0,294 0,365 0,408 0,453	$(1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} ($	w2           0,066           0,173           0,251           0,324           0,386           0,459           0,508           0,572           0,609	W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	<i>w</i> ₂ 0,042 0,042 0,202 0,247 0,301 0,374 0,412 0,496 0,545	$\frac{W_3}{0,475}$ 0,462 0,405 0,367 0,378 0,299 0,306 0,263 0,217	w2           0,071           0,160           0,311           0,366           0,451           0,517           0,580           0,671           0,698	ma faza W ₃ 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000		n (1) - the (3) n smjesa $w_3$ 0,469 0,520 0,448 0,447 0,392 0,387 0,306 0,280 0,175	rafinat w ₂ 0,085 0,215 0,307 0,404 0,462 0,528 0,628 0,628 0,743 0,839	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000
$\begin{array}{c} \text{EG 1:2} \\ \hline \text{poče} \\ \text{smj} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $	$(1)  \text{trop} \\ (3) \\ \text{etna} \\ \text{jesa} \\ \hline \\ 0,467 \\ 0,470 \\ 0,404 \\ 0,392 \\ 0,372 \\ 0,370 \\ 0,296 \\ 0,295 \\ 0,260 \\ 0,218 \\ \hline $	w2           0,066           0,173           0,251           0,324           0,386           0,459           0,508           0,572           0,609           0,700	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	<i>w</i> -neksa ChCl-E početna <i>w</i> ₂ 0,042 0,100 0,202 0,247 0,301 0,374 0,412 0,496 0,545 0,580	$ \frac{W_3}{0,475} \\ 0,462 \\ 0,405 \\ 0,367 \\ 0,378 \\ 0,299 \\ 0,306 \\ 0,263 \\ 0,217 \\ 0,229 $	w2           0,071           0,160           0,311           0,366           0,451           0,517           0,580           0,671           0,698           0,757	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	$\begin{array}{c} n-hepta\\ EG 1:3\\ početna\\ \hline w_2\\ 0,043\\ 0,106\\ 0,166\\ 0,220\\ 0,274\\ 0,316\\ 0,426\\ 0,530\\ 0,693\\ 0,777\\ \end{array}$	n (1) - the (3) n smjesa $w_3$ 0,469 0,520 0,448 0,447 0,392 0,387 0,306 0,280 0,175 0,131	rafinat $w_2$ 0,085 0,215 0,307 0,404 0,462 0,528 0,628 0,743 0,839 0,889	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000
EG 1:2 poče smj w ₂ 0,045 0,100 0,152 0,202 0,243 0,294 0,365 0,408 0,453 0,551 0,618	$(1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} ($	w2           0,066           0,173           0,251           0,324           0,386           0,459           0,508           0,572           0,609           0,700           0,782	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	<i>w</i> -neksa ChCl-E početna <i>w</i> ₂ 0,042 0,100 0,202 0,247 0,301 0,374 0,412 0,496 0,545 0,580 0,776	$\frac{W_3}{0,475}$ 0,462 0,405 0,367 0,378 0,299 0,306 0,263 0,217 0,229 0,119	w2           0,071           0,160           0,311           0,366           0,451           0,517           0,580           0,671           0,698           0,757           0,889	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	$\frac{w_2}{0,043}$ 0,106 0,166 0,220 0,274 0,316 0,426 0,530 0,693 0,777	n (1) - the $(3)$ n smjesa $w_3$ 0,469 0,520 0,448 0,447 0,392 0,387 0,306 0,280 0,175 0,131	w2           0,085           0,215           0,307           0,404           0,528           0,628           0,743           0,839           0,889	w3         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,
$\begin{array}{c} \text{EG 1:2} \\ \hline \text{poče} \\ \text{smj} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $	$(1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} (1)^{-1} ($	rafinat w ₂ 0,066 0,173 0,251 0,324 0,386 0,459 0,508 0,572 0,609 0,700 0,782 0,819	w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	<i>w</i> -neksa ChCl-E početna <i>w</i> ₂ 0,042 0,100 0,202 0,247 0,301 0,374 0,412 0,496 0,545 0,580 0,776	$\frac{W_3}{0,475}$ 0,462 0,405 0,367 0,378 0,299 0,306 0,263 0,217 0,229 0,119	w2           0,071           0,160           0,311           0,366           0,451           0,517           0,580           0,671           0,698           0,757           0,889	ma faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$ \begin{array}{c} n-hepta\\ EG 1:3\\ početna\\ \hline w_2\\ 0,043\\ 0,106\\ 0,106\\ 0,220\\ 0,274\\ 0,316\\ 0,426\\ 0,530\\ 0,693\\ 0,777\\ \end{array} $	n (1) - the (3) n smjesa $w_3$ 0,469 0,520 0,448 0,447 0,392 0,387 0,306 0,280 0,175 0,131	rafinat $w_2$ 0,085 0,215 0,307 0,404 0,462 0,528 0,628 0,743 0,839 0,889	w ₃ 0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000

**Tablica 4.9.** Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s tiofenom.

<i>i</i> -oktan	(1) – tio	fen (2) –	ChCl-	toluen (	(1) - tiofe	en (2) – C	ChCl-	n-heksa	un (1) – ti	ofen (2)	_
EG 1:3	(3)			EG 1:3	(3)			ChCl-E	G 1:3,5 (	(3)	
poč	etna	rafinat	na faza	početna	ı smjesa	rafinat	na faza	početna	ı smjesa	rafinat	na faza
smj	jesa										
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	$W_3$	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,043	0,473	0,080	0,000	0,041	0,472	0,055	0,000	0,046	0,459	0,078	0,000
0,098	0,460	0,197	0,000	0,099	0,470	0,177	0,000	0,102	0,449	0,166	0,000
0,150	0,400	0,276	0,000	0,150	0,398	0,239	0,000	0,153	0,398	0,231	0,000
0,204	0,404	0,378	0,000	0,200	0,414	0,336	0,000	0,212	0,398	0,325	0,000
0,250	0,357	0,436	0,000	0,255	0,353	0,393	0,000	0,268	0,349	0,390	0,000
0,316	0,373	0,554	0,000	0,292	0,361	0,456	0,000	0,312	0,353	0,469	0,000
0,451	0,313	0,709	0,000	0,352	0,308	0,508	0,000	0,367	0,300	0,511	0,000
0,453	0,266	0,673	0,000	0,385	0,320	0,568	0,000	0,415	0,294	0,576	0,000
0,606	0,219	0,811	0,000	0,444	0,266	0,609	0,000	0,471	0,245	0,621	0,000
0,663	0,185	0,843	0,000	0,490	0,273	0,677	0,000	0,529	0,234	0,693	0,000
0,747	0,138	0,886	0,000	0,592	0,217	0,762	0,000	0,634	0,180	0,786	0,000
				0,684	0,167	0,831	0,000	0,718	0,143	0,850	0,000
				0,725	0,167	0,876	0,000	0,820	0,091	0,912	0,000
<i>n</i> -hepta	$\ln(1) - ti$	iofen (2)	_	<i>i</i> -oktan	(1) - tiof	řen (2) –	ChCl-	toluen (	(1) - tiofe	en(2) - 0	ChCl-
ChCl-E	G 1:3,5	(3)		EG 1:3	,5 (3)			EG 1:3	,5 (3)		
poč	etna	rafinat	na faza	početna	ı smjesa	rafinat	na faza	početna	ı smjesa	rafinat	na faza
smj	jesa										
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,046	0,462	0,091	0,000	0,046	0,459	0,094	0,000	0,046	0,460	0,067	0,000
0,115	0,503	0,228	0,000	0,102	0,456	0,204	0,000	0,103	0,452	0,177	0,000
0,173	0,443	0,316	0,000	0,155	0,402	0,290	0,000	0,156	0,401	0,258	0,000
0,230	0,434	0,411	0,000	0,210	0,398	0,390	0,000	0,211	0,400	0,354	0,000
0,289	0,377	0,478	0,000	0,264	0,340	0,452	0,000	0,264	0,347	0,415	0,000
0,332	0,377	0,551	0,000	0,332	0,369	0,583	0,000	0,316	0,351	0,498	0,000
0,381	0,328	0,587	0,000	0,429	0,304	0,670	0,000	0,383	0,307	0,564	0,000
0,449	0,320	0,674	0,000	0,515	0,245	0,734	0,000	0,414	0,294	0,602	0,000
0,548	0,254	0,745	0,000	0,626	0,184	0,807	0,000	0,522	0,243	0,710	0,000
0,641	0,201	0,812	0,000	0,722	0,142	0,867	0,000	0,624	0,191	0,785	0,000
0,740	0,144	0,866	0,000	0,814	0,092	0,910	0,000	0,745	0,113	0,851	0,000
0,830	0,096	0,917	0,000					0,814	0,099	0,911	0,000

**Tablica 4.9.** (nastavak) Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s tiofenom.

<i>n</i> -heksa	an(1) - t	iofen (2)	_	<i>n</i> -heptan (1) – tiofen (2) – ChCl-				<i>i</i> -oktan	(1) - tiof	en(2) - 6	ChCl-
ChCl-C	Gly 1:1,5	(3)		Gly 1:1	,5 (3)			Gly 1:1	,5 (3)		
poč	etna	rafinat	na faza	početna	smjesa	rafinat	na faza	početna	smjesa	rafinat	na faza
smj	jesa			1	5				5		
	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃
0,050	0,476	0,092	0,000	0,049	0,441	0,089	0,000	0,046	0,453	0,088	0,000
0,117	0,407	0,184	0,000	0,111	0,500	0,232	0,000	0,102	0,453	0,213	0,000
0,167	0,385	0,254	0,000	0,175	0,436	0,325	0,000	0,157	0,400	0,298	0,000
0,227	0,383	0,350	0,000	0,239	0,442	0,453	0,000	0,209	0,409	0,404	0,000
0,280	0,330	0,406	0,000	0,292	0,375	0,493	0,000	0,262	0,349	0,459	0,000
0,362	0,283	0,497	0,000	0,327	0,381	0,553	0,000	0,292	0,359	0,513	0,000
0,443	0,271	0,606	0,000	0,386	0,320	0,591	0,000	0,348	0,302	0,561	0,000
0,493	0,221	0,635	0,000	0,433	0,321	0,662	0,000	0,408	0,300	0,643	0,000
0,547	0,229	0,716	0,000	0,501	0,261	0,699	0,000	0,457	0,252	0,674	0,000
0,596	0,177	0,733	0,000	0,541	0,253	0,739	0,000	0,503	0,254	0,726	0,000
0,649	0,172	0,794	0,000	0,590	0,209	0,760	0,000	0,556	0,203	0,747	0,000
				0,644	0,205	0,817	0,000	0,621	0,197	0,808	0,000
								0,712	0,149	0,861	0,000
								0,814	0,097	0,911	0,000
								0,847	0,103	0,950	0,000
toluen (	(1) - tiof	ien(2) - 6	ChCl-	<i>n</i> -heksa	un (1) – ti	ofen (2)	_	<i>n</i> -hepta	n (1) – ti	ofen (2) -	- ChCl-
Gly 1:1	,5 (3)			ChCl-G	ily 1:2 (3	)		Gly 1:2	(3)		
poč	etna	rafinat	na faza	početna	ı smjesa	rafinat	na faza	početna	ı smjesa	rafinat	na faza
smj	jesa										
$W_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,044	0,461	0,061	0,000	0,035	0,483	0,011	0,000	0,053	0,490	0,094	0,000
0,100	0,457	0,162	0,000	0,096	0,407	0,154	0,000	0,101	0,449	0,170	0,000
0,154	0,406	0,221	0,000	0,147	0,392	0,223	0,000	0,152	0,398	0,237	0,000
0,210	0,406	0,344	0,000	0,194	0,408	0,314	0,000	0,203	0,398	0,324	0,000
0,264	0,348	0,399	0,000	0,245	0,419	0,350	0,000	0,219	0,433	0,371	0,000
0,297	0,357	0,448	0,000	0,303	0,344	0,446	0,000	0,307	0,345	0,453	0,000
0,351	0,302	0,493	0,000	0,353	0,298	0,490	0,000	0,356	0,297	0,489	0,000
0,420	0,298	0,587	0,000	0,402	0,294	0,564	0,000	0,402	0,293	0,551	0,000
0,461	0,255	0,615	0,000	0,456	0,241	0,603	0,000	0,502	0,247	0,649	0,000
0,513	0,253	0,686	0,000	0,506	0,244	0,673	0,000	0,554	0,197	0,674	0,000
0,562	0,204	0,695	0,000	0,557	0,194	0,695	0,000	0,609	0,193	0,734	0,000
0,619	0,201	0,774	0,000	0,603	0,198	0,759	0,000				
				0,720	0,129	0,835	0,000				
				0,812	0,090	0,903	0,000				

**Tablica 4.9.** (nastavak) Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s tiofenom.

<i>i</i> -oktan (1) – tiofen (2) – ChCl Gly 1:2 (3)				toluen (	(1) - tiofe	en(2) - C	ChCl-	<i>n</i> -heksa	$\ln(1) - ti$	ofen (2)	_
Gly 1:2	2 (3)			Gly 1:2	(3)			ChCl-G	ily 1:3 (3	)	
poč	etna	rafinat	na faza	početna	a smjesa	rafinat	na faza	početna	smjesa	rafinat	na faza
smj	jesa										
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,494	0,052	0,088	0,000	0,499	0,052	0,079	0,000	0,044	0,415	0,078	0,000
0,439	0,106	0,174	0,000	0,448	0,103	0,165	0,000	0,100	0,399	0,162	0,000
0,399	0,149	0,234	0,000	0,398	0,151	0,234	0,000	0,154	0,349	0,224	0,000
0,394	0,203	0,324	0,000	0,398	0,203	0,316	0,000	0,211	0,350	0,314	0,000
0,336	0,263	0,383	0,000	0,341	0,256	0,376	0,000	0,260	0,310	0,368	0,000
0,342	0,307	0,457	0,000	0,339	0,315	0,450	0,000	0,311	0,310	0,451	0,000
0,300	0,355	0,499	0,000	0,299	0,354	0,484	0,000	0,356	0,272	0,494	0,000
0,297	0,404	0,564	0,000	0,292	0,405	0,559	0,000	0,417	0,267	0,575	0,000
0,248	0,455	0,597	0,000	0,246	0,455	0,595	0,000	0,461	0,231	0,604	0,000
0,248	0,501	0,657	0,000	0,191	0,540	0,667	0,000	0,519	0,228	0,686	0,000
0,196	0,551	0,676	0,000	0,195	0,554	0,685	0,000	0,564	0,183	0,711	0,000
				0,198	0,599	0,747	0,000	0,613	0,182	0,770	0,000
								0,719	0,134	0,848	0,000
								0,820	0,094	0,917	0,000
1 /	(1)										
<i>n</i> -hepta	ın (1) – ti	ofen (2)	_	<i>i</i> -oktan	(1) - tiof	en(2) - 6	ChCl-	toluen (	(1) - tiofe	en(2) - C	ChCl-
<i>n</i> -hepta ChCl-C	in (1) – ti Gly 1:3 (3	ofen (2) 3)	_	<i>i</i> -oktan Gly 1:3	(1) - tiof (3)	čen (2) – (	ChCl-	toluen ( Gly 1:3	$\begin{array}{c} (1) - \text{tiofe} \\ (3) \end{array}$	en(2) - C	ChCl-
n-hepta ChCl-C poč	in (1) – ti Gly 1:3 (3 etna	iofen (2) 3) rafinat	– na faza	<i>i</i> -oktan Gly 1:3 početna	$\frac{(1) - \text{tiof}}{(3)}$	rafinat	ChCl- na faza	toluen ( Gly 1:3 početna	$\frac{(1) - \text{tiofe}}{(3)}$	en (2) – C	ChCl- na faza
n-hepta ChCl-C poč smj	in (1) – ti Gly 1:3 (3 etna jesa	iofen (2) 3) rafinat	– na faza	<i>i</i> -oktan Gly 1:3 početna	(1) - tiof (3) (3) (3)	rafinat	ChCl- na faza	toluen ( Gly 1:3 početna	$\frac{(1) - \text{tiofe}}{(3)}$	en (2) – C	ChCl- na faza
n-hepta ChCl-C poč smj	$\frac{1}{1} - \frac{1}{1}$ $\frac{1}{2} - \frac{1}{3}$ $\frac{1}{2}$ $\frac{1}$	1000000000000000000000000000000000000	-na faza $w_3$	<i>i</i> -oktan Gly 1:3 početna <i>w</i> ₂	$\frac{(1) - \text{tiof}}{(3)}$ a smjesa $\frac{W_3}{W_3}$	$\frac{2}{2} = \frac{1}{2}$	ChCl- na faza W3	toluen ( Gly 1:3 početna W ₂	$\frac{(1) - \text{tiofe}}{(3)}$ smjesa $\frac{W_3}{W_3}$	rafinat $w_2$	ChCl- na faza W3
$ \frac{h-hepta}{ChCl-C} $ $ \frac{bc}{poč} \\ \frac{bc}{smj} \\ \frac{w_2}{0,047} $	$\frac{10}{100} - \frac{10}{100} = \frac{100}{100}$ $\frac{100}{100} = \frac{100}{100}$ $\frac{100}{100} = \frac{100}{100}$ $\frac{100}{100} = \frac{100}{100}$ $\frac{100}{100} = \frac{100}{100}$	rafinat $\frac{w_2}{0,091}$	$\frac{1}{w_3}$	<i>i</i> -oktan Gly 1:3 početna <u>W2</u> 0,048	$(1) - tiof(3)a smjesaw_30,399$	$\frac{2}{2}$ rafinat $\frac{w_2}{0,091}$	ChCl- na faza $w_3$ 0,000	toluen ( Gly 1:3 početna <u>w₂</u> 0,049	$\frac{(1) - \text{tiofe}}{(3)}$ $\frac{w_3}{0,410}$	$\frac{w_2}{0,062}$	$\frac{W_3}{0,000}$
$ \begin{array}{r} n-hepta\\ ChCl-C\\ poč\\ smj\\ \hline w_2\\ \hline 0,047\\ 0,120\\ \end{array} $	$\frac{w_1(1) - t_1}{b_1(1) - t_2}$ $\frac{w_3}{0,421}$ $0,456$	rafinat $\frac{w_2}{0,091}$ 0,236	- na faza <u>w₃</u> 0,000 0,000	<i>i</i> -oktan Gly 1:3 početna <u>w2</u> 0,048 0,106	$(1) - \text{tiof} \\ (3) \\ x \text{ smjesa} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ $	rafinat $\frac{w_2}{0,091}$ 0,205	ChCl- na faza <u>W3</u> 0,000 0,000	toluen ( Gly 1:3 početna <u>w₂</u> 0,049 0,108	$\frac{(1) - \text{tiofe}}{(3)}$ x smjesa $\frac{w_3}{0,410}$ 0,413	rafinat $w_2$ 0,062 0,158	W3         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,
$ \begin{array}{r} n-hepta \\ \underline{ChCl-C} \\ poč \\ smj \\ \hline w_2 \\ 0,047 \\ 0,120 \\ 0,172 \\ \end{array} $	$\frac{w_1(1) - t_1}{b_1(1) - t_2}$ $\frac{w_1}{b_2(1) - t_2}$ $\frac{w_3}{b_1(1) - t_2}$	rafinat $\frac{w_2}{0,091}$ 0,236 0,300	$ \frac{w_3}{0,000} \\ 0,000 \\ 0,000 $	<i>i</i> -oktan Gly 1:3 početna <i>w</i> ₂ 0,048 0,106 0,161	$(1) - \text{tiof} (3) a smjesa w_3 0,399 0,406 0,376$	rafinat $w_2$ 0,091 0,205 0,301	ChCl- na faza <u>w₃</u> 0,000 0,000 0,000	toluen ( Gly 1:3 početna w ₂ 0,049 0,108 0,163	$   \begin{array}{c}     (1) - \text{tiofe} \\     (3) \\     1 \text{ smjesa} \\     \hline     \hline     w_3 \\     0,410 \\     0,413 \\     0,372   \end{array} $	$\frac{w_2}{0,062}$ 0,158 0,251	W3           0,000           0,000           0,000           0,000
$ \begin{array}{r}     n-hepta \\     ChCl-C \\     poč \\     smj \\     \hline     w_2 \\     0,047 \\     0,120 \\     0,172 \\     0,228 \\ \end{array} $	$\frac{w_1(1) - t_1}{b_1 + t_2} = t_1 + t_2 + t_3 + t_3 + t_4 + t_4 + t_3 + t_4 +$	w2         0,091         0,236         0,300         0,408		<i>i</i> -oktan Gly 1:3 početna <u>w2</u> 0,048 0,106 0,161 0,209	$(1) - \text{tiof} \\ (3) \\ \hline w_3 \\ \hline w_3 \\ \hline 0,399 \\ 0,406 \\ 0,376 \\ 0,369 \\ \end{cases}$	$\frac{w_2}{0,091}$ 0,205 0,301 0,381	ChCl-           na faza           W3           0,000           0,000           0,000           0,000           0,000           0,000	toluen ( Gly 1:3 početna $w_2$ 0,049 0,108 0,163 0,219	$   \begin{array}{r}     (1) - \text{tiofe} \\     (3) \\     \hline     xmjesa \\     \hline     \hline     w_3 \\     0,410 \\     0,413 \\     0,372 \\     0,372 \\     0,372   \end{array} $	$\frac{w_2}{0,062}$ 0,158 0,251 0,349	W3         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,
$ \begin{array}{r} n-hepta\\ \underline{ChCl-C}\\ poč\\smj\\ \hline w_2\\ 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ \end{array} $	$\frac{w_1(1) - ta}{bly \ 1:3 \ (3)}$ etna jesa $\frac{w_3}{0,421}$ 0,456 0,396 0,407 0,346	rafinat $w_2$ 0,091 0,236 0,300 0,408 0,475		<i>i</i> -oktan Gly 1:3 početna <i>w</i> ₂ 0,048 0,106 0,161 0,209 0,272	(1) - tiof (3) 1  smjesa	rafinat $w_2$ 0,091 0,205 0,301 0,381 0,426	ChCl- na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000	toluen ( Gly 1:3 početna w ₂ 0,049 0,108 0,108 0,163 0,219 0,277	$   \begin{array}{r}     (1) - \text{tiofe} \\     (3) \\     1 \text{ smjesa} \\     \hline      \hline     \hline     \hline      \hline      \hline      \hline      \hline      \hline      \hline      \hline       $	$\frac{w_2}{0,062}$ 0,158 0,251 0,349 0,400	W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000
$ \begin{array}{r} n-hepta\\ \underline{ChCl-C}\\ poč\\smj\\ \hline w_2\\ 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ 0,355\\ \end{array} $	$\frac{w_1(1) - ta}{bly 1:3 (3)}$ etna jesa $\frac{w_3}{0,421}$ 0,456 0,396 0,407 0,346 0,332	rafinat $w_2$ 0,091 0,236 0,300 0,408 0,475 0,558		<i>i</i> -oktan Gly 1:3 početna <i>w</i> ₂ 0,048 0,106 0,161 0,209 0,272 0,324	$(1) - \text{tiof} (3) = \frac{(3)^{-1}}{(3)^{-1}}$ $(3)^{-1} \text{ smjesa} = \frac{w_3}{0,399} = \frac{0,399}{0,406} = \frac{0,376}{0,369} = \frac{0,315}{0,314} = \frac{0,314}{0,314}$	$ \frac{w_2}{0,091} $ 0,301 0,381 0,426 0,543	ChCl-           na faza           w3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	toluen ( Gly 1:3 početna $w_2$ 0,049 0,108 0,163 0,219 0,277 0,334	$   \begin{array}{r}     \begin{array}{r}         (1) - \text{tiofe} \\         (3) \\         \hline         xmjesa \\         \hline         w_3 \\         \hline         0,410 \\         0,413 \\         0,372 \\         0,372 \\         0,335 \\         0,323 \\     \end{array} $	$\frac{w_2}{0,062}$ 0,158 0,251 0,349 0,400 0,492	W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000
$ \begin{array}{r} n-hepta\\ ChCl-C\\ poč\\ smj\\ \hline w_2\\ 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ 0,355\\ 0,402\\ \end{array} $	$ \begin{array}{r} \text{in (1) - th} \\ \text{Gly 1:3 (3)} \\ \text{etna} \\ \text{jesa} \\ \hline \hline$	w2         0,091         0,236         0,300         0,408         0,475         0,558         0,589		<i>i</i> -oktan Gly 1:3 početna <u>w2</u> 0,048 0,106 0,161 0,209 0,272 0,324 0,364	(1) – tiof (3) 1 smjesa	rafinat $w_2$ 0,091 0,205 0,301 0,381 0,426 0,543 0,575	ChCl- na faza <u>W3</u> 0,000 0,000 0,000 0,000 0,000 0,000 0,000	toluen ( Gly 1:3 početna $w_2$ 0,049 0,108 0,163 0,219 0,277 0,334 0,390	$   \begin{array}{r}     (1) - \text{tiofe} \\     (3) \\     1 \text{ smjesa} \\     \hline      \hline     \hline     \hline      \hline     \hline      \hline      \hline      \hline      \hline      \hline      \hline       $	$\frac{w_2}{0,062}$ 0,158 0,251 0,349 0,400 0,492 0,539	W3         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,
$ \begin{array}{r} n-hepta\\ \underline{ChCl-C}\\ poč\\smj\\ \hline w_2\\ 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ 0,355\\ 0,402\\ 0,459\\ \end{array} $	$ \begin{array}{r} \text{In (1) - th} \\ \text{Gly 1:3 (3)} \\ \text{etna} \\ \text{jesa} \\ \hline \hline$	w2         0,091         0,236         0,300         0,408         0,475         0,558         0,589         0,686		<i>i</i> -oktan Gly 1:3 početna 0,048 0,106 0,161 0,209 0,272 0,324 0,364 0,401	(1) - tiof (3) 1 smjesa $w_3$ 0,399 0,406 0,376 0,369 0,315 0,314 0,275 0,283	rafinat $w_2$ 0,091 0,205 0,301 0,426 0,543 0,575 0,631	ChCl-           na faza           W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	toluen ( Gly 1:3 početna w ₂ 0,049 0,108 0,108 0,163 0,219 0,277 0,334 0,390 0,429	1) - tiofe         (3)         1 smjesa         W3         0,410         0,413         0,372         0,372         0,335         0,223         0,273	$\frac{w_2}{0,062}$ 0,158 0,251 0,349 0,400 0,492 0,539 0,588	W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000
$\begin{array}{r} n-hepta\\ \hline h-hepta\\ \hline ChCl-C\\ \hline poč\\ smj\\ \hline w_2\\ \hline 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ 0,355\\ 0,402\\ 0,459\\ 0,515\\ \end{array}$	$ \begin{array}{r} \text{in (1) - till} \\ \text{Gly 1:3 (3)} \\ \text{etna} \\ \text{jesa} \\ \hline \hline$	w2         0,091         0,236         0,300         0,408         0,475         0,558         0,589         0,686         0,691		<i>i</i> -oktan Gly 1:3 početna <u>w2</u> 0,048 0,106 0,161 0,209 0,272 0,324 0,364 0,401 0,461	(1) – tiof (3) 1 smjesa 0,399 0,406 0,376 0,369 0,315 0,314 0,275 0,283 0,237	$ \frac{w_2}{0,091} $ 0,205 0,301 0,381 0,426 0,543 0,575 0,631 0,673	ChCl-           na faza           3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	toluen ( Gly 1:3 početna 0,049 0,108 0,163 0,219 0,277 0,334 0,390 0,429 0,477	$   \begin{array}{r}     \begin{array}{r}         (1) - \text{tiofe} \\         (3) \\         \hline         (3) \\         1 \text{ smjesa} \\         \hline         \\         \hline         $	$\frac{w_2}{0,062}$ 0,158 0,251 0,349 0,400 0,492 0,539 0,588 0,619	W3         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,
$\begin{array}{r} n-hepta\\ \hline h-hepta\\ \hline chCl-C\\ poč\\ smj\\ \hline w_2\\ \hline 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ 0,355\\ 0,402\\ 0,459\\ 0,515\\ 0,562\\ \end{array}$	$ \begin{array}{r} \text{in (1) - th} \\ \text{Gly 1:3 (3)} \\ \text{etna} \\ \text{jesa} \\ \hline \begin{array}{c} w_3 \\ \hline 0,421 \\ 0,456 \\ 0,396 \\ 0,407 \\ 0,346 \\ 0,332 \\ 0,287 \\ 0,293 \\ 0,230 \\ 0,225 \\ \end{array} $	rafinat $w_2$ 0,091 0,236 0,300 0,408 0,475 0,558 0,589 0,686 0,691 0,741		<i>i</i> -oktan Gly 1:3 početna <i>w</i> ₂ 0,048 0,106 0,161 0,209 0,272 0,324 0,364 0,401 0,461 0,525	(1) – tiof (3) a smjesa w ₃ 0,399 0,406 0,376 0,369 0,315 0,314 0,275 0,283 0,237 0,231	rafinat $w_2$ 0,091 0,205 0,301 0,426 0,543 0,575 0,631 0,673 0,739	ChCl-           na faza           3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	toluen ( Gly 1:3 početna 0,049 0,108 0,163 0,219 0,277 0,334 0,390 0,429 0,477 0,534	1) - tiofe         (3)         1 smjesa         w3         0,410         0,413         0,372         0,372         0,335         0,270         0,273         0,226         0,224	$ \frac{w_2}{0,062} \\ 0,158 \\ 0,251 \\ 0,349 \\ 0,400 \\ 0,492 \\ 0,539 \\ 0,588 \\ 0,619 \\ 0,697 $	W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000
$\begin{array}{r} n-hepta\\ \hline ChCl-Cl}{poč}\\ \hline smj\\ \hline w_2\\ 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ 0,355\\ 0,402\\ 0,459\\ 0,515\\ 0,562\\ 0,614\\ \end{array}$	$\begin{array}{c} \text{in (1)} - \text{tr}\\ \text{Gly 1:3 (3)}\\ \text{etna}\\ \text{jesa}\\ \hline \hline w_3\\ 0,421\\ 0,456\\ 0,396\\ 0,407\\ 0,346\\ 0,332\\ 0,287\\ 0,293\\ 0,223\\ 0,230\\ 0,225\\ 0,181\\ \end{array}$	w1         w2         0,091         0,236         0,300         0,408         0,475         0,558         0,589         0,686         0,691         0,741         0,768		<i>i</i> -oktan Gly 1:3 početna <i>w</i> ₂ 0,048 0,106 0,161 0,209 0,272 0,324 0,364 0,401 0,461 0,525 0,565	(1) – tiof (3) a smjesa 0,399 0,406 0,376 0,369 0,315 0,314 0,275 0,283 0,237 0,231 0,176	rafinat $w_2$ 0,091 0,205 0,301 0,426 0,543 0,575 0,631 0,673 0,739 0,743	ChCl-           na faza           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	toluen ( Gly 1:3 početna w ₂ 0,049 0,108 0,163 0,219 0,277 0,334 0,390 0,429 0,477 0,534 0,587	$   \begin{array}{r}     (1) - \text{tiofe} \\     (3) \\     1 \text{ smjesa} \\     \hline      \hline     \hline     \hline     \hline     \hline     \hline      \hline      \hline      \hline      \hline      \hline     \hline      \hline       $	$\frac{w_2}{0,062}$ 0,158 0,251 0,349 0,400 0,492 0,539 0,588 0,619 0,697 0,713	W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000
$\begin{array}{r} n-hepta\\ \hline ChCl-C\\ poč\\ smj\\ \hline w_2\\ \hline 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ 0,355\\ 0,402\\ 0,459\\ 0,515\\ 0,562\\ 0,614\\ 0,668\\ \end{array}$	$\begin{array}{c} \text{in (1)} - \text{tr}\\ \text{Gly 1:3 (3)}\\ \text{etna}\\ \text{jesa}\\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	w2         0,091         0,236         0,300         0,408         0,475         0,558         0,589         0,686         0,691         0,741         0,768         0,817		<i>i</i> -oktan Gly 1:3 početna <i>w</i> ₂ 0,048 0,106 0,161 0,209 0,272 0,324 0,364 0,401 0,461 0,525 0,565 0,608	(1) – tiof (3) 1 smjesa w ₃ 0,399 0,406 0,376 0,369 0,315 0,314 0,275 0,283 0,237 0,231 0,176 0,185	rafinat $w_2$ 0,091 0,205 0,301 0,426 0,543 0,575 0,631 0,673 0,739 0,743 0,794	ChCl-           na faza           W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	toluen ( Gly 1:3 početna 0,049 0,108 0,163 0,219 0,277 0,334 0,390 0,429 0,477 0,534 0,587 0,678	$   \begin{array}{r}     (1) - \text{tiofe} \\     (3) \\     \hline     (3) \\     \hline     smjesa \\     \hline     \hline     (3) \\     \hline     smjesa \\     \hline     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\     (3) \\$	$\frac{w_2}{0,062}$ 0,158 0,251 0,349 0,400 0,492 0,539 0,588 0,619 0,697 0,713 0,829	W3         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,
$\begin{array}{r} n-hepta\\ \hline h-hepta\\ \hline chCl-C\\ \hline poč\\ smj\\ \hline w_2\\ 0,047\\ 0,120\\ 0,172\\ 0,228\\ 0,293\\ 0,355\\ 0,402\\ 0,459\\ 0,515\\ 0,562\\ 0,614\\ 0,668\\ 0,754\\ \end{array}$	$\begin{array}{c} \text{in (1)} - \text{tr}\\ \text{Gly 1:3 (3)}\\ \text{etna}\\ \text{jesa}\\ \hline \hline w_3\\ 0,421\\ 0,456\\ 0,396\\ 0,407\\ 0,346\\ 0,332\\ 0,287\\ 0,293\\ 0,223\\ 0,230\\ 0,225\\ 0,181\\ 0,176\\ 0,130\\ \end{array}$	w2         0,091         0,236         0,300         0,408         0,475         0,558         0,589         0,686         0,691         0,741         0,768         0,817         0,868		<i>i</i> -oktan Gly 1:3 početna 0,048 0,106 0,161 0,209 0,272 0,324 0,364 0,401 0,461 0,525 0,565 0,608	(1) – tiof (3) a smjesa	rafinat $w_2$ 0,091 0,205 0,301 0,426 0,543 0,575 0,631 0,673 0,739 0,743 0,794	ChCl-           na faza           W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000	toluen ( Gly 1:3 početna w ₂ 0,049 0,108 0,108 0,219 0,277 0,334 0,390 0,429 0,477 0,534 0,587 0,678	1) - tiofe         (3)         1 smjesa         0,410         0,413         0,372         0,372         0,335         0,223         0,226         0,224         0,174         0,180	$m(2) - C$ rafinat $w_2$ 0,062 0,158 0,251 0,349 0,400 0,492 0,539 0,588 0,619 0,697 0,713 0,829	ChCl-           na faza           W3           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000

**Tablica 4.9.** (nastavak) Eksperimentalne vezne linije u kvazi-trokomponentnim sustavima s tiofenom.

#### 4.4.6. Termodinamičko modeliranje u kvazi-trokomponentnim sustavima

Za opis fazne ravnoteže kapljevina-kapljevina u kvazi-trokomponentim sustavima s niskotemperaturnim eutektičnim otapalom najčešće se koriste model NRTL [Hizzadin 2016] [Sander 2016] i model COSMO-RS, [Hizzadin 2016], iako NRTL daje znatno bolje rezultate.

U ovom istraživanju ideja je usporediti modele NRTL i UNIQUAC u njihovim primjerenim varijantama. Model NRTL izračunava lokalne koncentracije tvari u otopini koje mogu biti drugačije od globalnih zbog međudjelovanja čestica, što je opisano dvama interakcijskim energijskim parametrima po paru molekula,  $\tau_{ij}$  i  $\tau_{ji}$ . Treći, parametar neslučajnosti,  $\alpha_{ij} = \alpha_{ji}$ , uveden je za opis ostalih čimbenika koji mogu utjecati na lokalnu koncentraciju. Ekscesna Gibbsova energija,  $g^{ex}$ , izračunava se prema:

$$\frac{g^{\text{ex}}}{RT} = \sum_{i=1}^{n_{\text{c}}} x_i \left[ \frac{\sum_{j=1}^{n_{\text{c}}} \tau_{ji} G_{ji} x_j}{\sum_{k=1}^{n_{\text{c}}} G_{ki} x_k} \right],$$
(4.6)

uz

$$G_{ij} = \exp\left(-\alpha_{ij}\tau_{ij}\right). \tag{4.7}$$

Parametrima neslučajnosti obično se pridružuju empirijske vrijednosti; u ovom slučaju iznose 0,3 za sve parove komponenata, prema literaturnim primjerima. [Casal 2010] [Sander 2017] [Rogošić 2016] Interakcijski parametri određuju su regresijski iz eksperimentalnih podataka o veznim linijama.

Model UNIQUAC u obzir uzima kombinatorni doprinos,  $g^{ex,C}$  koji opisuje neidealnost otopine kao rezultat razlike u veličini i obliku molekula ili drugih vrsta u sustavu:

$$\frac{g^{\text{ex,C}}}{RT} = \sum_{i=1}^{n_{\text{c}}} x_i \ln \frac{\Phi_i}{x_i} + \frac{z}{2} \sum_{i=1}^{n_{\text{c}}} q_i x_i \ln \frac{\Theta_i}{\Phi_i}.$$
(4.8)

Rezidualni doprinos,  $g^{ex,R}$ , opisuje neidealnost otopine kao posljedicu interakcija među molekulama ili drugih vrsta:

$$\frac{g^{\text{ex,R}}}{RT} = -\sum_{i=1}^{n_{\text{c}}} q_i x_i \ln\left(\sum_{j=1}^{n_{\text{c}}} \Theta_j \tau_{ji}\right).$$
(4.9)

U prethodnom izrazu  $\Phi_i$ ,  $\Theta_i$  i  $x_i$  označavaju volumen, površinu i molarni omjer komponenata ili bilo kojih kemijskih jedinica, a njihova korelacija opisana je sljedećim izrazima:

$$\Phi_{i} = \frac{x_{i}r_{i}}{\sum_{i=1}^{n_{c}} x_{j}r_{j}},$$
(4.10)

$$\Theta_i = \frac{x_i q_i}{\sum_{j=1}^{n_c} x_j q_j}.$$
(4.11)

 $r_i$  i  $q_i$  su karakteristični volumni i površinski parametri molekula ili bilo kojih drugih vrsta. Za najjednostavnije tvari (ugljikovodike, piridin i tiofen u ovom radu) mogu se izračunati prema strukturno-grupnom doprinosu prema:

$$r_i = \sum_{k=1}^{n_g} \nu_{ki} R_k , \qquad (4.12)$$

$$r_i = \sum_{k=1}^{n_{\rm g}} v_{ki} R_k , \qquad (4.13)$$

primjenom odgovarajućih volumnih i površinskih strukturno-grupnih parametara,  $R_k$  i  $Q_k$ , tabeliranih u literaturi. [Magnussen 1981] Za druge vrste čestica predlažu se drugačiji pristupi. U ovom radu niskotemperaturna eutektična otapala smatraju se kvazi-komponentama i primijenjen je pristup prema Domańskoj. [Domańska 1989] Po toj se korelaciji parametri  $r_i$  i  $q_i$  mogu povezati s eksperimentalnim vrijednostima molarnih volumena komponenata ili, u ovom slučaju, kvazi-komponenata:

$$r_i = 0,029281 v_i, \tag{4.14}$$

$$q_{i} = \frac{(z-2)r_{i}}{z} + \frac{2(1-l_{i})}{z}.$$
(4.15)

Molarni volumeni lako se izračunaju iz izmjerene gustoće sustava i molarne mase kvazikomponente.  $l_i$  je tzv. "dimenzijski" faktor i ovdje se pretpostavlja njegova vrijednost 0. z je koordinacijski broj rešetke i obično iznosi 10, kako u izrazu za  $q_i$  tako i u jednadžbi za  $g^{\text{ex,C}}$ . Parametri modela UNIQUAC primijenjeni u ovom radu navedeni su u **Tablici 4.10**.

Interakcijski parametri  $\tau_{ij}$  i  $\tau_{ji}$  određeni su regresijski iz eksperimentalnih podataka o veznim linijama.

	ľ	q
<i>n</i> -heksan	4,4998	3,856
<i>n</i> -heptan	5,1742	4,3960
<i>i</i> -oktan	5,8463	5,0080
toluen	3,9228	2,968
tiofen	2,8569	2,140
piridin	2,9993	2,113
ChCl-EG 1:2	6,859	5,687
ChCl-EG 1:3	8,487	6,990
ChCl-EG 1:3,5	9,304	7,643
ChCl-Gly 1:1,5	6,841	5,673
ChCl-Gly 1:2	7,897	6,518
ChCl-Gly 1:3	10,079	8,263

Tablica 4.10. Geometrijski parametri modela UNIQUAC, r i q.

#### 4.4.6.1. Modelne vezne linije u sustavima s piridinom

U **Tablici 4.11.** prikazani su ravnotežni sastavi rafinatne i ekstraktne faze procijenjeni prema modelima koeficijenata aktivnosti NRTL i UNIQUAC. Dobiveni sastavi definiraju modelne vezne linije u kvazi-trokomponentnim sustavima s piridinom. Isti skup podataka prikazan je u trokutnim dijagramima na **Slikama 4.16. – 4.21.** 

n-heksa	n (1) – pi	ridin (2) -	- ChCl-E	G 1:2 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0431	0,0000	0,0467	0,9533	0,0361	0,0000	0,0491	0,9509
0,0832	0,0000	0,1030	0,8970	0,0763	0,0000	0,1057	0,8943
0,1199	0,0000	0,1623	0,8377	0,1166	0,0000	0,1637	0,8363
0,1569	0,0000	0,2240	0,7760	0,1575	0,0000	0,2237	0,7763
0,1957	0,0000	0,2867	0,7133	0,1992	0,0000	0,2850	0,7150
0,2309	0,0000	0,3402	0,6598	0,2352	0,0000	0,3381	0,6619
0,2852	0,0000	0,4176	0,5824	0,2882	0,0000	0,4160	0,5840
0,3174	0,0000	0,4618	0,5382	0,3189	0,0000	0,4610	0,5390
0,3498	0,0000	0,5062	0,4937	0,3497	0,0000	0,5063	0,4937
0,3791	0,0000	0,5476	0,4524	0,3779	0,0000	0,5482	0,4518
0,4130	0,0000	0,5980	0,4020	0,4112	0,0000	0,5989	0,4010
0,4454	0,0000	0,6519	0,3481	0,4441	0,0000	0,6525	0,3475
n-heptar	n (1) – pir	ridin (2) –	- ChCl-EC	G 1:2 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0405	0,0000	0,0588	0,9412	0,0441	0,0000	0,0573	0,9427
0,0848	0,0000	0,1177	0,8823	0,0881	0,0000	0,1162	0,8838
0,1292	0,0000	0,1758	0,8242	0,1307	0,0000	0,1750	0,8250
0,1767	0,0000	0,2396	0,7603	0,1766	0,0000	0,2396	0,7604
0,2125	0,0000	0,2901	0,7098	0,2121	0,0000	0,2904	0,7096
0,2502	0,0000	0,3465	0,6534	0,2505	0,0000	0,3464	0,6536
0,2895	0,0000	0,4097	0,5902	0,2920	0,0000	0,4083	0,5917
0,3209	0,0000	0,4643	0,5355	0,3261	0,0000	0,4615	0,5385
0,3824	0,0000	0,5851	0,4148	0,3883	0,0000	0,5818	0,4181
0,4119	0,0000	0,6513	0,3485	0,3993	0,0000	0,6579	0,3420

**Tablica 4.11.** Modelne vezne linije u kvazi-trokomponentnim sustavima s piridinom.

<i>i</i> -oktan	(1) - piric	$   \lim (2) - 0 $	ChCl-EG	1:2 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0446	0,0000	0,0294	0,9706	0,0254	0,0000	0,0377	0,9623
0,0941	0,0000	0,0925	0,9074	0,0680	0,0000	0,1054	0,8946
0,1216	0,0000	0,1549	0,8449	0,1025	0,0000	0,1650	0,8350
0,1453	0,0000	0,2240	0,7756	0,1366	0,0000	0,2289	0,7711
0,1646	0,0000	0,2863	0,7132	0,1646	0,0000	0,2864	0,7136
0,1890	0,0000	0,3678	0,6316	0,1976	0,0000	0,3629	0,6371
0,2100	0,0000	0,4397	0,5597	0,2229	0,0000	0,4324	0,5676
0,2268	0,0000	0,4980	0,5014	0,2400	0,0000	0,4906	0,5094
0,2484	0,0000	0,5754	0,4240	0,2565	0,0000	0,5714	0,4286
0,2583	0,0000	0,6124	0,3869	0,2612	0,0000	0,6113	0,3887
0,2686	0,0000	0,6521	0,3472	0,2635	0,0000	0,6549	0,3451
0,2771	0,0000	0,6865	0,3128	0,2631	0,0000	0,6928	0,3072
toluen (	1) – piridi	in (2) – C	hCl-EG 1	:2 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0739	0,0000	0,0318	0,9682	0,0652	0,0000	0,0352	0,9648
0,1216	0,0000	0,0663	0,9336	0,1157	0,0000	0,0688	0,9312
0,1609	0,0000	0,1109	0,8889	0,1638	0,0000	0,1096	0,8904
0,2011	0,0000	0,1779	0,8218	0,2132	0,0000	0,1719	0,8281
0,2260	0,0000	0,2302	0,7694	0,2374	0,0000	0,2244	0,7756
0,2699	0,0000	0,3377	0,6616	0,2555	0,0000	0,3457	0,6543

**Tablica 4.11.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 piridinom.

**Tablica 4.11.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 piridinom.

<i>n</i> -heksa	n (1) – pii	ridin (2) -	- ChCl-E	G 1:3 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$W_2$	<i>W</i> ₃						
0,0366	0,0000	0,0583	0,9416	0,0321	0,0000	0,0596	0,9400
0,0682	0,0000	0,1166	0,8833	0,0644	0,0000	0,1179	0,8816
0,1028	0,0000	0,1822	0,8177	0,1017	0,0000	0,1825	0,8170
0,1365	0,0000	0,2429	0,7570	0,1380	0,0000	0,2423	0,7572
0,1700	0,0000	0,2983	0,7017	0,1729	0,0000	0,2969	0,7025
0,2179	0,0000	0,3685	0,6315	0,2204	0,0000	0,3672	0,6322
0,2682	0,0000	0,4338	0,5661	0,2682	0,0000	0,4337	0,5657
0,3596	0,0000	0,5459	0,4541	0,3562	0,0000	0,5474	0,4520
0,3910	0,0000	0,5862	0,4138	0,3887	0,0000	0,5872	0,4122
0,4317	0,0000	0,6425	0,3575	0,4337	0,0000	0,6414	0,3581
n-heptai	n (1) – pir	ridin (2) –	- ChCl-EC	G 1:3 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$W_2$	<i>W</i> ₃						
0,0313	0,0000	0,0628	0,9361	0,0335	0,0000	0,0621	0,9369
0,0601	0,0000	0,1186	0,8806	0,0626	0,0000	0,1176	0,8813
0,0926	0,0000	0,1803	0,8190	0,0945	0,0000	0,1795	0,8194
0,1256	0,0000	0,2429	0,7566	0,1265	0,0000	0,2424	0,7564
0,1562	0,0000	0,3011	0,6985	0,1562	0,0000	0,3010	0,6977
0,1853	0,0000	0,3573	0,6423	0,1846	0,0000	0,3574	0,6412
0,2248	0,0000	0,4359	0,5638	0,2240	0,0000	0,4359	0,5625
0,2432	0,0000	0,4738	0,5260	0,2426	0,0000	0,4736	0,5247
0,2766	0.0000	0.5459	0,4539	0,2768	0,0000	0,5452	0,4529
	0,0000	- )	· ·				
0,2815	0,0000	0,5567	0,4431	0,2817	0,0000	0,5559	0,4422
0,2815 0,3062	0,0000 0,0000	0,5567 0,6146	0,4431 0,3852	0,2817 0,3065	0,0000 0,0000	0,5559 0,6135	0,4422 0,3843

<i>i</i> -oktan	<i>i</i> -oktan (1) – piridin (2) – ChCl-EG 1:3 (3)								
NRTL				UNIQU	AC				
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza		
<i>W</i> ₂	<i>W</i> ₃	$w_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃		
0,0441	0,0000	0,0483	0,9515	0,0316	0,0000	0,0532	0,9468		
0,0772	0,0000	0,1117	0,8882	0,0658	0,0000	0,1168	0,8832		
0,1041	0,0000	0,1821	0,8178	0,0987	0,0000	0,1848	0,8152		
0,1257	0,0000	0,2451	0,7548	0,1252	0,0000	0,2454	0,7546		
0,1481	0,0000	0,3126	0,6873	0,1514	0,0000	0,3109	0,6891		
0,1722	0,0000	0,3861	0,6138	0,1777	0,0000	0,3833	0,6167		
0,1943	0,0000	0,4533	0,5466	0,2000	0,0000	0,4502	0,5498		
0,2101	0,0000	0,5011	0,4988	0,2149	0,0000	0,4986	0,5014		
0,2377	0,0000	0,5855	0,4144	0,2392	0,0000	0,5848	0,4152		
0,2479	0,0000	0,6169	0,3830	0,2477	0,0000	0,6171	0,3829		
0,2627	0,0000	0,6628	0,3371	0,2593	0,0000	0,6643	0,3357		
toluen (	1) – piridi	in (2) – C	hCl-EG 1	:3 (3)					
NRTL				UNIQU	AC				
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza		
<i>w</i> ₂	<i>W</i> ₃	$w_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃		
0,0355	0,0000	0,0511	0,9486	0,0317	0,0000	0,0522	0,9476		
0,0720	0,0000	0,1107	0,8886	0,0677	0,0000	0,1122	0,8875		
0,1122	0,0000	0,1831	0,8158	0,1097	0,0000	0,1842	0,8155		
0,1400	0,0000	0,2380	0,7608	0,1398	0,0000	0,2382	0,7615		
0,1674	0,0000	0,2987	0,7000	0,1700	0,0000	0,2977	0,7019		
0,1965	0,0000	0,3812	0,6174	0,2007	0,0000	0,3794	0,6200		
0,2121	0,0000	0,4639	0,5346	0,2084	0,0000	0,4657	0,5334		
n-heksa	n (1) – pi	ridin (2) -	- ChCl-E	G 1:3,5 (3	)				
NRTL				UNIQU	AC				
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza		
$w_2$	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃		
0,0379	0,0000	0,0510	0,9481	0,0403	0,0004	0,0503	0,9484		
0,0727	0,0000	0,1254	0,8740	0,0637	0,0005	0,1283	0,8702		
0,1010	0,0000	0,1943	0,8053	0,0976	0,0007	0,1954	0,8030		
0,1304	0,0000	0,2602	0,7395	0,1352	0,0009	0,2582	0,7401		
0,1666	0,0000	0,3274	0,6724	0,1771	0,0012	0,3228	0,6754		
0,2015	0,0000	0,3788	0,6210	0,2112	0,0015	0,3743	0,6238		
0,2465	0,0000	0,4320	0,5678	0,2486	0,0018	0,4309	0,5671		
0,2880	0,0000	0,4752	0,5246	0,2794	0,0020	0,4788	0,5191		
0,3431	0,0000	0,5389	0,4610	0,3220	0,0022	0,5481	0,4495		
0,3686	0,0000	0,5821	0,4178	0,3471	0,0023	0,5916	0,4060		
0,3838	0,0000	0,6678	0,3321	0,3870	0,0022	0,6661	0,3312		
0,3777	0,0000	0,6972	0,3027	0,3982	0,0022	0,6884	0,3088		

**Tablica 4.11.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 piridinom.

<i>n</i> -heptar	n (1) – pir	ridin (2) –	- ChCl-EC	G 1:3,5 (3	)		
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃
0,0302	0,0000	0,0640	0,9360	0,0289	0,0000	0,0644	0,9356
0,0615	0,0000	0,1335	0,8665	0,0604	0,0000	0,1339	0,8661
0,0926	0,0000	0,2005	0,7994	0,0914	0,0000	0,2010	0,7989
0,1278	0,0000	0,2731	0,7269	0,1263	0,0000	0,2738	0,7262
0,1571	0,0000	0,3304	0,6696	0,1551	0,0000	0,3313	0,6686
0,1882	0,0000	0,3892	0,6108	0,1861	0,0000	0,3902	0,6096
0,2238	0,0000	0,4553	0,5446	0,2227	0,0000	0,4558	0,5439
0,2484	0,0000	0,5020	0,4979	0,2496	0,0000	0,5013	0,4983
0,2719	0,0000	0,5495	0,4504	0,2781	0,0000	0,5464	0,4529
0,2866	0,0000	0,5824	0,4175	0,2977	0,0000	0,5769	0,4222
0,3201	0,0000	0,6875	0,3124	0,3067	0,0000	0,6918	0,3061
<i>i</i> -oktan	(1) - piric	lin(2) - 0	ChCl-EG	1:3,5 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0425	0,0000	0,0456	0,9542	0,0270	0,0000	0,0509	0,9491
0,0757	0,0000	0,1177	0,8821	0,0625	0,0000	0,1231	0,8769
0,1015	0,0000	0,1941	0,8057	0,0959	0,0000	0,1968	0,8032
0,1241	0,0000	0,2632	0,7366	0,1242	0,0000	0,2632	0,7368
0,1485	0,0000	0,3356	0,6643	0,1526	0,0000	0,3335	0,6665
0,1699	0,0000	0,3957	0,6042	0,1754	0,0000	0,3927	0,6073
0,1939	0,0000	0,4603	0,5396	0,1995	0,0000	0,4576	0,5424
0,2134	0,0000	0,5111	0,4888	0,2178	0,0000	0,5090	0,4910
0,2429	0,0000	0,5866	0,4133	0,2441	0,0000	0,5861	0,4139
0,2578	0,0000	0,6247	0,3753	0,2569	0,0000	0,6251	0,3749
0,2861	0,0000	0,6985	0,3014	0,2802	0,0000	0,7010	0,2990
toluen (	1) – piridi	in (2) – C	hCl-EG 1	:3,5 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0748	0,0000	0,0298	0,9700	0,0722	0,0000	0,0306	0,9693
0,1189	0,0000	0,0670	0,9324	0,1196	0,0000	0,0668	0,9332
0,1611	0,0000	0,1374	0,8614	0,1650	0,0000	0,1359	0,8640
0,1947	0,0000	0,2171	0,7815	0,1947	0,0000	0,2171	0,7827
0,2157	0,0000	0,2780	0,7205	0,2127	0,0000	0,2794	0,7202
0,2354	0,0000	0,3647	0,6337	0,2353	0,0000	0,3649	0,6343

**Tablica 4.11.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 piridinom.

<i>n</i> -heksa	n (1) – pi	ridin (2) -	- ChCl-G	ly 1:1,5 (3	3)			
NRTL				UNIQU	AC			
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza w ₃ 0,9632 0,9233 0,8855 0,8266 0,7976 0,7705 0,7395 tna faza w ₃ 0,9415 0,8902 0,8313 0,7872 0,7377 0,7039 0,6791 0,6739 tna faza w ₃ 0,6739 tna faza	
$w_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	$w_2$	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	
0,0759	0,0000	0,0305	0,9695	0,0579	0,0000	0,0368	0,963	
0,1321	0,0000	0,0713	0,9287	0,1178	0,0000	0,0767	0,923	
0,1679	0,0000	0,1162	0,8838	0,1723	0,0000	0,1145	0,885	
0,2445	0,0000	0,1784	0,8216	0,2546	0,0000	0,1734	0,826	
0,2941	0,0000	0,2031	0,7969	0,2954	0,0000	0,2024	0,797	
0,3426	0,0000	0,2262	0,7738	0,3362	0,0000	0,2295	0,770	
0,4179	0,0000	0,2667	0,7333	0,4279	0,0000	0,2605	0,739	
n-heptar	n (1) – pir	ridin (2) –	- ChCl-Gl	y 1:1,5 (3	3)			
NRTL				UNIQU	AC			
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza	
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	
0,0426	0,0000	0,0597	0,9403	0,0456	0,0000	0,0585	0,941	
0,0800	0,0000	0,1130	0,8870	0,0875	0,0000	0,1098	0,890	
0,1318	0,0000	0,1725	0,8275	0,1398	0,0000	0,1687	0,831	
0,1827	0,0000	0,2134	0,7866	0,1839	0,0000	0,2128	0,787	
0,2556	0,0000	0,2553	0,7447	0,2436	0,0000	0,2622	0,737	
0,3162	0,0000	0,2857	0,7143	0,2994	0,0000	0,2960	0,703	
0,3775	0,0000	0,3178	0,6822	0,3728	0,0000	0,3208	0,679	
0,4206	0,0000	0,3429	0,6571	0,4458	0,0000	0,3260	0,673	
<i>i</i> -oktan	(1) – piric	lin(2) - 0	ChCl-Gly	1:1,5 (3)				
NRTL				UNIQU	AC			
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza	
$w_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	
0,0697	0,0000	0,0298	0,9702	0,0691	0,0000	0,0301	0,969	
0,1308	0,0000	0,0676	0,9324	0,1304	0,0000	0,0678	0,932	
0,1804	0,0000	0,1114	0,8886	0,1812	0,0000	0,1110	0,889	
0,2330	0,0000	0,1701	0,8299	0,2342	0,0000	0,1694	0,830	
0,2789	0,0000	0,2261	0,7739	0,2790	0,0000	0,2260	0,773	
0,3175	0,0000	0,2740	0,7260	0,3165	0,0001	0,2747	0,725	
0,3615	0,0000	0,3293	0,6707	0,3604	0,0001	0,3301	0,669	
0,4027	0,0000	0,3822	0,6178	0,4036	0,0003	0,3816	0,617	

**Tablica 4.11.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 piridinom.

toluen (1) – piridin (2) – ChCl- Gly 1:1,5 (3)								
NRTL		UNIQUAC						
rafinatna faza		ekstraktna faza		rafinatna faza		ekstraktna faza		
<i>w</i> ₂	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	
0,0673	0,0000	0,0413	0,9586	0,0846	0,0000	0,0345	0,9655	
0,1528	0,0000	0,0601	0,9398	0,1450	0,0000	0,0635	0,9365	
0,2053	0,0000	0,0881	0,9119	0,1962	0,0000	0,0921	0,9079	
0,2475	0,0000	0,1200	0,8799	0,2425	0,0000	0,1222	0,8778	
0,3025	0,0000	0,1774	0,8226	0,3068	0,0000	0,1751	0,8249	
0,3519	0,0000	0,2456	0,7543	0,3615	0,0000	0,2396	0,7604	
0,3952	0,0000	0,3179	0,6820	0,3995	0,0000	0,3151	0,6849	
0,4221	0,0000	0,3685	0,6315	0,4148	0,0000	0,3731	0,6269	
<i>n</i> -heksan (1) – piridin (2) – ChCl-Gly 1:2 (3)								
NRTL	L UNIQUAC							
rafinatna faza		ekstraktna faza		rafinatna faza		ekstraktna faza		
<i>w</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	
0,0649	0,0007	0,0420	0,9580	0,0482	0,0000	0,0470	0,9530	
0,1071	0,0006	0,0957	0,9043	0,1001	0,0000	0,0982	0,9018	
0,1507	0,0005	0,1583	0,8417	0,1584	0,0001	0,1553	0,8447	
0,2056	0,0005	0,2098	0,7902	0,2131	0,0001	0,2066	0,7934	
0,2473	0,0004	0,2352	0,7648	0,2466	0,0001	0,2355	0,7645	
0,3330	0,0003	0,2764	0,7236	0,3193	0,0001	0,2835	0,7164	
0,3815	0,0002	0,3009	0,6991	0,3908	0,0001	0,2957	0,7042	
<i>n</i> -heptan (1) – piridin (2) – ChCl-Gly 1:2 (3)								
NRTL		UNIQUAC						
rafinat	rafinatna faza		ekstraktna faza		rafinatna faza		ekstraktna faza	
<i>w</i> ₂	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	
0,0533	0,0006	0,0470	0,9530	0,0470	0,0002	0,0491	0,9508	
0,0998	0,0005	0,1084	0,8916	0,1030	0,0003	0,1072	0,8928	
0,1447	0,0004	0,1633	0,8367	0,1545	0,0003	0,1590	0,8409	
0,1967	0,0003	0,2066	0,7934	0,2019	0,0004	0,2041	0,7958	
0,2641	0,0003	0,2452	0,7548	0,2551	0,0004	0,2499	0,7500	
0,3354	0,0002	0,2823	0,7177	0,3169	0,0006	0,2931	0,7067	
0,3922	0,0002	0,3155	0,6845	0,3824	0,0007	0,3217	0,6780	
0,4372	0,0001	0,3461	0,6539	0,4648	0,0011	0,3283	0,6715	

**Tablica 4.11.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 piridinom.
<i>i</i> -oktan	(1) – piric	din (2) – <b>G</b>	ChCl-Gly	1:2 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0613	0,0000	0,0256	0,9744	0,0331	0,0120	0,0358	0,9642
0,1133	0,0000	0,0863	0,9137	0,0890	0,0108	0,0969	0,9031
0,1484	0,0000	0,1611	0,8389	0,1479	0,0096	0,1614	0,8386
0,1912	0,0000	0,2207	0,7793	0,1991	0,0086	0,2166	0,7834
0,2334	0,0000	0,2636	0,7364	0,2401	0,0078	0,2600	0,7400
0,3003	0,0000	0,3212	0,6788	0,2997	0,0068	0,3217	0,6783
0,3746	0,0000	0,3860	0,6140	0,3681	0,0057	0,3902	0,6098
0,4025	0,0000	0,4125	0,5875	0,3955	0,0054	0,4172	0,5828
toluen (	1) – piridi	in (2) – C	hCl-Gly	1:2 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0000	0,0000	0,0761	0,9239	0,0817	0,0000	0,0484	0,9516
0,1239	0,0000	0,0838	0,9162	0,1331	0,0000	0,0803	0,9196
0,1913	0,0000	0,1163	0,8837	0,1895	0,0000	0,1170	0,8830
0,2464	0,0000	0,1477	0,8523	0,2393	0,0000	0,1507	0,8493
0,3119	0,0000	0,1898	0,8102	0,3016	0,0000	0,1948	0,8052
0,3582	0,0000	0,2230	0,7770	0,3478	0,0000	0,2289	0,7711
0,4066	0,0000	0,2612	0,7388	0,3975	0,0000	0,2666	0,7334
0,4638	0,0000	0,3119	0,6881	0,4696	0,0000	0,3081	0,6919
0,5288	0,0000	0,3787	0,6213	0,5282	0,0000	0,3791	0,6209
n-heksa	n (1) – pi	ridin (2) -	- ChCl-G	ly 1:3 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0207	0,0082	0,0585	0,9405	0,0267	0,0000	0,0571	0,9429
0,0686	0,0052	0,1519	0,8454	0,0732	0,0000	0,1506	0,8494
0,1215	0,0036	0,2346	0,7610	0,1208	0,0000	0,2352	0,7647
0,1576	0,0030	0,2844	0,7100	0,1540	0,0000	0,2864	0,7134
0,2122	0,0024	0,3519	0,6409	0,2070	0,0000	0,3551	0,6445
0,2474	0,0021	0,3898	0,6019	0,2431	0,0000	0,3930	0,6064
0,2983	0,0019	0,4361	0,5541	0,2978	0,0000	0,4378	0,5611
0,3480	0,0017	0,4700	0,5190	0,3529	0,0000	0,4694	0,5292
0,4605	0,0016	0,4987	0,4892	0,4592	0,0000	0,5001	0,4980

**Tablica 4.11.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 piridinom.

Tablica 4.11. (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustav	ima s
piridinom.	

n-heptar	n (1) – pii	ridin (2) –	ChCl-Gl	y 1:3 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0531	0,0080	0,0508	0,9472	0,0319	0,0000	0,0568	0,9432
0,0915	0,0067	0,1134	0,8797	0,0689	0,0000	0,1212	0,8788
0,1270	0,0056	0,1806	0,8080	0,1093	0,0000	0,1879	0,8120
0,1587	0,0048	0,2405	0,7448	0,1475	0,0000	0,2465	0,7535
0,1964	0,0040	0,3053	0,6768	0,1932	0,0000	0,3089	0,6910
0,2261	0,0036	0,3487	0,6313	0,2284	0,0000	0,3505	0,6494
0,2854	0,0029	0,4121	0,5648	0,2946	0,0000	0,4112	0,5886
0,3232	0,0027	0,4364	0,5393	0,3328	0,0000	0,4351	0,5647
0,4223	0,0023	0,4555	0,5192	0,4186	0,0000	0,4590	0,5407
0,5162	0,0020	0,4441	0,5310	0,5004	0,0000	0,4521	0,5476
<i>i</i> -oktan	(1) - piric	$\sin(2) - 0$	ChCl-Gly	1:3 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinatna faza		ekstraktna faza	
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0204	0,0125	0,0577	0,9411	0,0285	0,0000	0,0552	0,9448
0,0546	0,0089	0,1248	0,8728	0,0634	0,0000	0,1216	0,8784
0,1013	0,0062	0,1993	0,7969	0,1055	0,0000	0,1977	0,8023
0,1393	0,0049	0,2541	0,7410	0,1393	0,0000	0,2544	0,7456
0,1875	0,0038	0,3193	0,6744	0,1836	0,0000	0,3219	0,6780
0,2152	0,0033	0,3549	0,6379	0,2101	0,0000	0,3585	0,6413
0,2661	0,0027	0,4170	0,5743	0,2608	0,0000	0,4214	0,5783
0,3084	0,0023	0,4647	0,5252	0,3048	0,0000	0,4686	0,5310
0,3699	0,0020	0,5258	0,4621	0,3705	0,0000	0,5280	0,4714
0,4131	0,0018	0,5617	0,4250	0,4166	0,0000	0,5626	0,4366
0,4773	0,0017	0,6026	0,3824	0,4819	0,0000	0,6031	0,3958
0,5484	0,0018	0,6301	0,3536	0,5460	0,0000	0,6343	0,3642

toluen (	toluen (1) – piridin (2) – ChCl-Gly 1:3 (3)							
NRTL	UNIQUAC							
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza	
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	
0,0485	0,0000	0,0546	0,9454	0,0857	0,0000	0,0441	0,9559	
0,1155	0,0000	0,0716	0,9284	0,1280	0,0000	0,0678	0,9321	
0,1908	0,0000	0,1084	0,8916	0,1933	0,0000	0,1075	0,8925	
0,2375	0,0000	0,1347	0,8653	0,2356	0,0000	0,1353	0,8647	
0,3188	0,0000	0,1869	0,8131	0,3119	0,0000	0,1902	0,8098	
0,3661	0,0000	0,2219	0,7781	0,3574	0,0000	0,2262	0,7738	
0,4211	0,0000	0,2682	0,7318	0,4125	0,0000	0,2735	0,7264	
0,4712	0,0000	0,3172	0,6828	0,4636	0,0001	0,3216	0,6784	
0,5109	0,0000	0,3619	0,6381	0,5058	0,0001	0,3652	0,6348	
0,5596	0,0000	0,4259	0,5741	0,5591	0,0001	0,4262	0,5737	
0,5926	0,0000	0,4767	0,5233	0,5957	0,0001	0,4742	0,5257	
0,6452	0,0000	0,5746	0,4254	0,6514	0,0001	0,5695	0,4304	

**Tablica 4.11.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 piridinom.



Slika 4.16. Vezne linije u sustavima s ChCl-Gly 1:1,5, piridinom i (a) *n*-heksanom,(b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.17. Vezne linije u sustavima s ChCl-Gly 1:2, piridinom i (a) *n*-heksanom,(b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.





(b)



Slika 4.18. Vezne linije u sustavima s ChCl-Gly 1:3, piridinom i (a) *n*-heksanom,(b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.19. Vezne linije u sustavima s ChCl-EG 1:2, piridinom i (a) *n*-heksanom,(b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.20. Vezne linije u sustavima s ChCl-EG 1:3, piridinom i (a) *n*-heksanom,(b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.21. Vezne linije u sustavima s ChCl-EG 1:3,5, piridinom i (a) *n*-heksanom, (b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.

Crnom su bojom prikazane eksperimentalno određene vezne linije koje povezuju sastave rafinatne i ekstraktne faze, plavom bojom prikazane su vezne linije izračunate modelom NRTL, dok su vezne linije izračunate modelom UNIQUAC prikazane ružičastom bojom. U svim sustavima uočava se dobro slaganje eksperimentanih veznih linija s veznim linijama određenima modelima, u području konzistentnih podataka. Nekonzistentni podatci, gdje se vezne linije sijeku, nisu prikazani u trokutnom dijagramu niti su uzeti u obzir za modeliranje. Dobiveni podatci ukazuju na prikladnost ispitanih eutektičnih otapala za denitrifikaciju.

# 4.4.6.2. Modelne vezne linije u sustavima s tiofenom

U **Tablici 4.12.** prikazani su ravnotežni sastavi rafinatne i ekstraktne faze procijenjeni modelima koeficijenata aktivnosti NRTL i UNIQUAC. Dobiveni sastavi definiraju modelne vezne linije u kvazi-trokomponentnim sustavima s tiofenom. Isti skup podataka prikazan je u trokutnim dijagramima na **Slikama 4.22. – 4.27**.

<i>n</i> -heksa	n (1) – tic	ofen (2) –	ChCl-EC	G 1:2 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	1,0000	0,0000	0,0006	0,0000	0,9999
0,0837	0,0004	0,0058	0,9942	0,0823	0,0005	0,0063	0,9936
0,1719	0,0010	0,0107	0,9893	0,1660	0,0005	0,0131	0,9868
0,2354	0,0014	0,0149	0,9851	0,2278	0,0004	0,0184	0,9816
0,3254	0,0018	0,0216	0,9784	0,3163	0,0003	0,0264	0,9736
0,3847	0,0020	0,0265	0,9735	0,3754	0,0003	0,0320	0,9679
0,4821	0,0023	0,0357	0,9643	0,4735	0,0002	0,0419	0,9581
0,5243	0,0024	0,0401	0,9599	0,5167	0,0002	0,0464	0,9536
0,5841	0,0025	0,0470	0,9530	0,5783	0,0001	0,0530	0,9470
0,6232	0,0026	0,0520	0,9480	0,6189	0,0001	0,0574	0,9426
0,6867	0,0027	0,0609	0,9391	0,6852	0,0001	0,0646	0,9354
0,7703	0,0027	0,0747	0,9253	0,7730	0,0000	0,0738	0,9262
0,8238	0,0028	0,0850	0,9150	0,8291	0,0000	0,0791	0,9209
0,8936	0,0029	0,1009	0,8991	0,9010	0,0000	0,0849	0,9151
0,9956	0,0044	0,1099	0,8901	1,0000	0,0000	0,0928	0,9072

Tablica 4.12. Modelne vezne linije u kvazi-trokomponentnim sustavima s tiofenom.

Tablica 4.12. (nastavak) Modelne vezne linije u kvazi-trokomponentnim s	sustavima	s
tiofenom.		

n-heptar	<i>n</i> -heptan (1) – tiofen (2) – ChCl-EG 1:2 (3)						
NRTL UNIQUAC							
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstraktna faza	
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	1,0000	0,0000	0,0005	0,0064	1,0000
0,1026	0,0004	0,0062	0,9937	0,1026	0,0004	0,0062	0,9937
0,2265	0,0010	0,0134	0,9866	0,2244	0,0003	0,0144	0,9855
0,3179	0,0013	0,0196	0,9804	0,3153	0,0003	0,0212	0,9788
0,4222	0,0016	0,0276	0,9724	0,4194	0,0002	0,0298	0,9702
0,4831	0,0017	0,0329	0,9671	0,4804	0,0002	0,0353	0,9647
0,5551	0,0018	0,0397	0,9602	0,5529	0,0001	0,0423	0,9577
0,6075	0,0019	0,0453	0,9547	0,6059	0,0001	0,0478	0,9522
0,6829	0,0020	0,0542	0,9458	0,6824	0,0001	0,0562	0,9438
0,7687	0,0021	0,0660	0,9340	0,7699	0,0000	0,0666	0,9334
0,8107	0,0021	0,0726	0,9274	0,8129	0,0000	0,0718	0,9282
0,8618	0,0022	0,0815	0,9185	0,8650	0,0000	0,0781	0,9219
0,9009	0,0023	0,0889	0,9111	0,9046	0,0000	0,0827	0,9173
0,9965	0,0035	0,0927	0,9073	1,0000	0,0000	0,0927	0,9073
<i>i</i> -oktan	(1) - tiofe	en (2) – C	hCl-EG 1	:2 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
<i>w</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	1,0000	0,0000	0,0004	0,0000	1,0000
0,0990	0,0004	0,0073	0,9926	0,0994	0,0003	0,0072	0,9928
0,1983	0,0010	0,0143	0,9857	0,1973	0,0003	0,0148	0,9852
0,2897	0,0014	0,0215	0,9785	0,2880	0,0002	0,0226	0,9774
0,3855	0,0017	0,0298	0,9702	0,3833	0,0002	0,0316	0,9684
0,4424	0,0018	0,0353	0,9647	0,4402	0,0002	0,0373	0,9627
0,5297	0,0020	0,0443	0,9556	0,5275	0,0001	0,0469	0,9531
0,5767	0,0021	0,0497	0,9503	0,5748	0,0001	0,0524	0,9476
0,6457	0,0022	0,0582	0,9418	0,6445	0,0001	0,0609	0,9391
0,6988	0,0023	0,0654	0,9346	0,6985	0,0001	0,0676	0,9324
0,7926	0,0024	0,0798	0,9202	0,7948	0,0000	0,0792	0,9208
0,8572	0,0025	0,0910	0,9090	0,8614	0,0000	0,0857	0,9143
0,9960	0,0040	0,1004	0,8996	1,0000	0,0000	0,0909	0,9091

Tablica 4.12. (nastavak) Modelne vezne	linije u kvazi-trokomponentnim	sustavima s	3
tiofenom.			

toluen (	toluen (1) – tiofen (2) – ChCl-EG 1:2 (3)						
NRTL UNIQUAC							
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	1,0000
0,0690	0,0002	0,0054	0,9946	0,0698	0,0000	0,0051	0,9949
0,1771	0,0006	0,0116	0,9884	0,1732	0,0000	0,0133	0,9867
0,2565	0,0009	0,0171	0,9828	0,2507	0,0000	0,0200	0,9800
0,3302	0,0012	0,0229	0,9771	0,3232	0,0000	0,0267	0,9733
0,3937	0,0014	0,0284	0,9716	0,3862	0,0000	0,0330	0,9670
0,4648	0,0016	0,0351	0,9648	0,4575	0,0000	0,0404	0,9596
0,5146	0,0017	0,0404	0,9596	0,5078	0,0000	0,0459	0,9541
0,5774	0,0019	0,0476	0,9524	0,5719	0,0000	0,0530	0,9470
0,6152	0,0019	0,0523	0,9477	0,6109	0,0000	0,0574	0,9426
0,7001	0,0021	0,0643	0,9357	0,6990	0,0000	0,0672	0,9328
0,7774	0,0022	0,0772	0,9228	0,7803	0,0000	0,0754	0,9246
0,8141	0,0023	0,0841	0,9159	0,8187	0,0000	0,0788	0,9212
0,8655	0,0023	0,0949	0,9051	0,8721	0,0000	0,0829	0,9171
0,9957	0,0043	0,1082	0,8918	1,0000	0,0000	0,0916	0,9084
<i>n</i> -heksa	n (1) – tic	ofen (2) –	ChCl-EG	1:3 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃
0,0000	0,0000	0,0000	0,9997	0,0000	0,0000	0,0000	1,0000
0,0676	0,0015	0,0095	0,9901	0,0785	0,0000	0,0064	0,9936
0,1711	0,0028	0,0132	0,9864	0,1684	0,0000	0,0143	0,9857
0,3140	0,0028	0,0240	0,9758	0,3057	0,0000	0,0275	0,9724
0,3752	0,0027	0,0296	0,9702	0,3662	0,0000	0,0339	0,9661
0,4586	0,0027	0,0383	0,9615	0,4500	0,0000	0,0433	0,9567
0,5238	0,0027	0,0462	0,9536	0,5165	0,0000	0,0512	0,9487
0,5859	0,0026	0,0547	0,9452	0,5806	0,0000	0,0592	0,9407
0,6696	0,0026	0,0681	0,9318	0,6683	0,0000	0,0705	0,9295
0,6995	0,0026	0,0735	0,9264	0,6999	0,0000	0,0746	0,9254
0,7558	0,0026	0,0849	0,9150	0,7598	0,0000	0,0821	0,9179
0,8778	0,0027	0,1155	0,8844	0,8886	0,0000	0,0949	0,9051
0,9943	0,0057	0,1122	0,8878	1,0000	0,0000	0,1022	0,8978

Tablica 4.12. (nastavak) Modelne vezne linije	ı kvazi-trokomponentnim	sustavima	S
tiofenom.			

<i>n</i> -heptai	n-heptan (1) – tiofen (2) – ChCl-EG 1:3 (3)						
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstraktna faza	
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	0,9996	0,0000	0,0000	0,0000	1,0000
0,0913	0,0013	0,0071	0,9925	0,0892	0,0000	0,0078	0,9921
0,2205	0,0021	0,0163	0,9834	0,2128	0,0000	0,0194	0,9806
0,3145	0,0023	0,0242	0,9755	0,3050	0,0000	0,0286	0,9714
0,4104	0,0024	0,0333	0,9665	0,4007	0,0000	0,0386	0,9613
0,4722	0,0024	0,0398	0,9600	0,4634	0,0000	0,0455	0,9545
0,5388	0,0024	0,0475	0,9523	0,5316	0,0000	0,0531	0,9469
0,6331	0,0025	0,0598	0,9401	0,6293	0,0000	0,0641	0,9359
0,7392	0,0025	0,0762	0,9237	0,7407	0,0000	0,0763	0,9237
0,8316	0,0026	0,0936	0,9064	0,8379	0,0000	0,0859	0,9141
0,8825	0,0027	0,1046	0,8953	0,8902	0,0000	0,0905	0,9095
0,9939	0,0061	0,1132	0,8868	1,0000	0,0000	0,1003	0,8997
<i>i</i> -oktan	(1) - tiofe	en (2) – C	hCl-EG 1	:3 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza
<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	0,9996	0,0000	0,0000	0,0000	1,0000
0,0823	0,0013	0,0075	0,9920	0,0815	0,0001	0,0078	0,9922
0,2003	0,0018	0,0155	0,9841	0,1946	0,0001	0,0179	0,9821
0,2827	0,0019	0,0221	0,9776	0,2763	0,0002	0,0251	0,9748
0,3835	0,0020	0,0310	0,9688	0,3776	0,0003	0,0343	0,9657
0,4452	0,0020	0,0369	0,9629	0,4401	0,0003	0,0402	0,9598
0,5567	0,0020	0,0487	0,9512	0,5535	0,0003	0,0515	0,9485
0,7008	0,0021	0,0664	0,9335	0,7010	0,0002	0,0673	0,9327
0,6769	0,0021	0,0632	0,9367	0,6766	0,0002	0,0646	0,9354
0,8064	0,0021	0,0818	0,9181	0,8094	0,0001	0,0795	0,9205
0,8407	0,0021	0,0874	0,9125	0,8443	0,0000	0,0834	0,9165
0,8833	0,0021	0,0948	0,9051	0,8875	0,0000	0,0883	0,9116
0,9948	0,0052	0,1124	0,8876	1,0000	0,0000	0,1007	0,8993

Tablica 4.12. (nastavak) Modelne	vezne linije u kvazi-trokomponentnim s	sustavima s
tiofenom.		

toluen (1) – tiofen (2) – ChCl-EG 1:3 (3)							
NRTL UNIQUAC							
rafinat	na faza	ekstraktna faza		rafinatna faza		ekstraktna faza	
<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	0,9999
0,0697	0,0005	0,0054	0,9946	0,0705	0,0000	0,0051	0,9947
0,1777	0,0009	0,0116	0,9884	0,1731	0,0000	0,0133	0,9866
0,2573	0,0013	0,0173	0,9827	0,2506	0,0000	0,0200	0,9799
0,3309	0,0017	0,0231	0,9769	0,3232	0,0000	0,0267	0,9732
0,3945	0,0021	0,0286	0,9714	0,3865	0,0000	0,0329	0,9670
0,4653	0,0025	0,0354	0,9646	0,4577	0,0000	0,0402	0,9597
0,5150	0,0028	0,0407	0,9593	0,5084	0,0000	0,0456	0,9543
0,5774	0,0032	0,0479	0,9521	0,5725	0,0000	0,0526	0,9473
0,6153	0,0033	0,0527	0,9473	0,6119	0,0000	0,0570	0,9429
0,6989	0,0037	0,0646	0,9354	0,6995	0,0000	0,0666	0,9334
0,7753	0,0041	0,0774	0,9226	0,7805	0,0000	0,0748	0,9251
0,8119	0,0042	0,0844	0,9156	0,8191	0,0000	0,0783	0,9216
0,8630	0,0044	0,0952	0,9048	0,8725	0,0000	0,0826	0,9173
0,9943	0,0057	0,1093	0,8907	1,0000	0,0000	0,0922	0,9078
<i>n</i> -heksa	n (1) – tic	ofen (2) –	ChCl-EG	1:3,5 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinatna faza		ekstraktna faza	
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	0,9999	0,0000	0,0000	0,0000	1,0000
0,0813	0,0039	0,0066	0,9933	0,0802	0,0000	0,0070	0,9930
0,1739	0,0026	0,0126	0,9873	0,1663	0,0000	0,0150	0,9849
0,2441	0,0025	0,0181	0,9818	0,2339	0,0000	0,0217	0,9783
0,3353	0,0024	0,0261	0,9738	0,3232	0,0000	0,0310	0,9690
0,4017	0,0023	0,0327	0,9673	0,3895	0,0000	0,0383	0,9617
0,4768	0,0022	0,0410	0,9590	0,4656	0,0000	0,0470	0,9530
0,5221	0,0022	0,0465	0,9535	0,5122	0,0000	0,0525	0,9475
0,5835	0,0021	0,0547	0,9452	0,5760	0,0000	0,0603	0,9397
0,6291	0,0021	0,0615	0,9385	0,6240	0,0000	0,0662	0,9338
0,6952	0,0020	0,0724	0,9276	0,6939	0,0000	0,0747	0,9252
0,7797	0,0020	0,0889	0,9111	0,7841	0,0000	0,0852	0,9148
0,8413	0,0019	0,1032	0,8967	0,8494	0,0000	0,0919	0,9081
0,9027	0,0019	0,1200	0,8800	0,9122	0,0000	0,0973	0,9026
0.0062	0.0038	0 1281	0 8719	1 0000	0 0000	0 1058	0 8942

Tablica 4.12.	(nastavak)	Modelne ve	ezne linije u	kvazi-trok	componentnim	sustavima s	
tiofenom.							

n-heptai	n (1) – tio	fen (2) –	ChCl-EG	1:3,5 (3)				
NRTL		UNIQU			AC			
rafinat	na faza	ekstraktna faza		rafinatna faza		ekstraktna faza		
<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	
0,0000	0,0000	0,0000	0,9999	0,0000	0,0000	0,0000	1,0000	
0,0954	0,0030	0,0068	0,9931	0,0946	0,0001	0,0072	0,9928	
0,2289	0,0025	0,0158	0,9841	0,2257	0,0004	0,0172	0,9828	
0,3188	0,0024	0,0230	0,9769	0,3152	0,0006	0,0247	0,9753	
0,4125	0,0023	0,0315	0,9685	0,4088	0,0008	0,0335	0,9665	
0,4813	0,0023	0,0384	0,9615	0,4779	0,0008	0,0406	0,9594	
0,5535	0,0023	0,0465	0,9534	0,5507	0,0007	0,0488	0,9512	
0,5937	0,0022	0,0514	0,9485	0,5915	0,0006	0,0537	0,9463	
0,6755	0,0022	0,0626	0,9374	0,6749	0,0004	0,0642	0,9358	
0,7440	0,0022	0,0733	0,9267	0,7453	0,0002	0,0736	0,9264	
0,8080	0,0022	0,0848	0,9152	0,8112	0,0001	0,0827	0,9173	
0,8617	0,0022	0,0957	0,9043	0,8662	0,0000	0,0904	0,9096	
0,9122	0,0023	0,1069	0,8931	0,9172	0,0000	0,0975	0,9025	
0,9955	0,0045	0,1084	0,8916	1,0000	0,0000	0,1086	0,8914	
<i>i</i> -oktan	(1) - tiofe	en (2) – C	hCl-EG 1	:3,5 (3)				
NRTL				UNIQU	AC			
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza	
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	
0,0000	0,0000	0,0000	0,9999	0,0000	0,0000	0,0000	1,0000	
0,0974	0,0974	0,0076	0,9923	0,0939	0,0001	0,0089	0,9911	
0,2080	0,2080	0,0158	0,9841	0,2018	0,0002	0,0184	0,9816	
0,2969	0,2969	0,0232	0,9767	0,2906	0,0003	0,0262	0,9738	
0,3954	0,3954	0,0322	0,9677	0,3898	0,0004	0,0354	0,9646	
0,4606	0,4606	0,0387	0,9612	0,4559	0,0005	0,0418	0,9582	
0,5830	0,5830	0,0522	0,9478	0,5803	0,0004	0,0547	0,9453	
0,6680	0,6680	0,0628	0,9372	0,6673	0,0003	0,0644	0,9356	
0,7317	0,7317	0,0715	0,9284	0,7327	0,0002	0,0719	0,9281	
0,8038	0,8038	0,0825	0,9175	0,8066	0,0001	0,0807	0,9193	
0,8632	0,8632	0,0925	0,9075	0,8672	0,0000	0,0879	0,9120	
0,9072	0,9072	0,1006	0,8994	0,9115	0,0000	0,0932	0,9068	
0,9954	0,9954	0,1143	0,8857	1,0000	0,0000	0,1033	0,8967	

Tablica 4.12. (nastavak) Modelne vezne linije	ı kvazi-trokomponentnim	sustavima	S
tiofenom.			

toluen (	1) – tiofei	n(2) - Ch	Cl-EG 1:	3,5 (3)				
NRTL		UNIQUAC						
rafinat	rafinatna faza		ekstraktna faza		rafinatna faza		ekstraktna faza	
<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	
0,0000	0,3240	0,1258	1,0000	0,3649	0,0000	0,0000	1,0000	
0,0739	0,0004	0,0062	0,9938	0,0731	0,0000	0,0065	0,9935	
0,1856	0,0011	0,0135	0,9865	0,1775	0,0000	0,0162	0,9838	
0,2696	0,0018	0,0202	0,9798	0,2590	0,0000	0,0243	0,9757	
0,3628	0,0024	0,0287	0,9713	0,3513	0,0000	0,0338	0,9661	
0,4257	0,0028	0,0350	0,9650	0,4149	0,0000	0,0407	0,9593	
0,5053	0,0032	0,0440	0,9560	0,4966	0,0000	0,0497	0,9503	
0,5700	0,0034	0,0522	0,9478	0,5639	0,0000	0,0573	0,9427	
0,6102	0,0036	0,0578	0,9422	0,6064	0,0000	0,0621	0,9379	
0,7073	0,0038	0,0731	0,9269	0,7092	0,0000	0,0738	0,9262	
0,7781	0,0040	0,0863	0,9137	0,7843	0,0000	0,0823	0,9177	
0,8423	0,0040	0,1002	0,8998	0,8514	0,0000	0,0898	0,9102	
0,9014	0,0041	0,1151	0,8849	0,9114	0,0000	0,0965	0,9035	
0,9950	0,0050	0,1207	0,8793	1,0000	0,0000	0,1073	0,8927	
<i>n</i> -heksa	n (1) – tic	ofen (2) –	ChCl-Gly	y 1:1,5 (3	)			
NRTL				UNIQU	AC			
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstrak	tna faza	
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	
0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	1,0000	
0,0901	0,0001	0,0055	0,9945	0,0926	0,0000	0,0046	0,9954	
0,1817	0,0004	0,0106	0,9894	0,1845	0,0000	0,0095	0,9905	
0,2537	0,0007	0,0143	0,9857	0,2558	0,0000	0,0135	0,9865	
0,3490	0,0011	0,0193	0,9807	0,3496	0,0000	0,0192	0,9808	
0,4075	0,0013	0,0224	0,9776	0,4073	0,0000	0,0228	0,9772	
0,4978	0,0015	0,0276	0,9724	0,4967	0,0000	0,0287	0,9713	
0,6029	0,0016	0,0346	0,9654	0,6021	0,0000	0,0359	0,9641	
0,6353	0,0016	0,0370	0,9630	0,6350	0,0000	0,0382	0,9618	
0,7139	0,0016	0,0439	0,9561	0,7152	0,0000	0,0437	0,9563	
0,7332	0,0016	0,0459	0,9541	0,7351	0,0000	0,0450	0,9550	
0,7924	0,0016	0,0525	0,9475	0,7959	0,0000	0,0488	0,9512	
0,9980	0,0020	0,0587	0,9413	1,0000	0,0000	0,0582	0,9418	

Tablica 4.12. (nastavak) Modelne	vezne linije u kvazi-trokomponentnim s	sustavima s
tiofenom.		

<i>n</i> -heptan (1) – tiofen (2) – ChCl-Gly 1:1,5 (3)							
NRTL UNIQUAC							
rafinat	na faza	ekstraktna faza		rafinatna faza		ekstraktna faza	
$w_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃
0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	1,0000
0,0921	0,0000	0,0032	0,9968	0,0926	0,0000	0,0030	0,9970
0,2318	0,0002	0,0087	0,9913	0,2325	0,0000	0,0084	0,9916
0,3255	0,0003	0,0130	0,9870	0,3261	0,0000	0,0127	0,9873
0,4497	0,0005	0,0196	0,9804	0,4499	0,0000	0,0195	0,9805
0,4927	0,0005	0,0222	0,9778	0,4927	0,0000	0,0223	0,9777
0,5527	0,0005	0,0263	0,9737	0,5526	0,0000	0,0266	0,9734
0,5923	0,0005	0,0293	0,9707	0,5921	0,0000	0,0298	0,9702
0,6614	0,0006	0,0354	0,9646	0,6612	0,0000	0,0359	0,9641
0,6992	0,0006	0,0392	0,9608	0,6991	0,0000	0,0397	0,9603
0,7387	0,0006	0,0438	0,9562	0,7390	0,0000	0,0440	0,9560
0,7606	0,0006	0,0465	0,9535	0,7611	0,0000	0,0465	0,9535
0,8160	0,0006	0,0545	0,9455	0,8173	0,0000	0,0529	0,9471
0,9992	0,0008	0,0578	0,9422	0,9999	0,0000	0,0581	0,9419
<i>i</i> -oktan	(1) - tiofe	en (2) – C	hCl-Gly 1	1:1,5 (3)			
NRTL				UNIQU	AC		
rafinat	na faza	ekstrak	tna faza	rafinatna faza		ekstraktna faza	
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃
0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	1,0000
0,0882	0,0001	0,0042	0,9958	0,0895	0,0000	0,0037	0,9963
0,2101	0,0006	0,0099	0,9901	0,2118	0,0000	0,0092	0,9908
0,2963	0,0010	0,0140	0,9860	0,2976	0,0000	0,0135	0,9865
0,4005	0,0012	0,0193	0,9807	0,4010	0,0000	0,0193	0,9807
0,4574	0,0013	0,0223	0,9777	0,4573	0,0000	0,0228	0,9772
0,5133	0,0014	0,0256	0,9744	0,5129	0,0000	0,0264	0,9736
0,5623	0,0015	0,0286	0,9714	0,5616	0,0000	0,0298	0,9702
0,6426	0,0015	0,0341	0,9659	0,6418	0,0000	0,0359	0,9641
0,6754	0,0015	0,0366	0,9634	0,6747	0,0000	0,0385	0,9615
0,7276	0,0015	0,0409	0,9591	0,7272	0,0000	0,0427	0,9573
0,7499	0,0015	0,0428	0,9572	0,7499	0,0000	0,0445	0,9555
0,8088	0,0016	0,0483	0,9517	0,8096	0,0000	0,0491	0,9509
0,8569	0,0016	0,0530	0,9470	0,8586	0,0000	0,0521	0,9479
0,9076	0,0016	0,0574	0,9426	0,9100	0,0000	0,0541	0,9459
0,9472	0,0017	0,0583	0,9417	0,9495	0,0000	0,0544	0,9456
0.9980	0,0020	0,0493	0,9507	1,0000	0,0000	0,0543	0,9457

Tablica 4.12. (nastavak) Modelne v	vezne linije u kvazi-trokomponentnim	sustavima s
tiofenom.		

toruen (	toluen (1) – tiofen (2) – ChCl- Gly 1:1,5 (3)											
NRTL UNIQUAC												
rafinat	na faza	ekstraktna faza		rafinatna faza		ekstraktna faza						
$W_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃					
0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	1,0000					
0,0622	0,0001	0,0038	0,9962	0,0645	0,0000	0,0030	0,9970					
0,1605	0,0008	0,0094	0,9906	0,1639	0,0000	0,0081	0,9919					
0,2216	0,0011	0,0127	0,9873	0,2246	0,0000	0,0115	0,9885					
0,3403	0,0013	0,0191	0,9809	0,3414	0,0000	0,0188	0,9812					
0,3975	0,0014	0,0224	0,9776	0,3977	0,0000	0,0226	0,9774					
0,4488	0,0014	0,0255	0,9745	0,4481	0,0000	0,0262	0,9738					
0,4954	0,0013	0,0285	0,9715	0,4942	0,0000	0,0297	0,9703					
0,5858	0,0013	0,0352	0,9648	0,5846	0,0000	0,0368	0,9632					
0,6161	0,0013	0,0378	0,9622	0,6152	0,0000	0,0393	0,9607					
0,6845	0,0012	0,0446	0,9554	0,6851	0,0000	0,0448	0,9552					
0,6959	0,0012	0,0459	0,9541	0,6969	0,0000	0,0457	0,9543					
0,7714	0,0011	0,0556	0,9444	0,7752	0,0000	0,0513	0,9487					
0,9991	0,0009	0,0568	0,9432	1,0000	0,0000	0,0580	0,9420					
n-heksa	n (1) – tic	ofen (2) –	ChCl-Gly	n-heksan (1) – tiofen (2) – ChCl-Gly 1:2 (3)								
NRTL UNIQUAC												
NRTL				UNIQU	AC							
NRTL rafinat	na faza	ekstrak	tna faza	UNIQU rafinat	AC na faza	ekstrak	tna faza					
NRTL rafinati w ₂	na faza W3	ekstrak W2	tna faza _{W3}	UNIQU rafinati w ₂	AC na faza <i>w</i> ₃	ekstrak W2	tna faza w ₃					
NRTL           rafinati           w2           0,0000	na faza <i>w</i> ₃ 0,0001	ekstrak <i>w</i> ₂ 0,0000	tna faza $w_3$ 1,0000	UNIQU rafinati <i>w</i> ₂ 0,0000	$     AC     na faza          \frac{w_3}{0,0004} $	ekstrak <i>w</i> ₂ <b>0,0000</b>	tna faza $w_3$ 1,0000					
NRTL rafinati w ₂ 0,0000 0,0190	na faza <u>W3</u> 0,0001 0,0001	ekstrak <u>w</u> 2 0,0000 0,0011	tna faza $\frac{w_3}{1,0000}$ 0,9989	UNIQU rafinati <i>w</i> ₂ 0,0000 0,0200	$     AC      na faza      w_30,00040,00040,0004 \\     $	ekstrak <u>w</u> 2 0,0000 0,0008	tna faza $w_3$ 1,0000 0,9992					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509	na faza <u>w₃</u> 0,0001 0,0001 0,0004	ekstrak <u>w2</u> 0,0000 0,0011 0,0077	tna faza $w_3$ 1,0000 0,9989 0,9923	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547	$     AC      na faza      w_30,00040,00040,0003      $	ekstrakt <u>w</u> 2 0,0000 0,0008 0,0065	tna faza $w_3$ 1,0000 0,9992 0,9935					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214	na faza <u>w₃</u> 0,0001 0,0001 0,0004 0,0006	ekstrak <u>w</u> 2 0,0000 0,0011 0,0077 0,0108	tna faza W3 1,0000 0,9989 0,9923 0,9892	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247	AC na faza 0,0004 0,0004 0,0003 0,0002	ekstrak <u>w</u> 2 0,0000 0,0008 0,0065 0,0097	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110	na faza <u>w₃</u> 0,0001 0,0001 0,0004 0,0006 0,0008	ekstrakt <u>W2</u> 0,0000 0,0011 0,0077 0,0108 0,0146	tna faza <u>W3</u> 1,0000 0,9989 0,9923 0,9892 0,9854	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127	$\begin{tabular}{ c c c c c } \hline AC & & \\ \hline na faza & & \\ \hline $w_3$ & \\ \hline $0,0004$ & \\ $0,0004$ & \\ $0,0004$ & \\ $0,0002$ & \\ $0,0002$ & \\ \hline $0$	ekstrak <u>w</u> 2 0,0000 0,0008 0,0065 0,0097 0,0141	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902 0,9859					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110 0,3510	na faza <u>w₃</u> 0,0001 0,0001 0,0004 0,0006 0,0008 0,0009	ekstrak <u>W2</u> 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163	tna faza <u>w₃</u> 1,0000 0,9989 0,9923 0,9892 0,9854 0,9837	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127 0,3518	AC na faza 0,0004 0,0004 0,0003 0,0002 0,0002 0,0002	ekstrakt <u>w</u> 2 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110 0,3510 0,4456	na faza <u>W3</u> 0,0001 0,0001 0,0004 0,0006 0,0008 0,0009 0,0012	ekstrakt <u>W2</u> 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163 0,0204	tna faza <u>W3</u> 1,0000 0,9989 0,9923 0,9892 0,9854 0,9837 0,9796	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127 0,3518 0,4448	$\begin{tabular}{ c c c c c } \hline AC & \\ \hline na faza & \\ \hline $w_3$ & \\ \hline $0,0004$ & \\ $0,0004$ & \\ $0,0004$ & \\ $0,0002$ & \\ $0,0002$ & \\ $0,0002$ & \\ $0,0001$ & \\ \hline \end{tabular}$	ekstrakt <u>w</u> 2 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161 0,0211	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839 0,9789					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110 0,3510 0,4456 0,4920	na faza <u>W3</u> 0,0001 0,0001 0,0004 0,0006 0,0008 0,0009 0,0012 0,0013	ekstrak <u>w</u> 2 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163 0,0204 0,0226	tna faza <u>w</u> ₃ 1,0000 0,9989 0,9923 0,9854 0,9837 0,9796 0,9774	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127 0,3518 0,4448 0,4905	AC na faza 0,0004 0,0004 0,0003 0,0002 0,0002 0,0002 0,0001 0,0001	ekstrakt <u>W2</u> 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161 0,0211 0,0237	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839 0,9789 0,9763					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110 0,3510 0,4456 0,4920 0,5642	na faza <u>w₃</u> 0,0001 0,0004 0,0006 0,0008 0,0009 0,0012 0,0013 0,0015	ekstrak <u>w</u> 2 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163 0,0204 0,0226 0,0263	tna faza W3 1,0000 0,9989 0,9923 0,9892 0,9854 0,9837 0,9796 0,9774 0,9737	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127 0,3127 0,3518 0,4448 0,4905 0,5623	AC na faza 0,0004 0,0004 0,0003 0,0002 0,0002 0,0002 0,0002 0,0001 0,0001	ekstrakt w2 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161 0,0211 0,0237 0,0280	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839 0,9789 0,9763 0,9720					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110 0,3510 0,4456 0,4920 0,5642 0,6052	na faza <u>W3</u> 0,0001 0,0001 0,0004 0,0006 0,0008 0,0009 0,0012 0,0013 0,0015 0,0015	ekstrak <u>w</u> 2 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163 0,0204 0,0226 0,0263 0,0286	tna faza <u>w</u> ₃ 1,0000 0,9989 0,9923 0,9854 0,9854 0,9837 0,9796 0,9774 0,9737 0,9714	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127 0,3518 0,4448 0,4905 0,5623 0,6035	AC na faza 0,0004 0,0004 0,0003 0,0002 0,0002 0,0002 0,0001 0,0001 0,0001 0,0001	ekstrakt <u>w</u> 2 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161 0,0211 0,0237 0,0280 0,0305	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839 0,9789 0,9763 0,9720 0,9695					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110 0,3510 0,4456 0,4920 0,5642 0,6052 0,6730	na faza <u>w₃</u> 0,0001 0,0004 0,0006 0,0008 0,0009 0,0012 0,0013 0,0015 0,0015 0,0016	ekstrak <u>w</u> 2 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163 0,0204 0,0226 0,0226 0,0286 0,0329	tna faza <u>W3</u> 1,0000 0,9989 0,9923 0,9854 0,9854 0,9837 0,9796 0,9774 0,9774 0,9714 0,9671	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127 0,3127 0,3518 0,4448 0,4905 0,5623 0,6035 0,6720	AC na faza 0,0004 0,0004 0,0003 0,0002 0,0002 0,0002 0,0002 0,0001 0,0001 0,0001 0,0000 0,0000	ekstrakt <u>w</u> 2 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161 0,0211 0,0237 0,0280 0,0305 0,0347	tna faza <u>w</u> ₃ 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839 0,9789 0,9763 0,9763 0,9720 0,9695 0,9653					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110 0,3510 0,4456 0,4920 0,5642 0,6052 0,6730 0,6971	na faza <u>w3</u> 0,0001 0,0004 0,0006 0,0008 0,0009 0,0012 0,0013 0,0015 0,0015 0,0016 0,0017	ekstrak <u>w</u> 2 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163 0,0204 0,0226 0,0226 0,0263 0,0286 0,0329 0,0347	tna faza <u>W3</u> 1,0000 0,9989 0,9923 0,9854 0,9854 0,9837 0,9796 0,9774 0,9737 0,9714 0,9671 0,9653	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127 0,3518 0,4448 0,4905 0,5623 0,6035 0,6720 0,6965	AC na faza <u>W₃</u> 0,0004 0,0004 0,0003 0,0002 0,0002 0,0002 0,0001 0,0001 0,0001 0,0000 0,0000 0,0000	ekstrakt <u>w</u> 2 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161 0,0211 0,0237 0,0280 0,0305 0,0347 0,0362	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839 0,9789 0,9763 0,9720 0,9695 0,9653 0,9638					
NRTL rafinati w ₂ 0,0000 0,1509 0,2214 0,3110 0,3510 0,4456 0,4920 0,5642 0,6052 0,6730 0,6971 0,7588	na faza <u>w₃</u> 0,0001 0,0004 0,0006 0,0008 0,0009 0,0012 0,0013 0,0015 0,0015 0,0015 0,0017 0,0017	ekstrak <u>W2</u> 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163 0,0204 0,0226 0,0226 0,0286 0,0286 0,0329 0,0347 0,0397	tna faza <u>w</u> ₃ 1,0000 0,9989 0,9923 0,9854 0,9854 0,9837 0,9796 0,9774 0,9774 0,9737 0,9714 0,9653 0,9603	UNIQU rafinati w2 0,0000 0,0200 0,1547 0,2247 0,3127 0,3518 0,4448 0,4905 0,5623 0,6035 0,6720 0,6965 0,7598	AC na faza <u>W₃</u> 0,0004 0,0004 0,0003 0,0002 0,0002 0,0002 0,0001 0,0001 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000	ekstrakt <u>w</u> 2 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161 0,0211 0,0237 0,0280 0,0305 0,0347 0,0362 0,0400	tna faza <u>w₃</u> 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839 0,9789 0,9763 0,9763 0,9720 0,9695 0,9638 0,9600					
NRTL rafinati w ₂ 0,0000 0,0190 0,1509 0,2214 0,3110 0,3510 0,4456 0,4920 0,5642 0,6052 0,6730 0,6971 0,7588 0,8318	na faza <u>w₃</u> 0,0001 0,0004 0,0006 0,0008 0,0009 0,0012 0,0013 0,0015 0,0015 0,0015 0,0017 0,0017 0,0018	ekstrak w2 0,0000 0,0011 0,0077 0,0108 0,0146 0,0163 0,0204 0,0226 0,0226 0,0286 0,0286 0,0329 0,0347 0,0397 0,0469	tna faza W3 1,0000 0,9989 0,9923 0,9892 0,9854 0,9854 0,9774 0,9774 0,9774 0,9774 0,9714 0,9653 0,9603 0,9531	UNIQU rafinati w ₂ 0,0000 0,0200 0,1547 0,2247 0,3127 0,3518 0,4448 0,4905 0,5623 0,6035 0,6720 0,6965 0,7598 0,8350	AC na faza <u>w₃</u> 0,0004 0,0003 0,0002 0,0002 0,0002 0,0002 0,0001 0,0001 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000	ekstrakt w2 0,0000 0,0008 0,0065 0,0097 0,0141 0,0161 0,0211 0,0237 0,0280 0,0305 0,0347 0,0362 0,0400 0,0440	tna faza <u>w</u> ₃ 1,0000 0,9992 0,9935 0,9902 0,9859 0,9839 0,9763 0,9763 0,9763 0,9720 0,9695 0,9653 0,9600 0,9560					

Tablica 4.12. (nastavak) Modelne ve	zne linije u kvazi-trokomponentnim sustavima s	;
tiofenom.		

<i>n</i> -heptan (1) – tiofen (2) – ChCl-Gly 1:2 (3)								
NRTL UNIQUAC								
rafinat	na faza	ekstrak	tna faza	rafinat	rafinatna faza		ekstraktna faza	
$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	
0,0000	0,0001	0,0000	1,0000	0,0000	0,0003	0,0000	1,0000	
0,0906	0,0003	0,0053	0,9947	0,0930	0,0003	0,0045	0,9955	
0,1668	0,0005	0,0095	0,9905	0,1696	0,0002	0,0085	0,9915	
0,2357	0,0007	0,0132	0,9868	0,2380	0,0002	0,0123	0,9877	
0,3221	0,0010	0,0178	0,9822	0,3232	0,0002	0,0174	0,9826	
0,3725	0,0012	0,0206	0,9794	0,3728	0,0002	0,0206	0,9794	
0,4525	0,0014	0,0252	0,9748	0,4518	0,0001	0,0259	0,9741	
0,4915	0,0015	0,0277	0,9723	0,4905	0,0001	0,0287	0,9713	
0,5535	0,0017	0,0319	0,9681	0,5522	0,0001	0,0333	0,9667	
0,6465	0,0019	0,0391	0,9609	0,6460	0,0001	0,0405	0,9595	
0,6741	0,0019	0,0415	0,9585	0,6742	0,0001	0,0426	0,9574	
0,7321	0,0020	0,0471	0,9529	0,7337	0,0000	0,0469	0,9531	
0,9971	0,0029	0,0562	0,9438	1,0000	0,0000	0,0485	0,9515	
<i>i</i> -oktan	(1) - tiofe	en (2) – C	hCl-Gly	1:2 (3)				
NRTL				UNIQU	AC			
rafinat	na faza	ekstrak	tna faza	rafinat	rafinatna faza		ekstraktna faza	
<i>W</i> ₂	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	
0,0000	0,0001	0,0000	1,0000	0,0000	0,0003	0,0000	1,0000	
0,0879	0,0002	0,0044	0,9956	0,0869	0,0005	0,0048	0,9952	
0,1744	0,0003	0,0085	0,9915	0,1735	0,0009	0,0088	0,9912	
0,2374	0,0004	0,0114	0,9886	0,2366	0,0012	0,0117	0,9883	
0,3269	0,0006	0,0155	0,9845	0,3260	0,0015	0,0158	0,9842	
0,4842	0,0008	0,0235	0,9765	0,4830	0,0018	0,0239	0,9761	
0,5618	0,0009	0,0280	0,9720	0,5609	0,0018	0,0283	0,9717	
0,5906	0,0009	0,0299	0,9701	0,5899	0,0017	0,0301	0,9699	
0,6544	0,0010	0,0344	0,9656	0,6544	0,0015	0,0341	0,9659	
0,7038	0,0010	0,0383	0,9617	0,7046	0,0012	0,0374	0,9626	
0,7237	0,0010	0,0400	0,9600	0,7248	0,0012	0,0387	0,9613	
0,7665	0,0010	0,0440	0,9560	0,7685	0,0009	0,0416	0,9584	
0,9985	0,0015	0,0506	0,9494	0,9999	0,0001	0,0565	0,9435	

Tablica 4.12. (nastavak) Modelne vezne	linije u kvazi-trokomponentnim	sustavima s	3
tiofenom.			

toluen (1) – tiofen (2) – ChCl-Gly 1:2 (3)									
NRTL UNIQUAC									
rafinat	rafinatna faza ekst		tna faza	rafinat	na faza	ekstraktna faza			
$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃		
0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	1,0000		
0,0625	0,0002	0,0038	0,9962	0,0649	0,0000	0,0031	0,9969		
0,1604	0,0010	0,0093	0,9907	0,1639	0,0000	0,0082	0,9918		
0,2219	0,0013	0,0126	0,9874	0,2248	0,0000	0,0116	0,9883		
0,3401	0,0015	0,0190	0,9810	0,3406	0,0000	0,0189	0,9811		
0,3977	0,0016	0,0222	0,9778	0,3970	0,0000	0,0228	0,9772		
0,4492	0,0016	0,0253	0,9747	0,4476	0,0000	0,0265	0,9735		
0,4959	0,0015	0,0284	0,9716	0,4938	0,0000	0,0300	0,9699		
0,5858	0,0015	0,0352	0,9648	0,5837	0,0000	0,0372	0,9628		
0,6162	0,0014	0,0379	0,9621	0,6146	0,0000	0,0397	0,9603		
0,6842	0,0014	0,0448	0,9552	0,6845	0,0000	0,0453	0,9547		
0,6959	0,0013	0,0461	0,9539	0,6967	0,0000	0,0462	0,9538		
0,7706	0,0013	0,0561	0,9439	0,7750	0,0000	0,0517	0,9482		
0,9989	0,0011	0,0574	0,9426	1,0000	0,0000	0,0567	0,9433		
n-heksa	n (1) – tic	ofen (2) –	ChCl-Gly	y 1:3 (3)					
NRTL UNIQUAC									
rafinat	na faza	ekstrak	tna faza	rafinat	rafinatna faza ekstraktna faza				
<i>w</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃	<i>w</i> ₂	<i>W</i> ₃		
0,0000	0,0141	0,0000	0,9999	0,0000	0,0000	0,0000	1,0000		
0,0736	0,0120	0,0034	0,9966	0,0785	0,0000	0,0025	0,9975		
0,1554	0,0100	0,0065	0,9934	0,1620	0,0000	0,0052	0,9948		
0,2195	0,0086	0,0087	0,9913	0,2258	0,0000	0,0074	0,9926		
0,3084	0,0069	0,0114	0,9886	0,3128	0,0000	0,0106	0,9894		
0,3654	0,0059	0,0131	0,9869	0,3682	0,0000	0,0128	0,9872		
0,4490	0,0047	0,0156	0,9843	0,4498	0,0000	0,0161	0,9839		
0,4950	0,0041	0,0171	0,9828	0,4949	0,0000	0,0180	0,9820		
0,5751	0,0032	0,0200	0,9799	0,5740	0,0000	0,0215	0,9785		
0,6064	0,0029	0,0213	0,9787	0,6052	0,0000	0,0229	0,9771		
0,6859	0,0023	0,0250	0,9749	0,6851	0,0000	0,0265	0,9735		
0,7121	0,0021	0,0265	0,9735	0,7118	0,0000	0,0278	0,9722		
0,7695	0,0017	0,0301	0,9699	0,7703	0,0000	0,0305	0,9695		
0,8450	0,0014	0,0362	0,9638	0,8477	0,0000	0,0339	0,9661		
0,9131	0,0011	0,0433	0,9567	0,9166	0,0000	0,0368	0,9632		
0 008/	0.0016	0.0393	0 9607	1 0000	0 0000	0 0403	0 9597		

Tablica 4.12.	. (nastavak)	Modelne	vezne	linije u	kvazi-tro	komponen	tnim s	sustavima	S
tiofenom.									

<i>n</i> -heptan (1) – tiofen (2) – ChCl-Gly 1:3 (3)									
NRTL UNIQUAC									
rafinat	na faza	ekstraktna faza		rafinat	na faza	ekstraktna faza			
<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃		
0,0000	0,0121	0,0000	0,9999	0,0000	0,0000	0,0000	1,0000		
0,0901	0,0095	0,0025	0,9974	0,0900	0,0000	0,0027	0,9973		
0,2310	0,0063	0,0062	0,9937	0,2352	0,0000	0,0054	0,9946		
0,2979	0,0052	0,0080	0,9919	0,3023	0,0000	0,0070	0,9930		
0,4051	0,0037	0,0111	0,9889	0,4084	0,0000	0,0104	0,9896		
0,4730	0,0030	0,0132	0,9868	0,4749	0,0000	0,0129	0,9871		
0,5563	0,0023	0,0161	0,9838	0,5567	0,0000	0,0165	0,9835		
0,5897	0,0020	0,0174	0,9825	0,5896	0,0000	0,0181	0,9819		
0,6837	0,0014	0,0217	0,9782	0,6829	0,0000	0,0229	0,9771		
0,6916	0,0014	0,0222	0,9778	0,6909	0,0000	0,0233	0,9767		
0,7415	0,0012	0,0251	0,9749	0,7411	0,0000	0,0260	0,9740		
0,7686	0,0011	0,0269	0,9731	0,7686	0,0000	0,0276	0,9724		
0,8172	0,0009	0,0306	0,9694	0,8180	0,0000	0,0303	0,9697		
0,8670	0,0007	0,0351	0,9648	0,8688	0,0000	0,0331	0,9669		
0,9176	0,0006	0,0405	0,9595	0,9198	0,0000	0,0358	0,9642		
0,9992	0,0008	0,0360	0,9640	1,0000	0,0000	0,0396	0,9604		
<i>i</i> -oktan	(1) - tiofe	en (2) – C	hCl-Gly	1:3 (3)					
NRTL				UNIQU	AC				
rafinat	na faza	ekstraktna faza		rafinat	na faza	ekstrak	tna faza		
<i>W</i> ₂	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$w_2$	<i>W</i> ₃	<i>W</i> ₂	<i>W</i> ₃		
0,0000	0,0106	0,0000	0,9999	0,0000	0,0000	0,0000	1,0000		
0,0897	0,0081	0,0032	0,9967	0,0929	0,0000	0,0025	0,9975		
0,2013	0,0057	0,0068	0,9931	0,2054	0,0000	0,0059	0,9941		
0,2978	0,0042	0,0098	0,9901	0,3010	0,0000	0,0091	0,9909		
0,3784	0,0032	0,0125	0,9875	0,3804	0,0000	0,0121	0,9879		
0,4266	0,0027	0,0142	0,9858	0,4277	0,0000	0,0141	0,9859		
0,5409	0,0018	0,0188	0,9812	0,5404	0,0000	0,0194	0,9806		
0,5757	0,0016	0,0204	0,9795	0,5750	0,0000	0,0213	0,9787		
0,6310	0,0013	0,0234	0,9766	0,6301	0,0000	0,0244	0,9756		
0,6740	0,0011	0,0261	0,9738	0,6733	0,0000	0,0270	0,9730		
0,7376	0,0008	0,0311	0,9689	0,7379	0,0000	0,0312	0,9688		
0,7438	0,0008	0,0317	0,9683	0,7443	0,0000	0,0317	0,9683		
0,7932	0,0006	0,0368	0,9632	0,7951	0,0000	0,0351	0,9649		
0,9996	0,0004	0,0400	0,9600	1,0000	0,0000	0,0397	0,9603		

toluen (1) – tiofen (2) – ChCl-Gly 1:3 (3)										
NRTL	UNIQUAC									
rafinat	na faza	ekstrak	tna faza	rafinat	na faza	ekstraktna faza				
$w_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃	$W_2$	<i>W</i> ₃			
0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	1,0000			
0,0639	0,0001	0,0025	0,9975	0,0661	0,0000	0,0020	0,9980			
0,1584	0,0008	0,0060	0,9940	0,1616	0,0000	0,0051	0,9948			
0,2503	0,0013	0,0092	0,9908	0,2528	0,0000	0,0085	0,9915			
0,3463	0,0016	0,0126	0,9874	0,3472	0,0000	0,0124	0,9875			
0,4005	0,0017	0,0146	0,9854	0,4004	0,0000	0,0149	0,9851			
0,4902	0,0018	0,0182	0,9818	0,4889	0,0000	0,0192	0,9808			
0,5394	0,0018	0,0205	0,9795	0,5378	0,0000	0,0217	0,9783			
0,5886	0,0018	0,0230	0,9770	0,5871	0,0000	0,0244	0,9756			
0,6214	0,0017	0,0249	0,9751	0,6203	0,0000	0,0262	0,9738			
0,6964	0,0017	0,0299	0,9701	0,6970	0,0000	0,0304	0,9696			
0,7144	0,0016	0,0312	0,9688	0,7155	0,0000	0,0313	0,9687			
0,8232	0,0015	0,0416	0,9584	0,8286	0,0000	0,0363	0,9637			
0,9986	0,0014	0,0378	0,9622	1,0000	0,0000	0,0377	0,9623			

**Tablica 4.12.** (nastavak) Modelne vezne linije u kvazi-trokomponentnim sustavima s

 tiofenom.



Slika 4.22. Vezne linije u sustavima s ChCl-Gly 1:1,5, tiofenom i (a) *n*-heksanom, (b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.23. Vezne linije u sustavima s ChCl-Gly 1:2, tiofenom i (a) *n*-heksanom, (b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.24. Vezne linije u sustavima s ChCl-Gly 1:3, tiofenom i (a) *n*-heksanom, (b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.25. Vezne linije u sustavima s ChCl-EG 1:2, tiofenom i (a) *n*-heksanom, (b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.26. Vezne linije u sustavima s ChCl-EG 1:3, tiofenom i (a) *n*-heksanom, (b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.



Slika 4.27. Vezne linije u sustavima s ChCl-EG 1:3,5, tiofenom i (a) *n*-heksanom, (b) *n*-heptanom, (c) *i*-oktanom i (d) toluenom.

Crnom su bojom prikazane eksperimentalno određene vezne linije koje povezuju sastave rafinatne i ekstraktne faze, plavom bojom prikazane su vezne linije izračunate modelom NRTL, dok su vezne linije izračunate modelom UNIQUAC prikazane ružičastom bojom. U sustavima s tiofenom, općenito, rezultati nisu zadovoljavajući, tek je u nekoliko slučajeva dobiven konzistentan skup podataka. Najstabilnijim se otapalom pokazao ChCl-Gly

1:2 budući da se jedino njegovom primjenom dobivaju prihvatljive vezne linije sa svim ugljikovodicima, i to s *n*-heksanom do 20 % tiofena, s toluenom do 30 % tiofena, a s *n*-heptanom i *i*-oktanom do 40 % tiofena. Kozistentne vezne linije s do 20 % tiofena mogu se dobiti u sustavu s *n*-heksanom i primjenom otapala iz iste skupine, ali drugačijeg molarnog omjera, 1:1,5 i 1:3. U skupini eutektičnih otapala na osnovi etilen-glikola jedino molarni omjeri 1:3 i 1:2 u sustavu s *n*-heksanom daju konzistentne vezne linije do 30 - 40 % tiofena. Dobro slaganje s modelnim veznim linijama uočeno je jedino u dva sustava, *n*-heksan – tiofen – ChCl-Gly 1:3 i *n*-heksan – tiofen – ChCl-Gly 1:1,5. Općenito, iz eksperimenata u kvazi-trokomponentnim sustavima s tiofenom vidi se da ispitivana eutektička otapala nisu prikladna za desulfurizaciju.

## 4.4.6.3. Interakcijski parametri u kvazi-trokomponentnim sustavima s piridinom

Za postupak regresije korištena je modificirana Sørensen-Arlt procedura; u prvom koraku traži se minimum funkcije:

$$OF_{1} = \sum_{j=1}^{n_{\rm c}} \sum_{i=1}^{n_{\rm c}} \left( \frac{x_{i}^{\rm R} \gamma_{i}^{\rm R} - x_{i}^{\rm E} \gamma_{i}^{\rm E}}{x_{i}^{\rm R} \gamma_{i}^{\rm R} + x_{i}^{\rm E} \gamma_{i}^{\rm E}} \right)_{j}^{2} + Q \left( \tau_{12}^{2} + \tau_{21}^{2} + \tau_{13}^{2} + \tau_{31}^{2} + \tau_{23}^{2} + \tau_{32}^{2} \right)$$
(4.16)

s obzirom na šest interakcijskih parametara  $\tau_{ij}$ , uz fiksne vrijednosti parametara neslučajnosti  $\alpha_{ij} = 0,3$ .  $\gamma_i$  su koeficijenti aktivnosti; izrazi za  $\gamma_i$  dobiveni su diferenciranjem odgovarajućih izraza za ekscesnu Gibbsovu energiju i dostupni su u literaturi. [Walas 1985]  $n_c = 3$  je broj komponenti ili kvazi-komponenti, a  $n_d$  je broj eksperimentalnih veznih linija. Tzv. kaznena funkcija postavljena je na  $Q = 1 \times 10^{-6}$  za oba modela [Casal 2010] i služi za odbacivanje nerealno velikih vrijednosti parametara  $\tau$  koje bi mogle proizvesti lokalne minimume  $OF_1$ .

Izračunati interakcijski parametri služe kao inicijacija za drugi korak u kojem se traži minimum funkcije:

$$OF_{2} = \sum_{j=1}^{n_{d}} \sum_{i=1}^{n_{c}} \sum_{p=R,E} \left[ \left( w_{i}^{p} \right)_{exp} - \left( w_{i}^{p} \right)_{mod} \right]_{j}^{2} + Q \left( \tau_{12}^{2} + \tau_{21}^{2} + \tau_{13}^{2} + \tau_{21}^{2} + \tau_{23}^{2} + \tau_{32}^{2} \right)$$
(4.17)

s ciljem postizanja najboljeg mogućeg podudaranja eksperimentalnih ravnotežnih sastava. U tom je koraku vrijednost kaznene funkcije postavljena na  $Q = 1 \times 10^{-10}$  za oba modela. [Casal 2010] Za razliku od izvorne metode Sørensena i Arlta koja definira funkciju u odnosu na molarne omjere, tu su se izračunavali maseni udjeli komponenata,  $w_i$ . p = R i p = E označavaju rafinatnu i ekstraktnu fazu.

Optimalni parametri modela prikazani su u **Tablicama 4.13.** i **4.14.**, uz prosječne apsolutne pogreške predviđanja ravnotežnih masenih udjela, izračunate prema:

$$A = \sqrt{\frac{OF_2 - Q\left(\tau_{12}^2 + \tau_{21}^2 + \tau_{13}^2 + \tau_{31}^2 + \tau_{23}^2 + \tau_{32}^2\right)}{n_{\rm d} \cdot n_{\rm c} \cdot 2}}.$$
(4.18)

Ravnotežni sastavi izračunati pomoću modela uspoređeni su s eksperimentalnim, što je prikazano na **Slikama 4.16. – 4.21.** Slaganje se može ocijeniti prilično dobrim, prema dobivenim niskim *A*-vrijednostima. Maksimalna opažena *A*-vrijednost iznosi 0,0124 što znači da se radi o srednjoj pogrešci sastava od 1,24 postotna boda. Pri usporedbi interakcijskih parametara u pojedinim sustavima uočene su određene pravilnosti koje će se uzeti u obzir kasnije pri ekstrapoliranju podataka na druge sustave.

 Tablica 4.13. Optimalni parametri modela NRTL i prosječne apsolutne pogreške predviđanja

u sustavima s piridinom.

NRTL $\alpha_{12}$ ; $\alpha_{13}$ ; $\alpha_{23} = 0,3$ ; 0,3; 0,3	$ au_{12}$	$ au_{13}$	$\tau_{21}$	$ au_{23}$	$\tau_{31}$	$ au_{32}$	A
<i>n</i> -heksan (1) – piridin (2) – ChCl-EG 1:2 (3)	1,4938	12,4133	8,9182	13,5841	9,8920	0,8335	0,0054
<i>n</i> -heptan (1) – piridin (2) – ChCl-EG 1:2 (3)	0,0297*	19,3031	7,8438	19,3636	9,1566	-0,7028*	0,0052
<i>i</i> -oktan (1) – piridin (2) – ChCl-EG 1:2 (3)	0,7280	15,0908	6,3910	14,8661	13,6420	1,3190	0,0029
toluen $(1)$ – piridin $(2)$ – ChCl-EG 1:2 $(3)$	0,1445*	11,0991	5,8003	16,5042	9,4131	1,1202	0,0071
<i>n</i> -heksan (1) – piridin (2) – ChCl-EG 1:3 (3)	1,7119	18,7921	10,3059	18,6398	7,0916	0,4363	0,0027
<i>n</i> -heptan (1) – piridin (2) – ChCl-EG 1:3 (3)	1,0741	14,2729	7,9995	15,9081	5,2913	-0,2533*	0,0054
<i>i</i> -oktan (1) – piridin (2) – ChCl-EG 1:3 (3)	1,2821	21,6590	8,5159	19,2138	7,9995	1,0606	0,0049
toluen $(1)$ – piridin $(2)$ – ChCl-EG 1:3 $(3)$	1,3687*	14,0906	5,1349	8,7051	15,5565	0,2939*	0,0057
n-heksan (1) – piridin (2) – ChCl-EG 1:3,5 (3)	2,0993	19,3546	8,2701	11,5739	5,4768	1,0061	0,0036
<i>n</i> -heptan (1) – piridin (2) – ChCl-EG 1:3,5 (3)	1,5488	18,2480	7,8869	12,9789	11,1737	14,9702*	0,0040
<i>i</i> -oktan (1) – piridin (2) – ChCl-EG 1:3,5 (3)	1,5483	24,7799	8,9062	18,1421	6,9045	1,2557	0,0057
toluen $(1)$ – piridin $(2)$ – ChCl-EG 1:3,5 $(3)$	1,3075*	13,8464	5,0101	8,7253	15,4801	1,6839	0,0067
n-heksan (1) – piridin (2) – ChCl-Gly 1:1,5 (3)	2,2566	14,9139	12,0938	13,3919	12,3707	2,2505	0,0099
n-heptan (1) – piridin (2) – ChCl-Gly 1:1,5 (3)	1,9382	14,5587	12,0775	13,6596	12,3867	0,7656	0,0096
i-oktan (1) – piridin (2) – ChCl-Gly 1:1,5 (3)	1,1168	15,5462	11,2275	15,0223	11,8542	1,4458	0,0028
toluen $(1)$ – piridin $(2)$ – ChCl-Gly 1:1,5 $(3)$	11,9978	19,7290	8,7013	15,9875	32,6193	1,0081	0,0107
			0.0001			1	
n-heksan (1) – piridin (2) – ChCl-Gly 1:2 (3)	2,1774	8,1347	9,8881	11,6690	12,9617	1,7835	0,0037
n-heptan (1) – piridin (2) – ChCl-Gly 1:2 (3)	2,0920	8,2722	10,0840	11,7431	13,2568	1,4582	0,0089
i-oktan (1) – piridin (2) – ChCl-Gly 1:2 (3)	1,9229	14,4350	10,6853	13,8492	12,6237	2,1945	0,0030
toluen $(1)$ – piridin $(2)$ – ChCl-Gly 1:2 $(3)$	12,3460	20,1972	11,3394	14,8723	32,4246	-0,4306*	0,0084
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.7570	5 2724	2 5070*	11 7020	( 5722	1 2 ( 5 1 *	0.0001
n-heksan (1) – piridin (2) – ChCl-Gly 1:3 (3)	0,7578	5,2/34	2,50/9*	11,7239	6,5/33	-1,2651*	0,0091
<i>n</i> -neptan (1) – piridin (2) – ChCl-Gly 1:3 (3)	0,9317	5,4217	1,8/11*	15,/645	/,/945	0,8885	0,0124
i-oktan (1) – piridin (2) – ChCl-Gly 1:3 (3)	-	4,5201	2,7072*	17,8930	5,9000	-1,5744*	0,0108
(1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)  (1)	0,0685*	10 4400	11 20/2	16.0567	22 0212	0 (1(2)	0.0104
toluen (1) – piridin (2) – ChCl-Gly 1:3 (3)	13,3033	18,4480	11,2062	16,9567	55,8312	-0,6163*	0,0104

*vanjske vrijednosti koje se ne koriste za kasnije osrednjavanje

Tablica 4.14. Optimalni parametri modela UNIQUAC i prosječne apsolutne po	ogreške
---------------------------------------------------------------------------	---------

UNIQUAC	$\tau_{12}$	$\tau_{13}$	$\tau_{21}$	$ au_{23}$	$\tau_{31}$	$ au_{32}$	A
n-heksan (1) – piridin (2) – ChCl-EG 1:2 (3)	1,6374	0,2165	0,0755	0,0093	0,0632	3,0117	0,0058
n-heptan (1) – piridin (2) – ChCl-EG 1:2 (3)	1,0171	0,0650*	0,2688	0,0011	0,0121*	2,1551	0,0035
<i>i</i> -oktan (1) – piridin (2) – ChCl-EG 1:2 (3)	1,6856	0,7864	0,0061*	0,6457*	0,2730	1,3489	0,0082
toluen (1) – piridin (2) – ChCl-EG 1:2 (3)	1,2933	0,1855	0,0140	0,7069*	0,0058	0,7201	0,0025
n-heksan (1) – piridin (2) – ChCl-EG 1:3 (3)	2,3526*	0,0547*	0,0285	0,7191*	0,4595*	2,4625	0,0033
n-heptan (1) – piridin (2) – ChCl-EG 1:3 (3)	0,9787	0,0128*	0,3898	0,0859	0,7068*	2,6309	0,0052
<i>i</i> -oktan (1) – piridin (2) – ChCl-EG 1:3 (3)	1,6759	0,4115	0,0184	0,5819*	0,1698	1,7041	0,0060
toluen $(1)$ – piridin $(2)$ – ChCl-EG 1:3 $(3)$	0,6160	0,0184	0,2603	0,0418	0,1876	1,5621	0,0054
	1 - ( ( -	0 (217	0 1 5 7 7	2 (020*	0.0040	0.0000*	0.0077
n-heksan (1) – piridin (2) – ChCl-EG 1:3,5 (3)	1,5667	0,6317	0,1577	3,6030*	0,0840	0,0022*	0,0077
n-heptan (1) – piridin (2) – ChCl-EG 1:3,5 (3)	0,5267	0,0331*	0,6659	0,0078	0,1418	2,2502	0,0020
i-oktan (1) – piridin (2) – ChCl-EG 1:3,5 (3)	1,7022	0,3966	0,0341	0,3622*	0,1327	2,3550	0,0066
toluen $(1)$ – piridin $(2)$ – ChCl-EG 1:3,5 $(3)$	1,1534	0,0711	0,2098	1,8057*	0,0656	0,2228*	0,0065
n below (1) piridin (2) ChCl Cly 1:15(2)	0 0 7 0 0	0.0669	0 1 2 2 4	0.0147	0.0280	1 2020	0.0102
n-neksan (1) – pindin (2) – ChCl-Gly 1.1,5 (3)	0,0/00	0,0008	0,1254	0,0147	0,0580	1,2029	0,0102
n-neptan (1) – piridin (2) – ChCl-Gly 1:1,5 (3)	0,5855	0,0697	0,7475	0,0377	0,0523	1,9962	0,0037
t-oktan (1) – pindin (2) – ChCi-Giy 1.1,5 (3)	0,5256	0,0025	1,1915	1,/811*	0,0329	0,2580*	0,0024
toluen $(1)$ – piridin $(2)$ – ChCl-Gly 1:1,5 $(3)$	1,/363	0,0008	0,0008*	0,5214*	0,0009*	1,03/2	0,0131
<i>n</i> -beksan (1) – niridin (2) – ChCl-Gly 1·2 (3)	0.6886	0.4331	0 3674	0.0120	0.0580	1 5316	0.0036
<i>n</i> -hentan (1) – piridin (2) – ChCl-Gly 1:2 (3) n-hentan (1) – piridin (2) – ChCl-Gly 1:2 (3)	0,0000	0,1331	0,5097	0.0362	0,0500	1,8564	0,0030
i-oktan (1) – niridin (2) – ChCl-Gly 1.2 (3)	0,7450	0,5701	0,3057	0,0502	0,0700	1,0504	**
toktan(1) = pintain(2) = ChCl-Gly 1.2(3)	1 02/0	0,7058	0,4050	0,0715	0,1004	1,7050	0.0121
(1) = pindin(2) = chci-ory 1.2(3)	1,0247	0,2000	0,0042	0,0725	0,0750	1,1070	0,0121
n-heksan (1) – piridin (2) – ChCl-Gly 1:3 (3)	0,5560	0,1037	0,8760	0,0034	0,0129	3,1512	0,0061
<i>n</i> -heptan $(1)$ – piridin $(2)$ – ChCl-Gly 1:3 $(3)$	0,6098	0,0786	0,7058	0,0029	0,0136	2,5666	0,0061
<i>i</i> -oktan (1) – piridin (2) – ChCl-Gly 1:3 (3)	0,9298	0,0309	0,7329	0,0245	0,2601	3,9091	0,0068
toluen $(1)$ – piridin $(2)$ – ChCl-Gly 1:3 $(3)$	1,9656	0,6037	0,0313	0,1128	0,0557	2,1961	0,0116

predviđanja u sustavima s piridinom.

*vanjske vrijednosti koje se ne koriste za kasnije osrednjavanje

**za ovaj je sustav korišten drugi najbolji skup parametara zbog boljeg podudaranja s dugim sustavima

#### 4.4.6.4. Interakcijski parametri u kvazi-trokomponentnim sustavima s tiofenom

Kao što je već prije spomenuto, u sustavima s tiofenom pomoću opisanog eksperimentalnog postupka nije moguće dobiti termodinamički konzistentan skup iz kojeg bi se odredili interakcijski parametri. Ipak, u literaturi su opisane neke mogućnosti određivanja interakcijskih parametara na temelju ograničenog skupa eksperimentalnih podataka, uz ekstrapolaciju dijela podataka iz drugih sustava ili drugih modela. Npr., softver ChemCAD za kemijsko-inženjerske simulacije tvrtke Chemstations[™] nudi procjenu interakcijskih parametara modela NRTL i UNIQUAC na temelju ovisnosti Gibbsove energije o sastavu simulirane modelom UNIFAC. Ta je opcija primjerena za dvokomponentne sustave u kojima ne postoje odgovarajući eksperimentalni podatci o ravnoteži para-kapljevina. To znači da se podatci iz srodnih sustava mogu ekstrapolirati na onaj koji se trenutno razmatra.

Prema spomenutoj ideji konstruiran je ekstrapolacijski postupak za određivanje interakcijskih parametara u sustavima s tiofenom. U obzir su uzete tri pretpostavke. Prva je

pretpostavka da se interakcijski parametri već određeni iz eksperimentalnih podataka u sustavima s piridinom mogu prenijeti na sustave s tiofenom, što načelno omogućuju oba modela, NRTL i UNIQUAC. Prije prijenosa, interakcijski parametri (iz Tablice 4.13. i 4.14) osrednjeni su kad god je bilo moguće, uz odbacivanje odstupajućih vrijednosti (engl. outlier) koje su označene zvijezdicom u Tablicama 4.13. i 4.14). Drugo, pretpostavljeno je da su interakcijski parametri sva tri alifatska ugljikovodika prema drugim komponentama u sustavu (eutektično otapalo ili piridin) jednaki, što je "prirodna" pretpostavka modela UNIQUAC. U modelu NRTL to nije "prirodna" pretpostavka; u obzir se uzima jedino pravilnost koja je uočena u prethodnim proračunima (vidi Tablica 4.13.). Tu su za prijenos u sustave s tiofenom mjerodavni jedino interakcijski parametri ugljikovodika s eutektičnim otapalom. Parametri koji opisuju interakcije ugljikovodik-piridin bit će važni kasnije kod prijenosa podataka u kvazi-sedmerokomponentne sustave. U okviru treće pretpostavke, prethodni su eksperimenti potvrdili potpunu nemješljivost ispitivanih niskotemperaturnih eutektičnih otapala sa svim ugljikovodicima, a dodatnim je eksperimentima utvrđena međusobna topljivost tiofena i svih istraživanih eutektičnih otapala. Odatle je bilo moguće generirati skup sastava ekstraktne faze ravnomjerno (ekvidistantno) raspoređenih između točke čistog eutektičnog otapala i točke maksimalne topljivosti tiofena u eutektičnom otapalu (u trokutnom dijagramu). Zbog slabe topljivosti tiofena u svim ispitivanim eutektičnim otapalima, tako dobiveni sastavi ekstraktne faze ne mogu se znatno razlikovati od stvarnih sastava ekstraktne faze. Drugim riječima, oni bi vrlo vjerojatno bili u okvirima eksperimentalne pogreške u nekoj boljoj metodi određivanja ravnotežnog sastava, npr. ¹H NMR kako je opisano u literaturi. [Hizaddin 2016] Iz navedenoga se može generirati skup veznih linija koje povezuju stvarne, eksperimentalno određene sastave rafinatne faze i generirane sastave ekstraktne faze.

Nakon generiranja skupa veznih linija, interakcijski parametri određeni su na način analogan onomu opisanomu u prethodnom odjeljku. Budući da su parametri povezani s interakcijama ugljikovodik/eutektično otapalo,  $\tau_{13}$  i  $\tau_{31}$ , fiksirani na temelju prethodnih izačuna, pronađene su optimalne vrijednosti preostala četiri parametra, a funkcije cilja u prvom i drugom koraku modificirane procedure po Sørensenu i Arltu bile su:

$$OF_{3} = \sum_{j=1}^{n_{d}} \sum_{i=1}^{n_{c}} \left( \frac{x_{i}^{R} \gamma_{i}^{R} - x_{i}^{E} \gamma_{i}^{E}}{x_{i}^{R} \gamma_{i}^{R} + x_{i}^{E} \gamma_{i}^{E}} \right)_{j}^{2} + Q \left( \tau_{12}^{2} + \tau_{21}^{2} + \tau_{23}^{2} + \tau_{32}^{2} \right),$$
(4.19)

$$OF_{4} = \sum_{j=1}^{n_{c}} \sum_{i=1}^{n_{c}} \sum_{p=R,E} \left[ \left( w_{i}^{p} \right)_{exp} - \left( w_{i}^{p} \right)_{mod} \right]_{j}^{2} + Q \left( \tau_{12}^{2} + \tau_{21}^{2} + \tau_{23}^{2} + \tau_{32}^{2} \right).$$
(4.20)

Budući da vezne linije dobivene modelom nisu uspoređivane s eksperimentalno dobivenim, već s generiranim na temelju nekoliko opisanih pretpostavki, nije imalo smisla definirati srednju apsolutnu pogrešku predviđanja na način opisan u jednadžbi 4.18.

**Tablice 4.15.** i **4.16.** prikazuju optimalne parametre modela. Vezne linije izračunate modelom uspoređivane su s eksperimentalnima u odabranim sustavima, kako je prikazano na **Slikama 4.22.** – **4.27.** Usporedba interakcijskih parametara između pojedinih sustava također pokazuje određene pravilnosti koje će se uzeti u obzir prilikom ekstrapolacije podataka u druge sustave.

NRTL $\alpha_{12}$ ; $\alpha_{13}$ ; $\alpha_{23} = 0,3$ ; 0,3; 0,3	$\tau_{12}$	$\tau_{13}^{*}$	$\tau_{21}$	$\tau_{23}$	$\tau_{31}^{*}$	$ au_{32}$
<i>n</i> -heksan (1) – tiofen (2) – ChCl-EG 1:2 (3)	14,7027	15,6024	18,3542	5,7708	10,8969	0,8495
n-heptan (1) – tiofen (2) – ChCl-EG 1:2 (3)	14,5569	15,6024	18,2657	5,9139	10,8969	1,0641
<i>i</i> -oktan (1) – tiofen (2) – ChCl-EG 1:2 (3)	14,5583	15,6024	18,2083	5,8257	10,8969	0,9597
toluen $(1)$ – tiofen $(2)$ – ChCl-EG 1:2 $(3)$	14,5816	14,0906	18,1939	5,7809	9,4131	0,8685
n-heksan (1) – tiofen (2) – ChCl-EG 1:3 (3)	12,3085	18,2413	15,2669	5,8084	6,7942	0,6283
n-heptan (1) – tiofen (2) – ChCl-EG 1:3 (3)	14,5842	18,2413	18,2904	5,7469	6,7942	0,6057
<i>i</i> -oktan (1) – tiofen (2) – ChCl-EG 1:3 (3)	13,2086	18,2413	23,8682	5,8753	6,7942	0,6410
toluen $(1)$ – tiofen $(2)$ – ChCl-EG 1:3 $(3)$	14,6474	11,0991	18,2144	5,7991	15,5565	0,6563
n-heksan (1) – tiofen (2) – ChCl-EG 1:3,5 (3)	14,6657	20,7942	18,2990	6,3105	7,8517	0,4754
n-heptan (1) – tiofen (2) – ChCl-EG 1:3,5 (3)	14,6638	20,7942	18,1966	6,1026	7,8517	0,6398
<i>i</i> -oktan (1) – tiofen (2) – ChCl-EG 1:3,5 (3)	14,8939	20,7942	24,0836	6,1000	7,8517	0,5731
toluen $(1)$ – tiofen $(2)$ – ChCl-EG 1:3,5 $(3)$	14,5782	13,8464	18,1906	6,0580	15,4801	0,4949
n-heksan (1) – tiofen (2) – ChCl-Gly 1:1,5 (3)	0,7461	15,0063	14,7423	6,3765	12,2039	1,5503
n-heptan (1) – tiofen (2) – ChCl-Gly 1:1,5 (3)	0,0958	15,0063	14,9081	7,2515	12,2039	1,8053
i-oktan (1) – tiofen (2) – ChCl-Gly 1:1,5 (3)	0,3501	15,0063	14,7983	6,3174	12,2039	1,6961
toluen $(1)$ – thiophene $(2)$ – ChCl-Gly 1:1,5 $(3)$	0,7247	19,7290	13,4731	7,0417	32,6193	1,7603
n-heksan (1) – tiofen (2) – ChCl-Gly 1:2 (3)	0,8256	10,2806	14,8034	6,3475	12,9474	1,5913
n-heptan (1) – tiofen (2) – ChCl-Gly 1:2 (3)	0,5778	10,2806	14,5707	6,1912	12,9474	1,4147
i-oktan (1) – tiofen (2) – ChCl-Gly 1:2 (3)	0,4962	10,2806	15,3825	6,7704	12,9474	1,6624
toluen $(1)$ – tiofen $(2)$ – ChCl-Gly 1:2 $(3)$	0,7574	20,1972	13,4993	7,0997	32,4246	1,6525
n-heksan (1) – tiofen (2) – ChCl-Gly 1:3 (3)	1,0107	5,0717	15,9117	6,9515	6,7559	1,7216
n-heptan (1) – tiofen (2) – ChCl-Gly 1:3 (3)	0,4921	5,0717	16,0278	7,5559	6,7559	1,9789
i-oktan (1) – tiofen (2) – ChCl-Gly 1:3 (3)	0,6477	5,0717	15,3116	8,1445	6,7559	2,0653
toluen (1) – tiofen (2) – ChCl-Gly 1:3 (3)	0,7167	18,4480	13,6023	7,0666	33,8312	1,7879

Tablica 4.15. Optimalni parametri modela NRTL u sustavima s tiofenom.

*osrednjene fiksne vrijednosti iz sustava koji sadrže piridin

UNIQUAC	$\tau_{12}$	$\tau_{13}$	$\tau_{21}$	$ au_{23}$	$\tau_{31}$	$\tau_{32}$
n-heksan (1) – tiofen (2) – ChCl-EG 1:2 (3)	2,1182	0,5015	0,2417	0,0259	0,1681	1,1720
n-heptan (1) – tiofen (2) – ChCl-EG 1:2 (3)	2,3845	0,5015	0,2729	0,0333	0,1681	1,1613
<i>i</i> -oktan (1) – tiofen (2) – ChCl-EG 1:2 (3)	2,6330	0,5015	0,1242	0,0403	0,1681	1,1423
toluen (1) – tiofen (2) – ChCl-EG 1:2 (3)	2,3133	0,1855	0,1670	0,0867	0,0058	1,0833
n-heksan (1) – tiofen (2) – ChCl-EG 1:3 (3)	2,2831	0,4115	0,1769	0,0457	0,1698	1,2340
n-heptan (1) – tiofen (2) – ChCl-EG 1:3 (3)	1,9542	0,4115	0,3132	0,0995	0,1698	1,1472
i-oktan (1) – tiofen (2) – ChCl-EG 1:3 (3)	0,3472*	0,4115	2,0102*	0,0847	0,1698	1,1702
toluen $(1)$ – tiofen $(2)$ – ChCl-EG 1:3 $(3)$	2,2937	0,0184	0,1872	0,0446	0,1876	1,1844
n-heksan (1) – tiofen (2) – ChCl-EG 1:3,5 (3)	2,0358	0,5142	0,2567	0,1111	0,1195	1,1711
n-heptan (1) – tiofen (2) – ChCl-EG 1:3,5 (3)	2,3546	0,5142	0,2517	0,1317	0,1195	1,1426
i-oktan (1) – tiofen (2) – ChCl-EG 1:3,5 (3)	1,3551	0,5142	0,7296	0,2198	0,1195	1,0214
toluen (1) - tiofen (2) - ChCl-EG 1:3,5 (3)	1,8410	0,0711	0,3755	0,0395	0,0656	1,2851
	0 1 ( ( 0	0.04(2	0 01 40	0.0754	0.0411	0.0204
n-neksan (1) – tioten (2) – ChCl-Gly 1:1,5 (3)	2,1668	0,0463	0,2143	0,0754	0,0411	0,9304
n-heptan (1) – tiofen (2) – ChCl-Gly 1:1,5 (3)	3,3305	0,0463	0,0141	0,1570	0,0411	0,8455
t-oktan (1) – tioten (2) – ChCl-Gly 1:1,5 (3)	2,8232	0,0463	0,0861	0,1358	0,0411	0,8430
toluen (1) – tiofen (2) – ChCl-Gly 1:1,5 (3)	2,5909	0,0008	0,0803	0,0301	0,0009	0,9794
n heleson (1) tiofen (2) ChCl Cly 1.2 (3)	2 2102	0 5806	0 1822	0.0184	0 1028	0.0502
n-neksan (1) – tioten (2) – ChCl-Oly 1.2 (3) n hentan (1) – tiofen (2) – ChCl Gly 1.2 (3)	2,5195	0,5890	0,1822	0,0104	0,1028	0,9392
<i>i</i> oktan (1) – tiofen (2) – ChCl Gly 1.2 (3)	2,3204	0,5890	0,0391	0,1010	0,1028	0,0010
toluan (1) = tioten (2) = ChCl-Oly 1.2 (3) toluan (1) = tiofen (2) ChCl Cly 1.2 (3)	2,9455	0,3890	0,0482	0,0909	0,1028	0,0000
torden $(1)$ – tioten $(2)$ – cher-ory 1.2 $(3)$	2,3994	0,2080	0,0020	0,0355	0,0750	0,9922
n-heksan (1) – tiofen (2) – ChCl-Glv 1:3 (3)	2,1066	0,0711	0,2979	0,1367	0.0955	0,7965
<i>n</i> -heptan $(1)$ – tiofen $(2)$ – ChCl-Gly 1:3 $(3)$	0,0801*	0.0711	3.1883*	0.2152*	0,0955	0.7237*
<i>i</i> -oktan (1) – tiofen (2) – ChCl-Gly 1:3 (3)	3,1802	0,0711	0,0392	0,1394	0,0955	0,7892
toluen (1) – tiofen (2) – ChCl-Gly 1:3 (3)	2,7467	0,6037	0,0492	0,0250	0,0557	0,8774

Tablica 4.16. Optimalni parametri modela UNIQUAC u sustavima s tiofenom.

*osrednjene fiksne vrijednosti iz sustava koji sadrže piridin

## 4.5. Ekstrakcije u sustavima s modelnim benzinom

U ekstrakcijskim eksperimentima mogućnost optimizacije procesa je široka – moguće je istraživati utjecaj različitih čimbenika na djelotvornost ekstrakcije, npr. vrijeme ekstrakcije, temperaturu, brzinu miješanja, maseni omjer otapala i goriva, broj ekstrakcijskih stupnjeva, početni sastav ekstraktne faze, početni sastav goriva. Kako je cilj ovog rada osmisliti jeftin i ekološki prihvatljiv proces za uklanjanje komponenata iz goriva, odmah su u startu odabrani blagi radni uvjeti radi uštede energije, atmosferski tlak i temperatura 25 °C. Brzina miješanja odabrana je takvom da se postigne zadovoljavajuće dispergiranje faza, što ovisi o viskoznosti otapala. Prema brzini miješanja potrebnoj za postizanje zadovoljavajućeg dispergiranja najviskoznijeg eutektičnog otapala (ChCl-Gly 1:1,5) kreiran je univerzalni ekstrakcijski postupak primjenjiv za sva ispitivana eutektična otapala. Kriterij za odabir vremena ekstrakcije je postizanje ravnoteže u sustavu. Najkraće vrijeme potrebno da se uspostavi ravnoteža u sustavu odabrano je nakon preliminarnih eksperimenata pri čemu se pratilo u kojem će se vremenu postići stalna djelotvornost ekstrakcije. U ekstrakcijskim

eksperimentima mijenjao se broj ekstrakcijskih stupnjeva i maseni omjer m(eutektično otapalo) / m(modelni benzin).

Svi eksperimentalno dobiveni rezultati preračunati su u djelotvornost ekstrakcije piridina, tiofena i toluena iz modelnog benzina primjenom istraživanih eutektičnih otapala. Djelotvornost se separacije može izraziti na različite načine. Kako se prethodno pokazalo da istraživana eutektična otapala ne ekstrahiraju alifatske komponente, već istovremeno ekstrahiraju tiofen, piridin i toluen, prikladno je djelotvornost ekstrakcije tih triju komponenata izračunati prema jednadžbi:

$$E_{i} = 1 - \frac{w_{i}^{R} / (w_{1}^{R} + w_{2}^{R} + w_{3}^{R})}{w_{i}^{F} / (w_{1}^{F} + w_{2}^{F} + w_{3}^{F})} \quad \forall (i = 4, 5, 6), \qquad (4.21)$$

gdje *w* označava maseni udio, eksponenti F i R početnu otopinu i rafinatnu fazu, a komponente su označene kako slijedi: {*n*-heksan, *n*-heptan, *i*-oktan, toluen, tiofen, piridin, DES}={1, 2, 3, 4, 5, 6, 7}. Vrijednost djelotvornosti uspoređuje omjer masenog udjela komponente koja se ekstrahira sa zbrojem masenih udjela onih komponenti koje nisu ekstrahirane u početnoj otopini (F) i rafinatnoj fazi (R) i obuhvaća raspon vrijednosti od 0 do 1 (0 – 100 %).

## 4.5.1. Vrijeme ekstrakcije

Rezultati preliminarnih eksperimenata određivanja vremena potrebnog za uspostavljanje ravnoteže u sustavu za sva istraživana eutektična otapala pri svim ispitivanim masenim omjerima prikazani su na Slikama 4.28. – 4.31.


Slika 4.28. Ovisnost djelotvornosti ekstrakcije a) toluena, b) tiofena i c) piridina o vremenu ekstrakcije pri masenom omjeru m(DES) / m(modelni benzin) od 1:4.



Slika 4.29. Ovisnost djelotvornosti ekstrakcije a) toluena, b) tiofena i c) piridina o vremenu ekstrakcije pri masenom omjeru m(DES) / m(modelni benzin) od 1:2.



Slika 4.30. Ovisnost djelotvornosti ekstrakcije a) toluena, b) tiofena i c) piridina o vremenu ekstrakcije pri masenom omjeru m(DES) / m(modelni benzin) od 3:4.



Slika 4.31. Ovisnost djelotvornosti ekstrakcije a) toluena, b) tiofena i c) piridina o vremenu ekstrakcije pri masenom omjeru *m*(DES) / *m*(modelni benzin) od 1:1.

Djelotvornost ekstrakcije provjeravana je svakih 10 minuta. Kako se kroz 30 minuta ona nije ustalila niti kod jednog omjera *m*(eutektično otapalo) / *m*(modelni benzin), vrijeme ekstrakcije produljeno je na 150 minuta što se pokazalo primjerenim za sve ispitivane sustave. Stoga je vrijeme od 150 minuta odabrano kao vrijeme za provedbu svih ekstrakcijskih eksperimenata u ovom istraživanju, za modelni benzin kao i za realni benzin.

4.5.2. Jednostupanjska ekstrakcija – maseni omjer *m*(eutektično otapalo) / *m*(modelni benzin)

S ekonomskog i industrijskog gledišta, idealna je situacija postići maksimalnu djelotvornost ekstrakcije uz minimalnu potrošnju otapala. S tim je ciljem ispitan utjecaj masenog omjera *m*(eutektično otapalo) / *m*(modelni benzin) na djelotvornost ekstrakcije toluena, tiofena i piridina iz modelnog benzina. Istraženi su maseni omjeri od 1:4, 1:2, 3:4 i 1:1. U **Tablici 4.17.** prikazani su sastavi početnih otopina, te sastavi rafinatne i ekstraktne faze izračunati iz bilance tvari. Tablice sadrže i sastave izračunate modelima koeficijenta aktivnosti NRTL i UNIQUAC na osnovi parametara prikazanih u odjeljku 4.5.7.

**Tablica 4.17.** Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u jednostupanjskoj ekstrakciji s različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin) pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-EG 1:2, $m$ (eutektično otapalo) / $m$ (modelni benzin) = 1:4										
	eksper	iment		NRTL UNIQUAC						
komponenta	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$			
<i>n</i> -heksan	0,209	0,266	0,000	0,2674	0,0296	0,2784	0,0001			
<i>n</i> -heptan	0,218	0,283	0,000	0,2802	0,0304	0,2916	0,0000			
<i>i</i> -oktan	0,207	0,273	0,000	0,2654	0,0283	0,2760	0,0000			
toluen	0,082	0,089	0,059	0,0864	0,0698	0,0917	0,0541			
tiofen	0,037	0,046	0,008	0,0422	0,0228	0,0351	0,0444			
piridin	0,046	0,042	0,060	0,0434	0,0556	0,0273	0,1037			
DES	0,200	0,000	0,873	0,0149	0,7634	0,0000	0,7977			
ChCl-EG 1:2	, <i>m</i> (eute	ktično o	tapalo) /	m(model	ni benzin	) = 1:2				
	eksper	iment		NRTL		UNIQU	AC			
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\rm E}$			
<i>n</i> -heksan	0,171	0,275	0,000	0,2728	0,0238	0,2787	0,0000			
<i>n</i> -heptan	0,175	0,280	0,000	0,2803	0,0238	0,2859	0,0000			
<i>i</i> -oktan	0,174	0,280	0,000	0,2782	0,0232	0,2835	0,0000			
toluen	0,068	0,086	0,038	0,0742	0,0593	0,0911	0,0315			
tiofen	0,038	0,044	0,029	0,0473	0,0256	0,0401	0,0358			
piridin	0,040	0,035	0,047	0,0353	0,0458	0,0206	0,0698			
DES	0,333	0,000	0,887	0,0119	0,7984	0,0000	0,8629			
ChCl-EG 1:2	, <i>m</i> (eute	ktično o	tapalo) /	m(model	ni benzin	) = 3:4				
	eksper	iment		NRTL		UNIQU	AC			
komponenta	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\rm E}$	$w^{\mathrm{R}}$	$w^{\rm E}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$			
<i>n</i> -heksan	0,153	0,278	0,000	0,2916	0,0180	0,2913	0,0000			
<i>n</i> -heptan	0,148	0,281	0,000	0,2814	0,0169	0,2806	0,0000			
<i>i</i> -oktan	0,149	0,285	0,000	0,2837	0,0167	0,2826	0,0000			
toluen	0,056	0,086	0,020	0,0624	0,0489	0,0888	0,0187			
tiofen	0,032	0,041	0,022	0,0421	0,0228	0,0388	0,0251			
piridin	0,034	0,029	0,040	0,0289	0,0385	0,0179	0,0513			
DES	0,429	0,000	0,918	0,0098	0,8382	0,0000	0,9048			

**Tablica 4.17.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u jednostupanjskoj ekstrakciji s različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin) pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-EG 1:2, $m$ (eutektično otapalo) / $m$ (modelni benzin) = 1:1											
	eksper	iment	. /	NRTL		UNIQU	AC				
komponenta	$w^{\overline{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$				
<i>n</i> -heksan	0,135	0,288	0,000	0,2996	0,0148	0,2947	0,0000				
<i>n</i> -heptan	0,130	0,282	0,000	0,2889	0,0138	0,2836	0,0000				
<i>i</i> -oktan	0,126	0,276	0,000	0,2803	0,0130	0,2748	0,0000				
toluen	0,050	0,088	0,017	0,0575	0,0440	0,0916	0,0142				
tiofen	0,029	0,041	0,019	0,0396	0,0212	0,0390	0,0205				
piridin	0,030	0,025	0,034	0,0253	0,0338	0,0163	0,0420				
DES	0,500	0,000	0,930	0,0089	0,8595	0,0000	0,9234				
ChCl-EG 1:3	, <i>m</i> (eute	ktično o	tapalo) /	m(model	ni benzin	) = 1:4					
	eksper	iment		NRTL		UNIQU	AC				
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$				
<i>n</i> -heksan	0,209	0,268	0,000	0,2655	0,0278	0,2708	0,0000				
<i>n</i> -heptan	0,218	0,284	0,000	0,2783	0,0283	0,2836	0,0000				
<i>i</i> -oktan	0,207	0,274	0,000	0,2637	0,0259	0,2684	0,0000				
toluen	0,082	0,089	0,059	0,0898	0,0583	0,0919	0,0501				
tiofen	0,037	0,046	0,009	0,0406	0,0271	0,0442	0,0147				
piridin	0,046	0,039	0,072	0,0379	0,0734	0,0412	0,0640				
DES	0,200	0,000	0,861	0,0240	0,7592	0,0000	0,8712				
ChCl-EG 1:3	, <i>m</i> (eute	ktično o	tapalo) /	m(model	ni benzin	) = 1:2					
	eksper	iment		NRTL		UNIQU	AC				
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$				
<i>n</i> -heksan	0,171	0,271	0,000	0,2718	0,0222	0,2728	0,0000				
<i>n</i> -heptan	0,175	0,282	0,000	0,2792	0,0221	0,2798	0,0000				
<i>i</i> -oktan	0,174	0,282	0,000	0,2774	0,0213	0,2775	0,0000				
toluen	0,068	0,091	0,030	0,0796	0,0511	0,0845	0,0405				
tiofen	0,038	0,043	0,031	0,0444	0,0297	0,0519	0,0158				
piridin	0,040	0,030	0,056	0,0286	0,0558	0,0334	0,0500				
DES	0,333	0,000	0,884	0,0190	0,7977	0,0000	0,8938				

**Tablica 4.17.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u jednostupanjskoj ekstrakciji s različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin) pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-EG 1:3, $m(\text{eutektično otapalo}) / m(\text{modelni benzin}) = 3:4$									
	eksper	iment	r) /	NRTL		UNIQU	AC		
komponenta	W ^F	w ^R	$w^{\mathrm{E}}$	w ^R	$w^{\mathrm{E}}$	w ^R	$w^{\mathrm{E}}$		
<i>n</i> -heksan	0,153	0,280	0,000	0,2910	0,0173	0,2891	0,0000		
<i>n</i> -heptan	0,148	0,282	0,000	0,2808	0,0161	0,2785	0,0000		
<i>i</i> -oktan	0,149	0,286	0,000	0,2833	0,0157	0,2804	0,0000		
toluen	0,056	0,086	0,021	0,0683	0,0430	0,0757	0,0329		
tiofen	0,032	0,041	0,022	0,0385	0,0261	0,0486	0,0140		
piridin	0,034	0,025	0,044	0,0225	0,0449	0,0276	0,0407		
DES	0,429	0,000	0,913	0,0155	0,8367	0,0000	0,9125		
ChCl-EG 1:3	, <i>m</i> (eute	ktično o	tapalo) /	m(model	ni benzin	) = 1:1			
	eksper	iment		NRTL		UNIQU	AC		
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\rm E}$		
<i>n</i> -heksan	0,135	0,29	0,000	0,2992	0,0147	0,2954	0,0000		
<i>n</i> -heptan	0,130	0,283	0,000	0,2885	0,0136	0,2842	0,0000		
<i>i</i> -oktan	0,126	0,277	0,000	0,2802	0,0128	0,2754	0,0000		
toluen	0,050	0,088	0,017	0,0636	0,0395	0,0731	0,0299		
tiofen	0,029	0,041	0,019	0,0355	0,0241	0,0477	0,0132		
piridin	0,030	0,021	0,038	0,0191	0,0384	0,0243	0,0352		
DES	0,500	0,000	0,926	0,0140	0,8569	0,0000	0,9217		
ChCl-EG 1:3	,5, <i>m</i> (eu	tektično	otapalo	) / <i>m</i> (mod	elni benz	in) = 1:4			
	eksper	iment		NRTL		UNIQU	AC		
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$		
<i>n</i> -heksan	0,209	0,268	0,000	0,2700	0,0228	0,2755	0,0000		
<i>n</i> -heptan	0,218	0,285	0,000	0,2831	0,0226	0,2885	0,0000		
<i>i</i> -oktan	0,207	0,276	0,000	0,2682	0,0207	0,2731	0,0000		
toluen	0,082	0,09	0,058	0,0919	0,0533	0,0937	0,0467		
tiofen	0,037	0,046	0,010	0,0420	0,0234	0,0400	0,0291		
piridin	0,046	0,036	0,080	0,0324	0,0888	0,0291	0,1005		
DES	0,20	0,000	0,852	0,0124	0,7684	0,0000	0,8236		

**Tablica 4.17.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u jednostupanjskoj ekstrakciji s različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin) pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-EG 1:3,5, $m$ (eutektično otapalo) / $m$ (modelni benzin) = 1:2										
	eksper	iment		NRTL		UNIQU	AC			
komponenta	$w^{\mathrm{F}}$	w ^R	$w^{\mathrm{E}}$	w ^R	$w^{\mathrm{E}}$	w ^R	w ^E			
<i>n</i> -heksan	0,171	0,272	0,000	0,2753	0,0202	0,2765	0,0000			
<i>n</i> -heptan	0,175	0,283	0,000	0,2830	0,0198	0,2836	0,0000			
<i>i</i> -oktan	0,174	0,283	0,000	0,2810	0,0191	0,2812	0,0000			
toluen	0,068	0,091	0,031	0,0814	0,0488	0,0914	0,0303			
tiofen	0,038	0,043	0,031	0,0467	0,0266	0,0456	0,0269			
piridin	0,040	0,028	0,059	0,0225	0,0643	0,0216	0,0687			
DES	0,333	0,000	0,879	0,0103	0,8012	0,0000	0,8742			
ChCl-EG 1:3	,5, <i>m</i> (eu	tektično	otapalo	) / <i>m</i> (mod	elni benz	in) = 3:4				
	eksper	iment		NRTL		UNIQU	AC			
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$			
<i>n</i> -hexane	0,153	0,278	0,000	0,2942	0,0174	0,2914	0,0000			
<i>n</i> -heksan	0,148	0,284	0,000	0,2841	0,0161	0,2807	0,0000			
<i>n</i> -heptan	0,149	0,289	0,000	0,2866	0,0157	0,2827	0,0000			
<i>i</i> -oktan	0,056	0,087	0,021	0,0693	0,0424	0,0862	0,0217			
toluen	0,032	0,041	0,023	0,0410	0,0239	0,0418	0,0218			
tiofen	0,034	0,023	0,046	0,0166	0,0503	0,0173	0,0521			
piridin	0,429	0,000	0,910	0,0083	0,8342	0,0000	0,9045			
ChCl-EG 1:3	,5, <i>m</i> (eu	tektično	otapalo	) / <i>m</i> (mod	lelni benz	in) = 1:1				
	eksperi	iment		NRTL		UNIQU	AC			
komponenta	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$			
<i>n</i> -heksan	0,135	0,29	0,000	0,3023	0,0157	0,2964	0,0000			
<i>n</i> -heptan	0,130	0,284	0,000	0,2916	0,0145	0,2852	0,0000			
<i>i</i> -oktan	0,126	0,278	0,000	0,2832	0,0137	0,2764	0,0000			
toluen	0,050	0,088	0,017	0,0638	0,0396	0,0868	0,0185			
tiofen	0,029	0,041	0,019	0,0381	0,0224	0,0403	0,0194			
piridin	0,030	0,019	0,040	0,0135	0,0422	0,0149	0,0431			
DES	0,500	0,000	0,924	0,0075	0,8519	0,0000	0,9190			

**Tablica 4.17.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u jednostupanjskoj ekstrakciji s različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin) pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-Gly 1:1,5, <i>m</i> (eutektično otapalo) / <i>m</i> (modelni benzin) = 1:4										
	eksper	iment	-	NRTL		UNIQU	AC			
komponenta	$w^{\mathrm{F}}$	w ^R	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$			
<i>n</i> -heksan	0,209	0,268	0,000	0,2703	0,0229	0,2878	0,0010			
<i>n</i> -heptan	0,211	0,277	0,000	0,2723	0,0255	0,2910	0,0005			
<i>i</i> -oktan	0,208	0,277	0,000	0,2692	0,0217	0,2866	0,0002			
toluen	0,079	0,087	0,052	0,0926	0,0362	0,0844	0,0633			
tiofen	0,046	0,044	0,050	0,0481	0,0377	0,0410	0,0575			
piridin	0,048	0,047	0,051	0,0425	0,0632	0,0088	0,1502			
DES	0,200	0,000	0,848	0,0050	0,7929	0,0004	0,7270			
ChCl-Gly 1:1	,5, <i>m</i> (eu	tektično	otapalo	) / <i>m</i> (mod	lelni benz	xin) = 1:2				
	eksper	iment		NRTL		UNIQU	AC			
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$			
<i>n</i> -heksan	0,171	0,272	0,000	0,2736	0,0216	0,2837	0,0002			
<i>n</i> -heptan	0,175	0,277	0,000	0,2788	0,0248	0,2911	0,0001			
<i>i</i> -oktan	0,174	0,277	0,000	0,2787	0,0213	0,2887	0,0000			
toluen	0,068	0,086	0,037	0,0885	0,0384	0,0884	0,0373			
tiofen	0,038	0,046	0,026	0,0415	0,0341	0,0423	0,0327			
piridin	0,040	0,042	0,036	0,0353	0,0458	0,0054	0,0915			
DES	0,333	0,000	0,901	0,0036	0,8140	0,0005	0,8383			
ChCl-Gly 1:1	,5, <i>m</i> (eu	tektično	otapalo	) / <i>m</i> (mod	lelni benz	xin) = 3:4				
	eksperi	iment		NRTL		UNIQU	AC			
komponenta	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$			
<i>n</i> -heksan	0,147	0,274	0,000	0,2790	0,0148	0,2828	0,0000			
<i>n</i> -heptan	0,150	0,278	0,000	0,2835	0,0173	0,2896	0,0000			
<i>i</i> -oktan	0,151	0,280	0,000	0,2863	0,0147	0,2898	0,0000			
toluen	0,057	0,088	0,020	0,0819	0,0315	0,0874	0,0235			
tiofen	0,033	0,045	0,020	0,0369	0,0295	0,0456	0,0198			
piridin	0,034	0,036	0,031	0,0298	0,0375	0,0042	0,0654			
DES	0,429	0,000	0,929	0,0027	0,8547	0,0006	0,8912			

**Tablica 4.17.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u jednostupanjskoj ekstrakciji s različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin) pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-Gly 1:1,5, $m(\text{eutektično otapalo}) / m(\text{modelni benzin}) = 1:1$									
	eksper	iment		NRTL	UNIQUAC				
komponenta	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$		
<i>n</i> -heksan	0,128	0,270	0,000	0,2816	0,0115	0,2807	0,0000		
<i>n</i> -heptan	0,132	0,283	0,000	0,2890	0,0138	0,2906	0,0000		
<i>i</i> -oktan	0,131	0,283	0,000	0,2891	0,0114	0,2878	0,0000		
toluen	0,049	0,087	0,015	0,0772	0,0274	0,0869	0,0171		
tiofen	0,030	0,045	0,017	0,0344	0,0269	0,0498	0,0137		
piridin	0,030	0,032	0,028	0,0264	0,0326	0,0037	0,0519		
DES	0,500	0,000	0,939	0,0023	0,8763	0,0006	0,9173		
ChCl-Gly 1:2	, <i>m</i> (eute	ktično o	tapalo)	m(mode)	lni benzir	n) = 1:4			
	eksper	iment		NRTL		UNIQU	AC		
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$		
<i>n</i> -heksan	0,209	0,271	0,000	0,2674	0,0096	0,2869	0,0002		
<i>n</i> -heptan	0,211	0,278	0,000	0,2700	0,0104	0,2899	0,0001		
<i>i</i> -oktan	0,208	0,277	0,000	0,2663	0,0086	0,2855	0,0000		
tolue	0,079	0,087	0,053	0,0962	0,0184	0,0895	0,0493		
tiofen	0,046	0,045	0,049	0,0504	0,0288	0,0437	0,0505		
piridin	0,048	0,043	0,062	0,0386	0,0784	0,0046	0,1632		
DES	0,200	0,000	0,837	0,0111	0,8458	0,0000	0,7367		
ChCl-Gly 1:2	, <i>m</i> (eute	ktično o	tapalo)	m(mode)	lni benzir	n) = 1:2			
	eksper	iment		NRTL		UNIQU	AC		
komponenta	w ^F	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$		
<i>n</i> -heksan	0,177	0,272	0,000	0,2792	0,0086	0,2929	0,0000		
<i>n</i> -heptan	0,172	0,279	0,000	0,2705	0,0093	0,2844	0,0000		
<i>i</i> -oktan	0,173	0,279	0,000	0,2724	0,0078	0,2854	0,0000		
toluen	0,066	0,087	0,031	0,0942	0,0204	0,0891	0,0316		
tiofen	0,038	0,046	0,025	0,0449	0,0267	0,0456	0,0264		
piridin	0,040	0,036	0,047	0,0303	0,0568	0,0026	0,0980		
DES	0,333	0,000	0,897	0,0085	0,8705	0,0000	0,8439		

**Tablica 4.17.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u jednostupanjskoj ekstrakciji s različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin) pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-Gly 1:2, $m(\text{eutektično otapalo}) / m(\text{modelni benzin}) = 3:4$									
	eksper	iment		NRTL		UNIQU	AC		
komponenta	w ^F	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$		
<i>n</i> -heksan	0,147	0,275	0,000	0,2751	0,0076	0,2826	0,0000		
<i>n</i> -heptan	0,150	0,279	0,000	0,2806	0,0090	0,2893	0,0000		
<i>i</i> -oktan	0,151	0,281	0,000	0,2823	0,0075	0,2895	0,0000		
toluen	0,057	0,089	0,020	0,0890	0,0216	0,0875	0,0234		
tiofen	0,033	0,045	0,020	0,0406	0,0251	0,0492	0,0159		
piridin	0,034	0,031	0,037	0,0252	0,0428	0,0019	0,0680		
DES	0,429	0,000	0,924	0,0071	0,8863	0,0000	0,8927		
ChCl-Gly 1:2	, <i>m</i> (eute	ktično o	tapalo)	m(mode)	lni benzir	n) = 1:1			
	eksper	iment		NRTL		UNIQU	AC		
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\rm E}$		
<i>n</i> -heksan	0,128	0,272	0,000	0,2781	0,0070	0,2815	0,0000		
<i>n</i> -heptan	0,132	0,284	0,000	0,2863	0,0086	0,2914	0,0000		
<i>i</i> -oktan	0,131	0,284	0,000	0,2854	0,0069	0,2886	0,0000		
toluen	0,049	0,087	0,015	0,0834	0,0211	0,0846	0,0192		
tiofen	0,030	0,046	0,016	0,0380	0,0238	0,0525	0,0115		
piridin	0,030	0,027	0,033	0,0224	0,0360	0,0015	0,0536		
DES	0,500	0,000	0,936	0,0064	0,8966	0,0000	0,9157		
ChCl-Gly 1:3	, <i>m</i> (eute	ktično o	tapalo)	m(mode)	lni benzir	n) = 1:4			
	eksper	iment		NRTL		UNIQU	AC		
komponenta	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\rm E}$		
<i>n</i> -heksan	0,209	0,271	0,000	0,2684	0,0423	0,2738	0,0000		
<i>n</i> -heptan	0,211	0,277	0,000	0,2703	0,0451	0,2766	0,0000		
<i>i</i> -oktan	0,208	0,277	0,000	0,2676	0,0404	0,2724	0,0000		
toluen	0,079	0,087	0,053	0,0921	0,0408	0,0880	0,0483		
tiofen	0,046	0,044	0,049	0,0490	0,0358	0,0515	0,0263		
piridin	0,048	0,043	0,061	0,0386	0,0729	0,0377	0,0796		
DES	0,200	0,000	0,837	0,0140	0,7228	0,0000	0,8460		

**Tablica 4.17.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u jednostupanjskoj ekstrakciji s različitim masenim omjerima m(eutektično otapalo) / m(modelni benzin) pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-Gly 1:3, $m(\text{eutektično otapalo}) / m(\text{modelni benzin}) = 1:2$											
	eksper	iment		NRTL		UNIQU	AC				
komponenta	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$				
<i>n</i> -heksan	0,177	0,269	0,000	0,2819	0,0299	0,2839	0,0000				
<i>n</i> -heptan	0,172	0,280	0,000	0,2722	0,0313	0,2756	0,0000				
<i>i</i> -oktan	0,173	0,280	0,000	0,2755	0,0280	0,2766	0,0000				
toluene	0,066	0,091	0,024	0,0883	0,0356	0,0835	0,0379				
tiofen	0,038	0,045	0,026	0,0434	0,0305	0,0508	0,0168				
piridin	0,040	0,035	0,050	0,0297	0,0553	0,0296	0,0582				
DES	0,333	0,000	0,900	0,0091	0,7894	0,0000	0,8871				
ChCl-Gly 1:3	, <i>m</i> (eute	ktično o	tapalo)	/ m(mode	lni benzir	n) = 3:4					
	eksper	iment		NRTL		UNIQU	AC				
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$				
<i>n</i> -heksan	0,147	0,276	0,000	0,2781	0,0203	0,2769	0,0000				
<i>n</i> -heptan	0,150	0,279	0,000	0,2826	0,0228	0,2835	0,0000				
<i>i</i> -oktan	0,151	0,281	0,000	0,2857	0,0200	0,2837	0,0000				
toluene	0,057	0,089	0,020	0,0834	0,0309	0,0795	0,0310				
tiofen	0,033	0,045	0,020	0,0397	0,0269	0,0523	0,0116				
piridin	0,034	0,030	0,038	0,0238	0,0431	0,0240	0,0445				
DES	0,429	0,000	0,923	0,0066	0,8360	0,0000	0,9130				
ChCl-Gly 1:3	, <i>m</i> (eute	ktično o	tapalo)	/ m(mode	lni benzir	n) = 1:1					
	eksper	iment		NRTL		UNIQU	AC				
komponenta	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$				
<i>n</i> -heksan	0,128	0,271	0,000	0,2803	0,0138	0,2757	0,0000				
<i>n</i> -heptan	0,132	0,285	0,000	0,2879	0,0160	0,2854	0,0000				
<i>i</i> -oktan	0,131	0,284	0,000	0,2882	0,0136	0,2826	0,0000				
toluene	0,049	0,088	0,015	0,0796	0,0259	0,0780	0,0309				
tiofen	0,030	0,046	0,016	0,0379	0,0243	0,0541	0,0123				
piridin	0,030	0,027	0,033	0,0206	0,0370	0,0242	0,0455				
DES	0,500	0,000	0,936	0,0055	0,8694	0,0000	0,9113				

S obzirom na relativno velike eksperimentalne nesigurnosti, podudaranje eksperimentalnih vrijednosti djelotvornosti ekstrakcije s modelom može se ocjeniti dobrim, posebno za sustav ChCl-EG 1:3,5.

Djelotvornost ekstrakcije kao funkcija masenog omjera m(eutektično otapalo) / m(modelni benzin) prikazana je na Slikama 4.32. – 4.37.



Slika 4.32. Ovisnost djelotvornosti ekstrakcije o masenom omjeru m(DES) / m(modelni benzin) za ChCl-Gly 1:1,5.



Slika 4.33. Ovisnost djelotvornosti ekstrakcije o masenom omjeru m(DES) / m(modelni benzin) za ChCl-Gly 1:2.



Slika 4.34. Ovisnost djelotvornosti ekstrakcije o masenom omjeru m(DES) / m(modelni benzin) za ChCl-Gly 1:3.



Slika 4.35. Ovisnost djelotvornosti ekstrakcije o masenom omjeru m(DES) / m(modelni benzin) za ChCl-EG 1:2.



Slika 4.36. Ovisnost djelotvornosti ekstrakcije o masenom omjeru m(DES) / m(modelni benzin) za ChCl-EG 1:3.



Slika 4.37. Ovisnost djelotvornosti ekstrakcije o masenom omjeru m(DES) / m(modelni benzin) za ChCl-EG 1:3,5.

Slike 4.32. – 4.34. prikazuju porast djelotvornosti ekstrakcije s porastom masenog omjera *m*(eutektično otapalo) / *m*(modelni benzin) za proces denitrifikacije. Djelotvornosti desulfurizacije i dearomatizacije ostaju praktički konstantne. Kako se moglo očekivati, najveće djelotvornosti ekstrakcije postignute su s najvećim masenim omjerom od 1:1 jer veće količine otapala mogu otopiti više tvari. Najveće djelotvornosti postignute su osobito pri

ekstrakciji piridina, što se može pripisati većoj polarnosti piridina u usporedbi s tiofenom, i posebno toluenom. Prema tome, ispitana eutektična otapala mogla bi poslužiti prvenstveno za denitrifikaciju ugljikovodičnih goriva.

Li i suradnici [Li 2013] istražili su mehanizam ekstrakcijske desulfurizacije i zaključili da je nastajanje vodikove veze između eutektičnog otapala i ekstrahirane komponente glavna pokretačka sila za ekstrakciju. U ovom istraživanju, komponente sposobne za stvaranje vodikovih veza su piridin i tiofen, a mjerenja u kvazi-trikomponentnim sustavima dokazuju da se piridin bolje otapa u eutektičnom otapalu od tiofena. [Rogošić 2018] Hizzadin i suradnici [Hizaddin 2014] su primjenom modela COSMO-RS izračunali selektivnost pri beskonačnom razrjeđenju, *S*°, za ekstrakciju piridina iz modelnih dizelskih goriva – smjesa *n*-heksadekana, *i*-dodekana, fenilnonana, butilcikloheksana i 1-dodekana – pomoću 94 eutektična otapala. Najveće vrijednosti *S*° procijenjene su kod eutektičnih otapala na osnovi kvarternih amonijevih soli, posebice onih izvedenih iz kolina. S druge strane, velike vrijednosti *S*° opažene su i s eutektičnim otapalima s alkoholima kao HBD-komponentama. Istražena eutektična otapala na osnovi ChCl-Gly potvrđuju predviđanja na osnovi modela COSMO-RS – dobru selektivnost za ekstrakciju piridina.

Ne postoji mnogo literaturnih primjera primjene ChCl-Gly 1:2 kao ekstrakcijskog sredstva za sumporove i dušikove spojeve. Spomenuto eutektično otapalo testirano je za ekstrakciju benzotiofena iz *n*-oktana, ali je djelotvornost ekstrakcije bila mala, do maksimalno 10 %. [Li 2013] U ovom su istraživanju dobivene nešto veće djelotvornosti ChCl-Gly 1:2 pri ekstrakciji tiofena (28,6 %). Otapalo ChCl-Gly 1:2 ispitivano je pri ekstrakciji piridina iz *n*-heptana pri niskoj ukupnoj koncentraciji piridina (500 ppm) uz postignutu djelotvornost od 51,4 %. [Ali 2016] U ovom su istraživanju postignute djelotvornosti između 30 % i 60 %, ovisno o masenom omjeru *m*(eutektično otapalo) / *m*(modelni benzin).

Rezultati prikazani na **Slikama 4.35.** – **4.37.** pokazuju da je eutektično otapalo s najmanjim udjelom etilen-glikola najbolje ekstrakcijsko sredstvo za aromatsku komponentu – toluen. Iako su preliminarni eksperimenti pokazali da je čisti toluen praktički netopljiv u eutektičnom otapalu, čini se da otopljeni piridin i tiofen kao aromatski spojevi promoviraju otapanje aromatskog toluena u eutektičnom otapalu. Sva eutektična otapala na osnovi etilenglikola podjednako dobro ekstrahiraju sumporovu komponentu – tiofen, dok se može uočiti porast djelotvornosti ekstrakcije dušikove komponente – piridina – s porastom udjela etilenglikola u eutektičnom otapalu. Povećanje masenog omjera *m*(eutektično otapalo) / *m*(modelni benzin) dovelo je do veće ektrakcijske djelotvornosti tiofena i piridina, dok je djelotvornost ekstrakcije toluena ostala praktički stalna. Ovdje valja napomenuti da je etilen-glikol kapljevina pri temperaturi okoliša. Njegov tlak para pri 20 °C iznosi nezanemarivih 6,5 Pa (u usporedbi s npr. 0,01 Pa pri 25 °C za glicerol), pa povećanje udjela etilen-glikola u eutektičnom otapalu može rezultirati gubitkom dijela eutektičnog otapala hlapljenjem, što može ograničiti njegovu uporabu. Uspoređujući ekstrakciju triju ključnih komponenata, najveća je djelotvornost dobivena za piridin, pa se pretpostavlja da bi se istraživana eutektična otapala mogla primarno koristiti kao sredstva za denitrifikaciju.

## 4.5.3. Višestupanjska ekstrakcija

Iako su DES-ovi na osnovi kvarternih amonijevih soli relativno jeftini s obzirom na korištene tvari i troškove priprave, industrijska primjena u načelu zahtijeva što manju potrošnju otapala koja daje što bolju djelotvornost ekstrakcije. Ista ili slična djelotvornost ekstrakcije može se postići s manjom ukupnom količinom ekstrakcijskog sredstva provodi li se ekstrakcija u nekoliko stupnjeva. Prema tome, za svako je ispitivano eutektično otapalo ispitana višestupanjska ekstrakcija uz najmanji maseni omjer m(eutektično otapalo) / m(modelni benzin) od 1:4 u svakom pojedinačnom stupnju, s dodatkom svježe šarže eutektičnog otapala u svakom stupnju.

Rezultati su prikazani u **Tablici 4.18.** u obliku ravnotežnih sastava faza. Tablica uz eksperimentalno određene sastave faza uključuje i sastave izračunate pomoću modela koeficijenta aktivnosti UNIQUAC uz parametre prikazane u odjeljku 4.5.7. Treba napomenuti da podaci prikazani u tablici nisu ni na koji način bili uključeni u određivanje parametara modela i stoga mogu poslužiti kao vrsta validacijskog skupa.

**Tablica 4.18.** Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u višestupanjskoj ekstrakciji uz maseni omjer m(eutektično otapalo) / m(modelni benzin) od 1:4 pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-Gly 1:1	,5 pri m(	DES) / n	<i>i</i> (modeln	i benzin)	= 1:4						
Stupanj 1						Stupanj 2					
	el	sperime	nt	UNIC	UAC		el	sperime	nt	UNIÇ	QUAC
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	w ^R	$w^{\rm E}$	komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	w ^R	$w^{\rm E}$
<i>n</i> -heksan	0,213	0,278	0,000	0,2933	0,0010	<i>n</i> -heksan	0,223	0,278	0,000	0,2980	0,0004
<i>n</i> -heptan	0,211	0,275	0,000	0,2903	0,0005	<i>n</i> -heptan	0,220	0,279	0,000	0,2951	0,0002
<i>i</i> -oktan	0,204	0,269	0,000	0,2807	0,0002	<i>i</i> -oktan	0,215	0,273	0,000	0,2882	0,0001
toluen	0,078	0,086	0,055	0,0844	0,0622	toluen	0,068	0,086	0,000	0,0761	0,0459
tiofen	0,047	0,046	0,050	0,0423	0,0585	tiofen	0,036	0,045	0,005	0,0350	0,0407
piridin	0,047	0,046	0,048	0,0086	0,1475	piridin	0,037	0,039	0,028	0,0072	0,1245
DES	0,200	0,000	0,847	0,0005	0,7303	DES	0,200	0,000	0,967	0,0004	0,7882
Stupanj 3											
	el	sperime	nt	UNIC	UAC						
komponenta	w ^F	w ^R	$w^{\rm E}$	w ^R	$w^{\rm E}$						
<i>n</i> -heksan	0,222	0,278	0,000	0,2945	0,0003						
<i>n</i> -heptan	0,223	0,282	0,000	0,2954	0,0001						
<i>i</i> -oktan	0,218	0,276	0,000	0,2889	0,0000						
toluen	0,069	0,087	0,000	0,0784	0,0401						
tiofen	0,036	0,044	0,005	0,0360	0,0351						
piridin	0,031	0,033	0,024	0,0063	0,1089						
DES	0,200	0,000	0,972	0,0004	0,8154						
ChCl-Gly 1:2	pri m(D	ES) / m(1	nodelni	benzin) =	1:4						
Stupanj 1						Stupanj 2					
	el	sperime	nt	UNIC	UAC		el	sperime	nt	UNIÇ	QUAC
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{R}$	$w^{\rm E}$	komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan											0.0001
n neusan	0,206	0,277	0,000	0,2834	0,0002	<i>n</i> -heksan	0,222	0,277	0,000	0,2955	0,0001
<i>n</i> -heptan	0,206 0,212	0,277 0,275	0,000 0,000	0,2834 0,2928	0,0002 0,0001	<i>n</i> -heksan <i>n</i> -heptan	0,222 0,220	0,277 0,280	0,000 0,000	0,2955 0,2934	0,0001 0,0000
<i>n</i> -heptan <i>i</i> -oktan	0,206 0,212 0,189	0,277 0,275 0,271	0,000 0,000 0,000	0,2834 0,2928 0,2612	0,0002 0,0001 0,0000	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan	0,222 0,220 0,216	0,277 0,280 0,275	0,000 0,000 0,000	0,2955 0,2934 0,2882	0,0001 0,0000 0,0000
<i>n</i> -heptan <i>i</i> -oktan toluen	0,206 0,212 0,189 0,098	0,277 0,275 0,271 0,087	0,000 0,000 0,000 0,129	0,2834 0,2928 0,2612 0,1123	0,0002 0,0001 0,0000 0,0607	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen	0,222 0,220 0,216 0,070	0,277 0,280 0,275 0,088	0,000 0,000 0,000 0,000	0,2955 0,2934 0,2882 0,0811	0,0001 0,0000 0,0000 0,0354
<i>n</i> -heptan <i>i</i> -oktan toluen tiofen	0,206 0,212 0,189 0,098 0,047	0,277 0,275 0,271 0,087 0,046	0,000 0,000 0,000 0,129 0,049	0,2834 0,2928 0,2612 0,1123 0,0453	0,0002 0,0001 0,0000 0,0607 0,0514	<i>n-</i> heksan <i>n-</i> heptan <i>i-</i> oktan toluen tiofen	0,222 0,220 0,216 0,070 0,037	0,277 0,280 0,275 0,088 0,045	0,000 0,000 0,000 0,000 0,005	0,2955 0,2934 0,2882 0,0811 0,0384	0,0001 0,0000 0,0000 0,0354 0,0323
<i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin	0,206 0,212 0,189 0,098 0,047 0,048	0,277 0,275 0,271 0,087 0,046 0,043	0,000 0,000 0,000 0,129 0,049 0,060	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050	0,0002 0,0001 0,0000 0,0607 0,0514 0,1598	<i>n-</i> heksan <i>n-</i> heptan <i>i-</i> oktan toluen tiofen piridin	0,222 0,220 0,216 0,070 0,037 0,035	0,277 0,280 0,275 0,088 0,045 0,035	0,000 0,000 0,000 0,000 0,005 0,034	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286
<i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,206 0,212 0,189 0,098 0,047 0,048 0,200	0,277 0,275 0,271 0,087 0,046 0,043 0,000	0,000 0,000 0,000 0,129 0,049 0,060 0,762	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000	0,0002 0,0001 0,0000 0,0607 0,0514 0,1598 0,7276	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037
<i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES Stupanj 3	0,206 0,212 0,189 0,098 0,047 0,048 0,200	0,277 0,275 0,271 0,087 0,046 0,043 0,000	0,000 0,000 0,000 0,129 0,049 0,060 0,762	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000	0,0002 0,0001 0,0000 0,0607 0,0514 0,1598 0,7276	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037
<i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES Stupanj 3	0,206 0,212 0,189 0,098 0,047 0,048 0,200 el	0,277 0,275 0,271 0,087 0,046 0,043 0,000	0,000 0,000 0,129 0,049 0,060 0,762	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000	0,0002 0,0001 0,0000 0,0607 0,0514 0,1598 0,7276	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0354 0,0323 0,1286 0,8037
<i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES Stupanj 3	0,206 0,212 0,189 0,098 0,047 0,048 0,200 el	0,277 0,275 0,271 0,087 0,046 0,043 0,000 csperime w ^R	$0,000 \\ 0,000 \\ 0,000 \\ 0,129 \\ 0,049 \\ 0,060 \\ 0,762 \\ \hline nt \\ w^{E}$	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000 UNIC	0,0002 0,0001 0,0000 0,0607 0,0514 0,1598 0,7276	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037
<i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES Stupanj 3 komponenta <i>n</i> -heksan	0,206 0,212 0,189 0,098 0,047 0,048 0,200 el w ^F 0,222	0,277 0,275 0,271 0,087 0,046 0,043 0,000 csperime w ^R 0,277	0,000 0,000 0,000 0,129 0,049 0,060 0,762 nt w ^E 0,000	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000 UNIQ w ^R 0,2915	0,0002 0,0001 0,0000 0,0607 0,0514 0,1598 0,7276 <u>w^E</u> 0,0000	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037
n-heptan i-oktan toluen tiofen piridin DES Stupanj 3 komponenta n-heksan n-heptan	0,206 0,212 0,189 0,098 0,047 0,048 0,200 el w ^F 0,222 0,224	0,277 0,275 0,271 0,087 0,046 0,043 0,000 csperime w ^R 0,277 0,283	$\begin{array}{c} 0,000\\ 0,000\\ 0,000\\ 0,129\\ 0,049\\ 0,060\\ 0,762\\ \hline \\ \hline \\ \\ \hline \\ \\ w^{\rm E}\\ \hline \\ 0,000\\ 0,000\\ \hline \end{array}$	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000 UNIC w ^R 0,2915 0,2939	$0,0002 \\ 0,0001 \\ 0,0000 \\ 0,0607 \\ 0,0514 \\ 0,1598 \\ 0,7276 \\ \hline \\ $	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037
n-heptan i-oktan toluen tiofen piridin DES Stupanj 3 komponenta n-heksan n-heptan i-oktan	0,206 0,212 0,189 0,098 0,047 0,048 0,200 el w ^F 0,222 0,224 0,220	0,277 0,275 0,271 0,087 0,046 0,043 0,000 csperime w ^R 0,277 0,283 0,279	0,000 0,000 0,129 0,049 0,060 0,762 nt <u>w^E</u> 0,000 0,000 0,000	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000 UNIC w ^R 0,2915 0,2939 0,2890	$0,0002 \\ 0,0001 \\ 0,0000 \\ 0,0607 \\ 0,0514 \\ 0,1598 \\ 0,7276 \\ \hline \\ $	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037
n-heptan i-oktan toluen tiofen piridin DES Stupanj 3 komponenta n-heksan n-heptan i-oktan toluen	0,206 0,212 0,189 0,098 0,047 0,048 0,200 el w ^F 0,222 0,224 0,220 0,071	0,277 0,275 0,271 0,087 0,046 0,043 0,000 csperime w ^R 0,277 0,283 0,279 0,089	0,000 0,000 0,129 0,049 0,060 0,762 nt w ^E 0,000 0,000 0,000 0,000	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000 UNIC w ^R 0,2915 0,2939 0,2890 0,0831	$0,0002 \\ 0,0001 \\ 0,0000 \\ 0,0607 \\ 0,0514 \\ 0,1598 \\ 0,7276 \\ \hline \\ $	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037
n-heptan i-oktan toluen tiofen piridin DES Stupanj 3 komponenta n-heksan n-heptan i-oktan toluen tiofen	0,206 0,212 0,189 0,098 0,047 0,048 0,200 el w ^F 0,222 0,224 0,224 0,220 0,071 0,036	0,277 0,275 0,271 0,087 0,046 0,043 0,000 seperime w ^R 0,277 0,283 0,279 0,089 0,044	$\begin{array}{c} 0,000\\ 0,000\\ 0,000\\ 0,129\\ 0,049\\ 0,060\\ 0,762\\ \hline \\ \hline \\ nt\\ \hline \\ \hline \\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,005\\ \hline \end{array}$	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000 UNIC w ^R 0,2915 0,2939 0,2890 0,0831 0,0396	0,0002 0,0001 0,0000 0,0607 0,0514 0,1598 0,7276	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037
n-heptan i-oktan toluen tiofen piridin DES Stupanj 3 komponenta n-heptan i-oktan toluen tiofen piridin	0,206 0,212 0,189 0,098 0,047 0,048 0,200 el w ^F 0,222 0,224 0,220 0,071 0,036 0,028	0,277 0,275 0,271 0,087 0,046 0,043 0,000 ssperime w ^R 0,277 0,283 0,279 0,089 0,044 0,028	$\begin{array}{c} 0,000\\ 0,000\\ 0,000\\ 0,129\\ 0,049\\ 0,060\\ 0,762\\ \hline \\ \hline \\ nt\\ \hline \\ w^{E}\\ \hline \\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,005\\ 0,029\\ \hline \end{array}$	0,2834 0,2928 0,2612 0,1123 0,0453 0,0050 0,0000 UNIC w ^R 0,2915 0,2939 0,2890 0,0831 0,0396 0,0029	0,0002 0,0001 0,0000 0,0607 0,0514 0,1598 0,7276 <u>WE</u> 0,0000 0,0000 0,0000 0,0000 0,0310 0,0255 0,1073	<i>n</i> -heksan <i>n</i> -heptan <i>i</i> -oktan toluen tiofen piridin DES	0,222 0,220 0,216 0,070 0,037 0,035 0,200	0,277 0,280 0,275 0,088 0,045 0,035 0,000	0,000 0,000 0,000 0,000 0,005 0,034 0,962	0,2955 0,2934 0,2882 0,0811 0,0384 0,0034 0,0000	0,0001 0,0000 0,0000 0,0354 0,0323 0,1286 0,8037

**Tablica 4.18.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u višestupanjskoj ekstrakciji uz maseni omjer m(eutektično otapalo) / m(modelni benzin) od 1:4 pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-Gly 1:3	pri m(D	ES) / m(1	modelni	benzin) =	1:4						
Stupanj 1						Stupanj 2					
	el	csperime	ent	UNIC	QUAC		el	csperime	nt	UNIC	QUAC
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{R}$	$w^{\rm E}$	komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{R}$	$w^{\rm E}$
<i>n</i> -heksan	0,206	0,279	0,000	0,2701	0,0001	<i>n</i> -heksan	0,223	0,274	0,000	0,2874	0,0000
<i>n</i> -heptan	0,212	0,275	0,000	0,2790	0,0000	<i>n</i> -heptan	0,220	0,281	0,000	0,2826	0,0000
<i>i</i> -oktan	0,189	0,270	0,000	0,2489	0,0000	<i>i</i> -oktan	0,216	0,276	0,000	0,2773	0,0000
toluen	0,098	0,087	0,129	0,1106	0,0586	toluen	0,070	0,089	0,000	0,0800	0,0339
tiofen	0,047	0,046	0,050	0,0531	0,0274	tiofen	0,037	0,045	0,006	0,0438	0,0125
piridin	0,048	0,043	0,059	0,0383	0,0768	piridin	0,035	0,035	0,035	0,0290	0,0545
DES	0,200	0,000	0,762	0,0000	0,8370	DES	0,200	0,000	0,959	0,0000	0,8991
Stupanj 3											
	el	sperime	nt	UNIC	QUAC						
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{R}$	$w^{\rm E}$						
<i>n</i> -heksan	0,219	0,273	0,000	0,2803	0,0000						
<i>n</i> -heptan	0,225	0,285	0,000	0,2876	0,0000						
<i>i</i> -oktan	0,221	0,280	0,000	0,2823	0,0000						
toluen	0,071	0,090	0,000	0,0826	0,0302						
tiofen	0,036	0,044	0,005	0,0435	0,0086						
piridin	0,028	0,027	0,028	0,0237	0,0416						
DES	0,200	0,000	0,966	0,0000	0,9196						
ChCl-EG 1:2	pri m(Dl	ES) / m(r	nodelni l	enzin) =	1:4						
Stupanj 1						Stupanj 2					
	el	ksperime	nt	UNIC	QUAC		el	ksperime	nt	UNIC	QUAC
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$	komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,213	0,279	0,000	0,2863	0,0001	<i>n</i> -heksan	0,223	0,279	0,000	0,2899	0,0000
<i>n</i> -heptan	0,211	0,278	0,000	0,2833	0,0001	<i>n</i> -heptan	0,222	0,283	0,000	0,2889	0,0000
<i>i</i> -oktan	0,204	0,271	0,000	0,2738	0,0000	<i>i</i> -oktan	0,217	0,276	0,000	0,2822	0,0000
toluen	0,078	0,086	0,054	0,0868	0,0535	toluen	0,069	0,087	0,001	0,0808	0,0290
tiofen	0,047	0,045	0,053	0,0435	0,0562	tiofen	0,036	0,043	0,008	0,0364	0,0339
piridin	0,047	0,042	0,061	0,0263	0,1059	piridin	0,034	0,032	0,039	0,0218	0,0733
DES	0,200	0,000	0,832	0,0000	0,7843	DES	0,200	0,000	0,951	0,0000	0,8639
Stupanj 3											
	el	ksperime	nt	UNIC	QUAC						
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{R}$	$w^{\mathrm{E}}$						
<i>n</i> -heksan	0,223	0,279	0,000	0,2861	0,0000						
<i>n</i> -heptan	0,226	0,287	0,000	0,2902	0,0000						
<i>i</i> -oktan	0,221	0,281	0,000	0,2839	0,0000						
toluen	0,069	0,087	0,001	0,0841	0,0178						
tiofen	0,035	0,042	0,008	0,0375	0,0243						
niridin	0.000	0.025	0.020	0.0192	0.0522						
pinain	0,026	0,025	0,030	0,0185	0,0522						

**Tablica 4.18.** (nastavak) Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u višestupanjskoj ekstrakciji uz maseni omjer m(eutektično otapalo) / m(modelni benzin) od 1:4 pri 25 °C i 101 kPa za sva ispitana eutektična otapala.

ChCl-EG 1:3	pri m(Dl	ES) / m(r	nodelni t	penzin) = 1	1:4						
Stupanj 1						Stupanj 2					
	el	ksperime	nt	UNIC	QUAC		el	csperime	nt	UNIC	QUAC
komponenta	w ^F	$w^{R}$	$w^{\rm E}$	w ^R	$w^{\rm E}$	komponenta	w ^F	$w^{R}$	$w^{\rm E}$	w ^R	$w^{\rm E}$
<i>n</i> -heksan	0,217	0,285	0,000	0,2822	0,0000	<i>n</i> -heksan	0,228	0,286	0,000	0,2924	0,0000
<i>n</i> -heptan	0,218	0,287	0,000	0,2829	0,0000	<i>n</i> -heptan	0,229	0,293	0,000	0,2938	0,0000
<i>i</i> -oktan	0,193	0,257	0,000	0,2508	0,0000	<i>i</i> -oktan	0,205	0,263	0,000	0,2632	0,0000
toluen	0,076	0,084	0,051	0,0846	0,0459	toluen	0,067	0,084	0,002	0,0761	0,0337
tiofen	0,048	0,048	0,050	0,0569	0,0191	tiofen	0,038	0,046	0,009	0,0453	0,0131
piridin	0,048	0,040	0,072	0,0427	0,0652	piridin	0,032	0,028	0,047	0,0292	0,0428
DES	0,200	0,000	0,827	0,0000	0,8698	DES	0,200	0,000	0,942	0,0000	0,9103
Stupanj 3	-	-	-				-	-	-		
	el	ksperime	ent	UNIC	UAC						
komponenta	w ^F	w ^R	$w^{\rm E}$	w ^R	w ^E						
<i>n</i> -heksan	0,229	0,287	0,000	0,2917	0,0000						
<i>n</i> -heptan	0,234	0,298	0,000	0,2984	0,0000						
<i>i</i> -oktan	0,210	0,267	0,000	0,2677	0,0000						
toluen	0,068	0,085	0,001	0,0778	0,0299						
tiofen	0,037	0,044	0,010	0,0437	0,0116						
piridin	0,023	0,019	0,035	0,0207	0,0294						
DES	0,200	0,000	0,954	0,0000	0,9291						
ChCl-EG 1:3	,5 pri <i>m</i> (1	DES) / m	(modeln	i benzin) =	= 1:4						
Stupanj 1						Stupanj 2					
	el	ksperime	nt	UNIC	QUAC		el	sperime	nt	UNIC	QUAC
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$	komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,217	0,285	0,000	0,2883	0,0001	<i>n</i> -heksan	0,228	0,288	0,000	0,2944	0,0000
<i>n</i> -heptan	0,218	0,288	0,000	0,2890	0,0000	<i>n</i> -heptan	0,230	0,293	0,000	0,2971	0,0000
<i>i</i> -oktan	0,193	0,258	0,000	0,2562	0,0000	<i>i</i> -oktan	0,206	0,263	0,000	0,2662	0,0000
toluen	0,076	0,084	0,051	0,0858	0,0445	toluen	0,067	0,084	0,003	0,0793	0,0246
tiofen	0,048	0,048	0,050	0,0513	0,0387	tiofen	0,038	0,046	0,009	0,0422	0,0245
piridin	0,048	0,039	0,077	0,0294	0,1043	piridin	0,031	0,025	0,051	0,0207	0,0657
DES	0,200	0,000	0,823	0,0000	0,8124	DES	0,200	0,000	0,937	0,0000	0,8852
Stupanj 3											
	el	ksperime	nt	UNIC	QUAC						
komponenta	w ^F	w ^R	$w^{\rm E}$	$w^{R}$	w ^E						
<i>n</i> -heksan	0,230	0,288	0,000	0,2943	0,0000						
<i>n</i> -heptan	0,235	0,298	0,000	0,2996	0,0000						
<i>i</i> -oktan	0,210	0,268	0,000	0,2686	0,0000						
toluen	0,068	0,085	0,002	0,0816	0,0169						
tiofen	0,037	0,044	0,010	0,0416	0,0198						
piridin	0,020	0,017	0,034	0,0143	0,0416						
DES	0,200	0,000	0,954	0,0000	0,9217						

Ekstrakcijske djelotvornosti uz primjenu eutektičnih otapala na osnovi glicerola prikazane su na **Slikama 4.38.** – **4.40.** kao funkcije broja ekstrakcijskih stupnjeva. Jasno se vidi da se vrijednost djelotvornosti ekstakcije dobivene s masenim omjernom m(eutektično otapalo) / m(modelni benzin) od 1:1 može postići nakon tri ekstrakcijska stupnja s masenim omjerom m(eutektično otapalo) / m(modelni benzin) od 1:4. Sa stajališta ukupne potrošnje ekstrakcijskog medija mnogo je ekonomičnije provoditi trostupanjsku ekstrakciju s ukupnim masenim omjerom m(eutektično otapalo) / m(modelni benzin) 3:4 (3 × 1:4) nego jednostupanjsku s masenim omjerom 1:1. Djelotvornost ekstrakcije piridina i tiofena postupno raste s porastom broja ekstrakcijskih stupnjeva. Djelotvornost ekstrakcije toluena ostaje konstantna, što znači da se toluen praktički ne ekstrahira nakon prvoga ekstrakcijskog stupnja. I u tim su eksperimentima najveće djelotvornosti postignute pri uklanjanju piridina iz modelnog benzina, u odnosu na tiofen i toluen.



Slika 4.38. Ekstrakcijska djelotvornost u višestupanjskoj ekstrakciji s masenim omjerom m(DES) / m(modelni benzin) od 1:4 za ChCl-Gly 1:1,5.



Slika 4.39. Ekstrakcijska djelotvornost u višestupanjskoj ekstrakciji s masenim omjerom m(DES) / m(modelni benzin) od 1:4 za ChCl-Gly 1:2.



Slika 4.40. Ekstrakcijska djelotvornost u višestupanjskoj ekstrakciji s masenim omjerom m(DES) / m(modelni benzin) 1:4 za ChCl-Gly 1:3.

Na Slikama 4.41. – 4.43. prikazane su ekstrakcijske djelotvornosti uz primjenu eutektičnih otapala na bazi etilen-glikola. Pokazalo se da se učinkovitost ekstrakcije toluena neznatno povećava s brojem stupnjeva ekstrakcije. Povećanje djelotvornosti s povećanjem broja ekstrakcijskih stupnjava malo je izraženije za tiofen dok je najveće za piridin. Trend prati onaj koji je uočen u ekstrakcijama prikazanima na Slikama 4.35. – 4.37. Vrijednosti ekstrakcijske djelotvornosti postignute nakon trećega stupnja, tj. s ukupnom potrošnjom

eutektičnog otapala od 3:4, više su od vrijednosti dobivenih ekstrakcijom u jednom stupnju s masenim omjerom m(eutektično otapalo) / m(modelni benzin) od 1:1 za sve ekstrahirane tvari. To pokazuje da je moguće istovremeno mijenjati maseni omjer m(eutektično otapalo) / m(modelni benzin) i broj ekstrakcijskih stupnjeva te time optimirati ekstrakciju sa stajališta ukupnih separacijskih troškova. U sustavima s eutektičkim otapalima na osnovi etilen-glikola ekstrakcijska se djelotvornost mogla s ograničenim uspjehom procijeniti i na osnovi modela UNIQUAC, uz parametre prikazane u odjeljku 4.5.7.



Slika 4.41. Ekstrakcijska djelotvornost određena eksperimentom i izračunata pomoću modela koeficijenta aktivnosti UNIQUAC pri višestupanjskoj ekstrakciji s masenim omjerom m(DES) / m(modelni benzin) od 1:4 za ChCl-EG 1:2.



Slika 4.42. Ekstrakcijska djelotvornost određena eksperimentom i izračunata pomoću modela koeficijenta aktivnosti UNIQUAC pri višestupanjskoj ekstrakciji s masenim omjerom m(DES) / m(modelni benzin) od 1:4 za ChCl-EG 1:3.



Slika 4.43. Ekstrakcijska djelotvornost određena eksperimentom i izračunata pomoću modela koeficijenta aktivnosti UNIQUAC pri višestupanjskoj ekstrakciji s masenim omjerom m(DES) / m(modelni benzin) od 1:4 za ChCl-EG 1:3,5.

## 4.5.4. Višestupanjska ekstrakcija – maksimalna djelotvornost

Osim eksperimenta opisanog u odjeljku 4.5.3., provjereno je koliko je stupnjeva ekstrakcije potrebno da se postigne maksimalna djelotvornost ekstrakcije, tj. da se ukloni 100 % ključne komponente. Kako su se ChCl-Gly 1:3 iz skupine eutektičnih otapala s glicerolom te ChCl-EG 1:3,5 iz skupine s etilen-glikolom pokazali najučinkovitijim za uklanjanje piridina iz modelnog benzina, i to pri najvećem ispitivanom masenom omjeru m(eutektično otapalo) / m(modelni benzin) od 1:1, upravo su oni izabrani za ispitivanje maksimalne ekstrakcijske djelotvornosti pri navedenom masenom omjeru.

Rezultati tih eksperimenata prikazani su na **Slici 4.44.** i **Slici 4.45.** za ChCl-Gly 1:3, odnosno ChCl-EG 1:3,5, dok su ravnotežni sastavi faza nakon svakog stupnja prikazani u **Tablici 4.19.** i **Tablici 4.20.** U sustavu s eutektičkim otapalom ChCl-EG 1:3,5 ekstrakcijska se djelotvornost procijenila i na osnovi modela UNIQUAC, uz parametre prikazane u odjeljku 4.5.7.



Slika 4.44. Maksimalna ekstrakcijska djelotvornost uz višestupanjsku ekstrakciju pri masenom omjeru *m*(DES) / *m*(modelni benzin) od 1:1 za ChCl-Gly 1:3.



Slika 4.45. Maksimalna ekstrakcijska djelotvornost uz višestupanjsku ekstrakciju pri masenom omjeru m(DES) / m(modelni benzin) od 1:1 za ChCl-EG 1:3,5. Uz eksperimentalne, prikazane su i djelotvornosti izračunate modelom koeficijenta aktivnosti UNIQUAC.

Rezultati opet prikazuju sličan trend kao i kod prethodno opisanih ekstrakcija (**Slike 4.32.** – **4.43.**). Naime, gotovo sva djelotvornost ekstrakcije toluena postignuta je već u prvom stupnju, a s povećanjem broja stupnjeva ekstrakcije povećava se vrijednost djelotvornosti ekstrakcije tiofena i piridina, pri čemu je piridin komponenta koja se najbolje ekstrahira. Rezultati na **Slici 4.44.** prikazuju da nakon pet ciklusa ekstrakcijska djelotvornost primjenom ChCl-Gly 1:3 dosiže čak 99,62 % za denitrifikaciju, 89,99 % za desulfurizaciju te 29,71 % za dearomatizaciju. Primjenom ChCl-EG 1:3,5 djelotvornost ekstrakcije za denitrifikaciju može doseći 99,27 %, 63,46 % za desulfurizaciju te 23,69 % za dearomatizaciju nakon četiri stupnja ekstrakcije (**Slika 4.45.**), što je jedan stupanj manje nego kod ChCl-Gly 1:3. Eksperimentalni se rezultati vrlo dobro slažu s onima izračunatim modelom UNIQUAC, pogotovo uzme li se u obzir da ti podatci nisu upotrijebljeni za izračunavanje interakcijskih parametara modela.

**Tablica 4.19.** Maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u eksperimentima određivanja maksimalne ekstrakcijske djelotvornosti s masenim omjerom m(DES) / m(modelni benzin) od 1:1 za ChCl-Gly 1:3.

ChCl-Gly 1:3	ChCl-Gly 1:3 pri $m(DES)/m(modelni benzin) = 1:1$										
	Stupanj	1		Stupanj 2	2		Stupanj 3				
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	w ^F	$w^{R}$	$w^{\mathrm{E}}$		
<i>n</i> -heksan	0,116	0,247	0,000	0,124	0,243	0,000	0,121	0,236	0,000		
<i>n</i> -heptan	0,135	0,291	0,000	0,145	0,301	0,000	0,150	0,308	0,000		
<i>i</i> -oktan	0,136	0,291	0,000	0,146	0,306	0,000	0,153	0,315	0,000		
toluen	0,052	0,094	0,015	0,047	0,095	0,001	0,047	0,096	0,000		
tiofen	0,031	0,047	0,016	0,024	0,042	0,006	0,021	0,038	0,004		
piridin	0,031	0,030	0,033	0,015	0,014	0,016	0,007	0,007	0,007		
DES	0,500	0,000	0,936	0,500	0,000	0,976	0,500	0,000	0,989		
	Stupanj	4		Stupanj :	5						
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$					
<i>n</i> -heksan	0,118	0,131	0,000	0,065	0,104	0,000					
<i>n</i> -heptan	0,154	0,350	0,000	0,175	0,352	0,000					
<i>i</i> -oktan	0,157	0,408	0,000	0,204	0,450	0,000					
toluen	0,048	0,096	0,000	0,048	0,086	0,006					
tiofen	0,019	0,013	0,023	0,006	0,007	0,005					
piridin	0,003	0,002	0,004	0,001	0,000	0,001					
DES	0,500	0,000	0,973	0,500	0,000	0,988					

Standardne nesigurnosti procijenjene su na  $u(w) \le 0,005$  za početne sastave i sastave rafinatne faze, a na  $u(w) \le 0,01$  za sastave ekstraktne faze; u(T) = 0,2 K, u(p) = 5 kPa

**Tablica 4.20.** Eksperimentalni i modelni maseni udjeli komponenata u početnoj otopini (F), rafinatnoj fazi (R) i ekstraktnoj fazi (E) u eksperimentima određivanja maksimalne ekstrakcijske djelotvornosti s masenim omjerom m(DES) / m(modelni benzin) od 1:1 za ChCl-EG 1:3,5.

Stupanj 1						Stupanj 2						
	eksperiment			UNIQUA	AC		eksperi	ment	UNIQUAC			
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{R}$	$w^{\rm E}$	komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{R}$	$w^{\rm E}$	
<i>n</i> -heksan	0,132	0,289	0,000	0,2894	0,0000	<i>n</i> -heksan	0,145	0,290	0,000	0,2990	0,0000	
<i>n</i> -heptan	0,130	0,284	0,000	0,2851	0,0000	<i>n</i> -heptan	0,142	0,291	0,000	0,2933	0,0000	
<i>i</i> -oktan	0,131	0,287	0,000	0,2865	0,0000	<i>i</i> -oktan	0,143	0,293	0,000	0,2966	0,0000	
toluen	0,050	0,087	0,017	0,0865	0,0184	toluen	0,044	0,088	0,001	0,0805	0,0093	
tiofen	0,027	0,034	0,021	0,0377	0,0181	tiofen	0,017	0,030	0,004	0,0253	0,0092	
piridin	0,030	0,019	0,039	0,0148	0,0428	piridin	0,010	0,007	0,012	0,0052	0,0139	
DES	0,500	0,000	0,922	0,0000	0,9207	DES	0,500	0,000	0,982	0,0000	0,9676	
Stupanj 3						Stupanj 4						
	eksperiment UNIQUAC			AC		eksperiment			UNIQUAC			
komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	komponenta	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{R}$	$w^{\rm E}$	
<i>n</i> -heksan	0,145	0,291	0,000	0,2965	0,0000	<i>n</i> -heksan	0,145	0,289	0,000	0,2953	0,0000	
<i>n</i> -heptan	0,146	0,296	0,000	0,2971	0,0000	<i>n</i> -heptan	0,148	0,300	0,000	0,3001	0,0000	
<i>i</i> -oktan	0,147	0,299	0,000	0,2996	0,0000	<i>i</i> -oktan	0,149	0,303	0,000	0,3031	0,0000	
toluen	0,044	0,087	0,002	0,0820	0,0076	toluen	0,043	0,086	0,002	0,0811	0,0069	
tiofen	0,015	0,026	0,004	0,0228	0,0076	tiofen	0,013	0,022	0,004	0,0198	0,0063	
piridin	0,004	0,002	0,005	0,0019	0,0050	piridin	0,001	0,000	0,001	0,0006	0,0014	
DES	0,500	0,000	0,988	0,0000	0,9798	DES	0,500	0,000	0,993	0,0000	0,9854	

Na Slici 4.46. uspoređeni su eksperimentalni i modelni ravnotežni sastavi (maseni udjeli komponenata u ravnotežnim fazama) u sustavima s ChCl-EG 1:3,5 pri masenom omjeru *m*(eutektično otapalo) / *m*(modelni benzin) od 1:4 (**Tablica 4.18.**) ili 1:1 (**Tablice 4.19** i 4.20.). Raspodjela eksperimentalnih točaka oko dijagonale znači da se ravnoteža u istraživanim kvazi-sedmerokomponentnim sustavima može opisati modelom UNIQUAC s odabranim skupom geometrijskih i interakcijskih parametara iz odjeljka 4.5.7. Podatci prikazani na slici nisu upotrijebljeni u postupku za određivanje tih parametara, pa je to zapravo skup podataka za validaciju modela.



Slika 4.46. Usporedba eksperimentalno određenih ravnotežnih sastava iskazanih masenim udjelima s onima izračunatim modelom UNIQUAC za kvazi-sedmerokomponentne sustave s eutektičnim otapalom ChCl-EG 1:3,5 uz m(eutektično otapalo) / m(modelni benzin) od 1:4 ili 1:1.

## 4.5.5. Višestupanjska ekstrakcija – ekstrakcijski kapacitet

Ekstrakcijski kapacitet određuje mogućnost korištenja iste šarže eutektičnog otapala za višekratnu ekstrakciju bez njegova pročišćavanja. U takvoj se primjeni ekstrahirane komponente postupno akumuliraju u ekstrakcijskom mediju (eutektičnom otapalu), što u konačnici, nakon dostizanja ravnotežne koncentracije, inhibira daljnju ekstrakciju. Ispitivanje ekstrakcijskog kapaciteta provedeno je na svim eutektičnim otapalima, kako onima iz skupine na osnovi glicerola tako i onima iz skupine na osnovi etilen-glikola, pri masenom omjeru m(eutektično otapalo) / m(modelni benzin) od 1:1. U četiri ekstrakcijska stupnja ista šarža ekstrakcijskog sredstva (eutektičnog otapala) dovedena je u kontakt s četiri šarže svježeg modelnog goriva poznatog sastava. Nakon svakog ekstrakcijskog stupnja određeni su ravnotežni sastavi faza, a rezultati su prikazani u **Tablicama 4.21.** i **4.22. Tablica 4.21.** prikazuje masene udjele komponenata u početnoj otopini, te rafinatnoj i ekstraktnoj fazi za

skupinu otapala na osnovi glicerola, dok su vrijednosti za otapala na osnovi etilen-glikola prikazane u **Tablici 4.22**.

**Tablica 4.21.** Maseni udjeli komponenata u početnoj otopini (F), rafinatnoj (R) i ekstraktnoj (E) fazi u višestupanjskim ekstrakcijskim eksperimentima za određivanje kapaciteta s masenim omjerom m(eutektično otapalo) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa za otapala na osnovi ChCl-Gly.

ChCl-Gly 1:1,5 pri <i>m</i> (eutektično otapalo) / <i>m</i> (modelni benzin) =1:1												
	Stupan	j 1	Stupanj 2			Stupanj 3			Stupanj 4			
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	w ^F	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,128	0,268	0,000	0,132	0,276	0,000	0,132	0,274	0,000	0,132	0,274	0,000
<i>n</i> -heptan	0,132	0,283	0,000	0,130	0,272	0,000	0,130	0,271	0,000	0,128	0,266	0,000
<i>i</i> -oktan	0,131	0,283	0,000	0,129	0,272	0,000	0,129	0,270	0,000	0,131	0,272	0,000
toluen	0,049	0,087	0,015	0,049	0,087	0,015	0,049	0,087	0,015	0,050	0,087	0,015
tiofen	0,030	0,045	0,017	0,030	0,047	0,014	0,030	0,046	0,014	0,030	0,047	0,014
piridin	0,030	0,034	0,027	0,030	0,047	0,014	0,030	0,052	0,009	0,030	0,054	0,007
DES	0,500	0,000	0,940	0,500	0,000	0,957	0,500	0,000	0,962	0,500	0,000	0,963
ChCl-Gly 1:2 pri m(eutektično otapalo) / m(modelni benzin) =1:1												
	Stupan	j 1		Stupanj 2			Stupanj 3			Stupanj 4		
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,128	0,270	0,000	0,132	0,276	0,000	0,132	0,273	0,000	0,132	0,274	0,000
<i>n</i> -heptan	0,132	0,285	0,000	0,130	0,274	0,000	0,130	0,272	0,000	0,128	0,267	0,000
<i>i</i> -oktan	0,131	0,285	0,000	0,129	0,274	0,000	0,129	0,272	0,000	0,131	0,273	0,000
toluen	0,049	0,087	0,015	0,049	0,088	0,014	0,049	0,087	0,015	0,050	0,087	0,015
tiofen	0,030	0,045	0,017	0,030	0,047	0,014	0,030	0,046	0,014	0,030	0,047	0,014
piridin	0,030	0,027	0,033	0,030	0,042	0,019	0,030	0,049	0,012	0,030	0,052	0,009
DES	0,500	0,000	0,935	0,500	0,000	0,953	0,500	0,000	0,959	0,500	0,000	0,962
ChCl-Gly 1:3	ori m(eute	ektično ot	apalo) / m	(modelni	benzin) =	1:1						
	Stupanj 1			Stupanj	2	Stupanj 3			Stupanj 4			
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,128	0,269	0,000	0,132	0,277	0,000	0,132	0,274	0,000	0,132	0,274	0,000
<i>n</i> -heptan	0,132	0,285	0,000	0,130	0,273	0,000	0,130	0,272	0,000	0,128	0,266	0,000
<i>i</i> -oktan	0,131	0,285	0,000	0,129	0,274	0,000	0,129	0,272	0,000	0,131	0,273	0,000
toluen	0,049	0,088	0,015	0,049	0,088	0,015	0,049	0,087	0,014	0,050	0,087	0,015
tiofen	0,030	0,045	0,017	0,030	0,047	0,014	0,030	0,047	0,014	0,030	0,047	0,014
piridin	0,030	0,028	0,033	0,030	0,042	0,019	0,030	0,049	0,013	0,030	0,053	0,009
DES	0,500	0,000	0,935	0,500	0,000	0,953	0,500	0,000	0,959	0,500	0,000	0,962

Standardne nesigurnosti procijenjene su na  $u(w) \le 0,005$  za početne sastave i sastave rafinatne faze, a na  $u(w) \le 0,01$  za sastave ekstraktne faze; u(T) = 0,2 K, u(p) = 5 kPa

**Tablica 4.22.** Maseni udjeli komponenata u početnoj otopini (F), rafinatnoj (R) i ekstraktnoj (E) fazi u višestupanjskim ekstrakcijskim eksperimentima za određivanje kapaciteta s masenim omjerom m(eutektično otapalo) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa za otapala na osnovi ChCl-EG.

ChCl-EG 1:2 pri m(eutektično otapalo) / m(modelni benzin) =1:1												
	Stupan	j 1		Stupanj 2			Stupanj 3			Stupanj 4		
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	w ^F	$w^{R}$	$w^{\rm E}$	$w^{\rm F}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,130	0,279	0,000	0,130	0,274	0,000	0,130	0,272	0,000	0,116	0,244	0,000
<i>n</i> -heptan	0,131	0,283	0,000	0,131	0,276	0,000	0,131	0,273	0,000	0,135	0,281	0,000
<i>i</i> -oktan	0,131	0,284	0,000	0,131	0,274	0,000	0,131	0,271	0,000	0,136	0,282	0,000
toluen	0,049	0,088	0,016	0,049	0,088	0,014	0,049	0,088	0,014	0,052	0,091	0,015
tiofen	0,028	0,040	0,019	0,028	0,045	0,013	0,028	0,046	0,012	0,031	0,049	0,014
piridin	0,030	0,026	0,034	0,030	0,043	0,019	0,030	0,050	0,012	0,031	0,054	0,011
DES	0,500	0,000	0,931	0,500	0,000	0,953	0,500	0,000	0,961	0,500	0,000	0,959
ChCl-EG 1:3 pri m(eutektično otapalo) / m(modelni benzin) =1:1												
	Stupan	j 1	Stupanj 2			Stupanj 3			Stupanj 4			
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,130	0,281	0,000	0,130	0,277	0,000	0,130	0,272	0,000	0,116	0,242	0,000
<i>n</i> -heptan	0,131	0,285	0,000	0,131	0,277	0,000	0,131	0,276	0,000	0,135	0,284	0,000
<i>i</i> -oktan	0,131	0,286	0,000	0,131	0,276	0,000	0,131	0,274	0,000	0,136	0,285	0,000
toluen	0,049	0,088	0,017	0,049	0,089	0,014	0,049	0,088	0,014	0,052	0,091	0,015
tiofen	0,028	0,040	0,019	0,028	0,045	0,013	0,028	0,046	0,013	0,031	0,048	0,015
piridin	0,030	0,021	0,039	0,030	0,036	0,026	0,030	0,045	0,017	0,031	0,050	0,015
DES	0,500	0,000	0,926	0,500	0,000	0,947	0,500	0,000	0,956	0,500	0,000	0,955
ChCl-EG 1:3,5	5 pri m(eu	itektično o	otapalo) / I	m(modeln	i benzin)=	= 1:1						
	Stupan	j 1		Stupanj 2			Stupanj 3			Stupanj 4		
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$
<i>n</i> -heksan	0,135	0,289	0,000	0,133	0,279	0,000	0,133	0,276	0,000	0,131	0,273	0,000
<i>n</i> -heptan	0,121	0,285	0,000	0,129	0,278	0,000	0,129	0,273	0,000	0,130	0,270	0,000
<i>i</i> -oktan	0,135	0,279	0,000	0,129	0,282	0,000	0,129	0,278	0,000	0,131	0,274	0,000
toluen	0,050	0,088	0,017	0,050	0,089	0,016	0,050	0,087	0,016	0,049	0,084	0,016
tiofen	0,029	0,040	0,019	0,029	0,043	0,016	0,029	0,044	0,015	0,030	0,047	0,014
piridin	0,030	0,019	0,039	0,030	0,030	0,030	0,030	0,041	0,020	0,030	0,052	0,011
DES	0,501	0,000	0,925	0,500	0,000	0,938	0,500	0,000	0,949	0,500	0,000	0,959

Također su izračunate i vrijednosti ekstrakcijske djelotvornosti, za svaki ekstrakcijski stupanj, prema jednadžbi 4.21. Rezultati su prikazani grafički na **Slikama 4.47. – 4.52.** 



Slika 4.47. Pad ekstrakcijske djelotvornosti ChCl-Gly 1:1,5 pri višestupanjskom procesu uz maseni omjer *m*(DES) / *m*(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.48. Pad ekstrakcijske djelotvornosti ChCl-Gly 1:2 pri višestupanjskom procesu uz maseni omjer *m*(DES) / *m*(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.49. Pad ekstrakcijske djelotvornosti ChCl-Gly 1:3 pri višestupanjskom procesu uz maseni omjer *m*(DES) / *m*(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.50. Pad ekstrakcijske djelotvornosti ChCl-EG 1:2 pri višestupanjskom procesu uz maseni omjer *m*(DES) / *m*(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.51. Pad ekstrakcijske djelotvornosti ChCl-EG 1:3 pri višestupanjskom procesu uz maseni omjer *m*(DES) / *m*(modelni benzin) od 1:1 pri 25 °C i 101 kPa.





Rezultati prikazani na **Slikama 4.47.** – **4.52.** prikazuju postupno smanjenje djelotvornosti ekstrakcije s povećanjem broja ekstrakcijskih stupnjeva kod svih ispitanih eutektičnih otapala, i to brzo smanjenje djelotvornosti pri ekstrakciji piridina, sporije pri ekstrakciji tiofena te najsporije pri ekstrakciji toluena. Dobiveni rezultati potvrđuju da se otapalo postepeno zasićuje ekstrahiranim komponentama, tj. piridinom, tiofenom i toluenom što smanjuje njegovu ekstrakcijsku moć.

Gubitak djelotvorosti ekstrakcije može se opisati proračunima fazne ravnoteže kapljevina-kapljevina na osnovi modela UNIQUAC. Proračun ekstrakcijske ravnoteže napravljen je za smjese modelnog goriva sastava  $w = \{0,2689, 0,2410, 0,2685, 0,0989, 0,0576, 0,0601, 0\}$  s ChCl-EG 1:3,5 kao ekstrakcijskim sredstvom u slijedu ekstrakcijskih stupnjeva. Rezultati proračuna prikazani su na **Slici 4.53.** Proračun korektno predviđa najsporije smanjenje djelotvornosti ekstrakcije toluena, dok su najveće razlike uočene u djelotvornosti ekstrakcije piridina, koji se eksperimentalno ekstrahira puno brže nego li to predviđa proračun modelom UNIQUAC.



Slika 4.53. Djelotvornosti ekstrakcije izračunate modelom UNIQUAC pri 25 °C i 101 kPa za ponovljenu primjenu iste šarže ChCl-EG 1:3,5 pri masenom omjeru m(DES) / m(modelni benzin) od 1:1 i označenom broju ekstrakcijskih stupnjeva.

## 4.5.6. Višestupanjska ekstrakcija – regeneracija

Kako su prethodni eksperimenti pokazali da se kapacitet ekstrakcije eutektičnog otapala smanjuje pri ponovljenoj upotrebi, ispitana je mogućnost pročišćavanja, tj. regeneracije eutektičnog otapala između ekstrakcijskih stupnjeva. Ponovna uporaba ekstrakcijskog sredstva važna je ne samo s ekonomskog stajališta u vidu smanjenja troškova za kupnju otapala, već je i važna karakteristika "zelenog" otapala općenito. U ovom se istraživanju pod regeneracijom eutektičnog otapala smatra uklanjanje ekstrahiranih komponenti prikladnim postupkom. Ekstrahirani piridin, tiofen i toluen uklonjeni su isparavanjem pri sniženom tlaku na rotacijskom uparivaču. Pretpostavlja se da se sastav eutektičnog otapala pritom ne mijenja, tj. da niti jedna komponenta koja tvori eutektično otapalo ne isparava tijekom regeneracije (pri čemu treba uzeti u obzir podatke o ravnotežnome tlaku para komponenta DES-a). Prikladnost postupka potvrđena je ¹H NMR-spektroskopijom – snimljeni spektri svježeg eutektičnog otapala i otapala nakon regeneracije podudaraju se i ne pokazuju promjene u sastavu.

Regeneracijski eksperimenti provedeni su pri masenom omjeru m(DES) / m(modelni benzin) od 1:1 u četiri ekstrakcijska stupnja pri čemu je u svakom stupnju korištena ista šarža eutektičnog otapala, ali prethodno pročišćena opisanim postupkom. Rezultati su prikazani kao sastav modelne otopine prije i nakon ekstrakcijskih eksperimenata (**Tablica 4.23.** i **4.24.**), te djelotvornošću ekstrakcije svakog pojedinog stupnja izračunatoj prema jednadžbi 4.21. te prikazanoj na **Slikama 4.54.** – **4.59**.
**Tablica 4.23.** Maseni udjeli komponenata u početnoj otopini (F), rafinatnoj (R) i ekstraktnoj (E) fazi u višestupanjskim ekstrakcijskim eksperimentima s regeneracijom uz maseni omjer m(eutektično otapalo) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa za otapala na osnovi ChCl-Gly.

ChCl-Gly 1:1,5 pri $m$ (eutektično otapalo) / $m$ (modelni benzin) = 1:1												
	Stupan	j 1		Stupanj	2		Stupanj	3		Stupanj	4	
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,130	0,276	0,000	0,130	0,278	0,000	0,116	0,251	0,000	0,116	0,240	0,000
<i>n</i> -heptan	0,131	0,280	0,000	0,131	0,278	0,000	0,135	0,286	0,000	0,135	0,292	0,000
<i>i</i> -oktan	0,131	0,280	0,000	0,131	0,277	0,000	0,136	0,286	0,000	0,136	0,297	0,000
toluen	0,049	0,088	0,015	0,049	0,088	0,015	0,052	0,092	0,016	0,052	0,093	0,016
tiofen	0,028	0,042	0,016	0,028	0,043	0,015	0,031	0,048	0,016	0,031	0,043	0,020
piridin	0,030	0,034	0,027	0,030	0,035	0,026	0,031	0,038	0,026	0,031	0,034	0,028
DES	0,500	0,000	0,941	0,500	0,000	0,944	0,500	0,000	0,942	0,500	0,000	0,936
ChCl-Gly 1:2 pri $m$ (eutektično otapalo) / $m$ (modelni benzin) = 1:1												
Stupanj 1			Stupanj	2	Stupanj 3			Stupanj	4			
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\rm F}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,130	0,277	0,000	0,116	0,250	0,000	0,116	0,233	0,000	0,116	0,234	0,000
<i>n</i> -heptan	0,131	0,280	0,000	0,135	0,286	0,000	0,135	0,296	0,000	0,135	0,288	0,000
<i>i</i> -oktan	0,131	0,280	0,000	0,136	0,287	0,000	0,136	0,307	0,000	0,136	0,300	0,000
toluen	0,049	0,088	0,015	0,052	0,092	0,016	0,052	0,093	0,015	0,052	0,091	0,016
tiofen	0,028	0,043	0,016	0,031	0,047	0,016	0,031	0,040	0,022	0,031	0,043	0,019
piridin	0,030	0,032	0,029	0,031	0,037	0,026	0,031	0,031	0,032	0,031	0,044	0,020
DES	0,500	0,000	0,940	0,500	0,000	0,942	0,500	0,000	0,931	0,500	0,000	0,945
ChCl-Gly 1:3 p	ori <i>m</i> (euto	ektično ot	apalo) / <i>m</i>	(modelni	benzin) =	1:1						
	Stupan	j 1		Stupanj	2	Stupanj 3				Stupanj	4	
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{\mathrm{R}}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,130	0,277	0,000	0,130	0,250	0,000	0,116	0,242	0,000	0,116	0,222	0,000
<i>n</i> -heptan	0,131	0,281	0,000	0,131	0,287	0,000	0,135	0,294	0,000	0,135	0,304	0,000
<i>i</i> -oktan	0,131	0,282	0,000	0,131	0,287	0,000	0,136	0,298	0,000	0,136	0,312	0,000
toluen	0,049	0,089	0,015	0,049	0,092	0,010	0,052	0,093	0,015	0,052	0,097	0,012
tiofen	0,028	0,043	0,016	0,028	0,048	0,011	0,031	0,044	0,019	0,031	0,038	0,024
piridin	0,030	0,028	0,032	0,030	0,037	0,024	0,031	0,030	0,033	0,031	0,027	0,035
DES	0,500	0,000	0,937	0,500	0,000	0,955	0,500	0,000	0,933	0,500	0,000	0,929

Standardne nesigurnosti procijenjene su na  $u(w) \le 0,005$  za početne sastave i sastave rafinatne faze, a na  $u(w) \le 0,01$  za sastave ekstraktne faze; u(T) = 0,2 K, u(p) = 5 kPa

**Tablica 4.24.** Maseni udjeli komponenata u početnoj otopini (F), rafinatnoj (R) i ekstraktnoj (E) fazi u višestupanjskim ekstrakcijskim eksperimentima s regeneracijom uz maseni omjer m(eutektično otapalo) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa za otapala na osnovi ChCl-EG.

ChCl-EG 1:2 pri $m$ (eutektično otapalo) / $m$ (modelni benzin) = 1:1												
Stupanj 1				Stupanj	2		Stupanj	3		Stupanj	4	
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$
<i>n</i> -heksan	0,131	0,279	0,000	0,132	0,283	0,000	0,132	0,282	0,000	0,133	0,282	0,000
<i>n</i> -heptan	0,129	0,282	0,000	0,130	0,279	0,000	0,128	0,275	0,000	0,131	0,278	0,000
<i>i</i> -oktan	0,131	0,288	0,000	0,129	0,279	0,000	0,131	0,282	0,000	0,131	0,279	0,000
toluen	0,049	0,086	0,017	0,049	0,087	0,016	0,050	0,088	0,017	0,050	0,087	0,017
tiofen	0,030	0,041	0,021	0,030	0,042	0,019	0,030	0,042	0,020	0,025	0,036	0,016
piridin	0,030	0,025	0,035	0,030	0,030	0,030	0,030	0,032	0,028	0,030	0,038	0,023
DES	0,500	0,000	0,927	0,500	0,000	0,935	0,500	0,000	0,936	0,500	0,000	0,945
ChCl-EG 1:3 pri $m$ (eutektično otapalo) / $m$ (modelni benzin) = 1:1												
Stupanj 1				Stupanj	2	Stupanj 3			Stupanj 4			
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\rm E}$
<i>n</i> -heksan	0,131	0,268	0,000	0,132	0,284	0,000	0,132	0,286	0,000	0,133	0,283	0,000
<i>n</i> -heptan	0,129	0,289	0,000	0,130	0,277	0,000	0,128	0,282	0,000	0,131	0,283	0,000
<i>i</i> -oktan	0,131	0,301	0,000	0,129	0,284	0,000	0,131	0,281	0,000	0,131	0,284	0,000
toluen	0,049	0,086	0,017	0,049	0,088	0,017	0,050	0,087	0,017	0,050	0,087	0,017
tiofen	0,030	0,036	0,025	0,030	0,042	0,019	0,030	0,042	0,020	0,025	0,034	0,017
piridin	0,030	0,019	0,040	0,030	0,026	0,036	0,030	0,022	0,033	0,030	0,028	0,031
DES	0,500	0,000	0,918	0,500	0,000	0,928	0,500	0,000	0,930	0,500	0,000	0,934
ChCl-EG 1:3,5	i pri <i>m</i> (eu	itektično o	otapalo) / i	<i>m</i> (modeln	i benzin) :	= 1:1						
	Stupan	j 1		Stupanj	2	Stupanj 3 Stupanj 4			4			
komponentna	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$	$w^{\mathrm{F}}$	$w^{R}$	$w^{\mathrm{E}}$
<i>n</i> -heksan	0,130	0,282	0,000	0,130	0,284	0,000	0,116	0,255	0,000	0,116	0,239	0,000
<i>n</i> -heptan	0,131	0,286	0,000	0,131	0,284	0,000	0,135	0,294	0,000	0,135	0,300	0,000
<i>i</i> -oktan	0,131	0,286	0,000	0,131	0,282	0,000	0,136	0,294	0,000	0,136	0,314	0,000
toluen	0,049	0,088	0,016	0,049	0,088	0,016	0,052	0,092	0,017	0,052	0,092	0,018
tiofen	0,028	0,040	0,019	0,028	0,041	0,018	0,031	0,044	0,019	0,031	0,037	0,025
piridin	0,030	0,019	0,040	0,030	0,020	0,039	0,031	0,021	0,040	0,031	0,019	0,042
DES	0,500	0,000	0,925	0,500	0,000	0,927	0,500	0,000	0,924	0,500	0,000	0,915

Standardne nesigurnosti procijenjene su na  $u(w) \le 0,005$  za početne sastave i sastave rafinatne faze, a na  $u(w) \le 0,01$  za sastave ekstraktne faze; u(T) = 0,2 K, u(p) = 5 kPa



Slika 4.54. Ekstrakcijska djelotvornost ChCl-Gly 1:1,5 u višestupanjskom procesu s regeneracijom otapala između stupnjeva, pri masenom omjeru m(DES) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.55. Ekstrakcijska djelotvornost ChCl-Gly 1:2 u višestupanjskom procesu s regeneracijom otapala između stupnjeva, pri masenom omjeru *m*(DES) / *m*(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.56. Ekstrakcijska djelotvornost ChCl-Gly 1:3 u višestupanjskom procesu s regeneracijom otapala između stupnjeva, pri masenom omjeru m(DES) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.57. Ekstrakcijska djelotvornost ChCl-EG 1:2 u višestupanjskom procesu s regeneracijom otapala između stupnjeva, pri masenom omjeru m(DES) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.58. Ekstrakcijska djelotvornost ChCl-EG 1:3 u višestupanjskom procesu s regeneracijom otapala između stupnjeva, pri masenom omjeru m(DES) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa.



Slika 4.59. Ekstrakcijska djelotvornost ChCl-EG 1:3,5 u višestupanjskom procesu s regeneracijom otapala između stupnjeva, pri masenom omjeru m(DES) / m(modelni benzin) od 1:1 pri 25 °C i 101 kPa.

Sva ispitana eutektična otapala mogu se regenerirati opisanim postupkom na što ukazuje oporavak djelotvornosti ekstrakcije nakon svakog stupnja, pri čemu su primijećena odstupanja pripisana pogreškama analitičke metode ili instrumenta. Rezultati pokazuju da ni glicerol niti etilen-glikol nisu skloni isparavanju pri eksperimentalnim uvjetima, tj. regeneracijom se ne mijenja početni sastav eutektičnog otapala. Da je došlo do promjene sastava eutektičnog otapala, uočilo bi se odgovarajuće smanjenje djelotvornosti ekstrakcije.

Metodom ¹H NMR-spektroskopijom provjereno je je li izabrani postupak regeneracije učinkovit, tj. jesu li njegovom primjenom uklonjene ekstrahirane komponente iz eutektičnog otapala. Na **slikama 4.60. – 4.65.** prikazani su spektri ispitanih eutektičnih otapala nakon regeneracije.





Slika 4.60. ¹H NMR-spektar ChCl-Gly 1:1,5 nakon regeneracije.



Slika 4.61. ¹H NMR-spektar ChCl-Gly 1:2 nakon regeneracije.



Slika 4.62. ¹H NMR-spektar ChCl-Gly 1:3 nakon regeneracije.



Slika 4.63. ¹H NMR-spektar ChCl-EG 1:2 nakon regeneracije.



Slika 4.64. ¹H NMR-spektar ChCl-EG 1:3 nakon regeneracije.



Slika 4.65. ¹H NMR-spektar ChCl-EG 1:3,5 nakon regeneracije.

Svi su uzorci otopljeni u deuteriranom kloroformu čiji se pik pojavljuje pri 7,24 ppm. Pikovi karakteristični za toluen (7.38 do 7.00, 2.34), tiofen (7.327, 7.116) i piridin (8.593, 7.617, 7.231) nisu uočeni ni u jednom ¹H NMR-spektru što potvrđuje uspješno pročišćavanje svih ispitanih eutektičnih otapala, kako onih na osnovi glicerola tako i onih na osnovi etilenglikola.

## 4.5.7. Termodinamičko modeliranje u kvazi-sedmerokomponentnim sustavima

U literaturi [Rogošić 2016] postoji primjer prenošenja parametara iz trokomponentnih sustava u sedmerokomponentne sustave i pokazalo se da je moguće dobiti zadovoljavajući kvantitativni opis odvajanja nestabilnog sustava na dvije stabilne faze u termodinamičkoj ravnoteži u slučaju ekstrakcije dušikovih, sumporovih i aromatskih komponenti iz modelne otopine FCC-benzina. Sličan je postupak primijenjen u ovom radu za prenošenje parametara određenih u kvazi-trokomponentnim sustavima u kvazi-sedmerokomponentne. **Tablica 4.25.** daje skup svih parametara modela. Binarni parametri interakcije niskomolekulskih komponenata koji nisu određeni eksperimentima u kvazi-trokomponentnim sustavima (alifatski/alifatski, alifatski/toluen i tiofen/piridin) preuzeti su iz literature, [Sander 2017] tj. procijenjeni su na tamo opisan način.

**Tablica 4.25.** Cjelovita tablica parametara modela NRTL i UNIQUAC dobivena jednostavnim prenošenjem parametara iz kvazi-trokomponentnih u kvazi-sedmokomponentne sustave. Svim  $\alpha$ -parametrima modela NRTL pridružena je vrijednost 0,3.

NRTL	<i>n</i> -heksan	<i>n</i> -heptan	<i>i</i> -oktan	toluen	tiofen	piridin	ChCl-EG 1:2
<i>n</i> -heksan	0	0,1398	0,2700	0,8425	14,2343	1,4969	15,6024
<i>n</i> -heptan	-0,1428	0	0,1206	0,9016	14,2343	1,4969	15,6024
<i>i</i> -oktan	-0,2814	-0,1228	0	0,8795	14,2343	1,4969	15,6024
toluen	-0,5900	-0,6595	-0,6579	0	14,6024	12,5490	14,0906
tiofen	19,2008	19,2008	19,2008	18,1996	0	1,2960	5,8228
piridin	9,2895	9,2895	9,2895	7,8654	-0,8452	0	16,0795
ChCl-EG 1:2	10,8969	10,8969	10,8969	9,4131	0,9355	1,0909	0
UNIQUAC	<i>n</i> -heksan	<i>n</i> -heptan	<i>i</i> -oktan	toluen	tiofen	piridin	ChCl-EG 1:2
<i>n</i> -heksan	1	1	1	0,5184	2,3734	0,9880	0,5015
<i>n</i> -heptan	1	1	1	0,5237	2,3734	0,9880	0,5015
<i>i</i> -oktan	1	1	1	0,5288	2,3734	0,9880	0,5015
toluen	1,6470	1,6380	1,6290	1	2,3975	1,2982	0,1855
tiofen	0,2005	0,2005	0,2005	0,1535	1	0,4197	0,0767
piridin	0,4642	0,4642	0,4642	0,0867	1,7690	1	0,0052
ChCl-EG 1:2	0,1681	0,1681	0,1681	0,0058	1,1397	1,8090	1

Pokušaj izračunavanja ekstrakcijskog razdvajanja pomoću skupa parametara dao je sastave dviju ravnotežnih faza, koje međutim nisu odgovarale eksperimentalno opaženima. Dakle, za sustav s ChCl-EG 1:2, s masenim omjerom *m*(eutektično otapalo) / *m*(modelni benzin) od 1:4 i uz model NRTL, sastavu rafinatne faze (u masenim udjelima) od  $w^{R} = \{0,2477, 0,2594, 0,2455, 0,1015, 0,0744, 0,0715, 0,0000\}$  odgovarao je sastav ekstraktne faze,  $w^{E} = \{0,1819, 0,1904, 0,1802, 0,0691, 0,0120, 0,0292, 0,3371\}$ . Rezultat ukazuje na

ekstrakciju prekomjerne količine alifatskih komponenti. Za isti sustav korištenjem uz model UNIQUAC, sastav rafinatne faze bio je  $w^{R} = \{0,2631, 0,2756, 0,2608, 0,1038, 0,0462, 0,0502, 0,0003\}$  i sastav ekstraktne faze  $w^{E} = \{0,0000, 0,0000, 0,0000, 0,0000, 0,0037, 0,0320, 0,9642\}$ . U rafinatnoj fazi izračunat je preveliki maseni udio eutektičnog otapala, a u ekstraktnoj fazi količina ekstrahiranih tvari bila je premala, pri čemu je maseni udio ekstrahiranog toluena bio tri reda veličine manji ( $w \approx 10^{-9}$ ) od masenog udjela ekstrahiranih alifatskih ugljikovodika ( $w \approx 10^{-6}$ ).

Opažena je odstupanja moguće objasniti na sljedeći način. Mora se pretpostaviti da binarni interakcijski parametri određeni u kvazi-trokomponentnim sustavima nose pogrešne eksperimentalne informacije ili pak premalo njih. Tako npr. opisanom eksperimentalnom metodom nije bilo moguće odrediti maseni udio eutektičnog otapala u rafinatnoj fazi ili maseni udio ugljikovodika u ekstraktnoj fazi jer su bili ispod granice detekcije metode. Stoga se pretpostavljalo da su jednaki nuli, ali im je za potrebe proračuna dodijeljena proizvoljno mala vrijednost, ~10⁻⁶. Kvazi-trokomponentni sustavi uspješno su opisani modelima, ali dobiveni interakcijski parametri nisu sadržavali stvarnu, eksperimentalnu, već proizvoljno dodijeljenu informaciju. Taj bi se problem mogao riješiti jedino drugačijim eksperimentom. Za sustave s malom, ali mjerljivom topljivošću ugljikovodika u eutektičnom otapalu, alternativna eksperimentalna metoda za određivanje ravnotežnih sastava faza je ¹H NMR. [Hizaddin 2016] Za sustave s ekstremnom netopljivošću mogla bi se primijeniti plinska kromatografija na stacionarnoj fazi impregniranoj nehlapljivim kapljevitim ekstrakcijskim sredstvom, što odgovara tzv. plinsko-tekućinskoj kromatografiji (GLC). Metoda je eksperimentalno primijenjena za ionske kapljevine [Domanska 2009] [Kato 2004] [Nebig 2009] [Letcher 2009] [Olivier 2010] i eutektična otapala. [Verevkin 2015] Tom se metodom dobivaju koeficijenti aktivnosti pri beskonačnom razrijeđenju koji sadrže ključnu eksperimentalnu informaciju.

Bez mjerljivih razina eutektičnog otapala u rafinatnoj fazi nemoguće je kvantitativno procijeniti interakciju ugljikovodika s piridinom ili tiofenom. Naime, piridin i tiofen su potpuno mješljivi sa svim ispitivanim ugljikovodicima. Interakcijski se parametri potpuno mješljivih komponenti mogu procijeniti npr. iz eksperimentalnih podataka o ravnoteži para-kapljevina, ali primjena tih parametara u ravnoteži kapljevina-kapljevina u načelu je nepouzdana. To je dobro poznata činjenica i razlog je zašto se interakcijski parametri modela UNIFAC za ravnotežu para-kapljevina razlikuju od parametara za modeliranje ravnoteže kapljevina, tj. postoje različite verzije tablica parametara. [Magnussen 1981]

[Skjold-Joergensen 1979] [Weidlich 1987] U povoljnom slučaju, interakcijski parametri parova mješljivih komponenata mogu se prenijeti iz drugog, sličnog sustava, koji sadrži ekstrakcijsko sredstvo koje se znatno topljivije u smjesama piridin/ugljikovodik ili tiofen/ugljikovodik. Srećom, u ovom je istraživanju bilo moguće koristiti podatke iz prethodnih istraživanja u sličnim sustavima s ionskim kapljevinama kao ekstrakcijskim sredstvom. [Sander 2017]

Prema tome, dizajniran je postupak za određivanje nepoznatih interakcijskih parametara parova DES / komponenta niske molekulske mase, koristeći izravno mjerenja ravnoteže kapljevina-kapljevina u kvazi-sedmerokomponentnim sustavima. Prvo, svi interakcijski parametri za parove niskomolekulskih komponenti preuzeti su iz literature. [Sander 2017] Zatim, na temelju međusobno sličnih faznih dijagrama u kvazi-trokomponentnim sustavima s alifatskim ugljikovodicima pretpostavljeno je da se interakcija para alifatski ugljikovodik / DES može opisati jedinstvenim parom parametara:  $\{\tau_{A7} = \tau_{17} = \tau_{27} = \tau_{37}, \tau_{7A} = \tau_{71} = \tau_{72} = \tau_{73}\}$ . Na taj se način problem svodi na istodobno određivanje osam interakcijskih parametara:  $\tau_{A7}, \tau_{47}, \tau_{57}, \tau_{67}, \tau_{7A}, \tau_{74}, \tau_{75}$  i  $\tau_{76}$ . Za tu je svrhu primijenjena modificirana dvostupanjska procedura po Sørensenu i Arltu, prema izrazima:

$$OF_{5} = \sum_{j=1}^{n_{d}} \sum_{i=1}^{n_{c}} \left( \frac{x_{i}^{\mathrm{R}} \gamma_{i}^{\mathrm{R}} - x_{i}^{\mathrm{E}} \gamma_{i}^{\mathrm{E}}}{x_{i}^{\mathrm{R}} \gamma_{i}^{\mathrm{R}} + x_{i}^{\mathrm{E}} \gamma_{i}^{\mathrm{E}}} \right)_{j}^{2} + Q \left( \tau_{\mathrm{A7}}^{2} + \tau_{47}^{2} + \tau_{57}^{2} + \tau_{67}^{2} + \tau_{7\mathrm{A}}^{2} + \tau_{74}^{2} + \tau_{75}^{2} + \tau_{76}^{2} \right),$$
(4.22)

$$OF_{6} = \sum_{j=1}^{n_{d}} \sum_{i=1}^{n_{c}} \sum_{p=R,E} \left[ \left( w_{i}^{p} \right)_{exp} - \left( w_{i}^{p} \right)_{mod} \right]_{j}^{2} + Q \left( \tau_{A7}^{2} + \tau_{47}^{2} + \tau_{57}^{2} + \tau_{67}^{2} + \tau_{7A}^{2} + \tau_{74}^{2} + \tau_{75}^{2} + \tau_{76}^{2} \right).$$
(4.23)

Optimalni parametri modela prikazani su u **Tablici 4.26**., koja daje sve interakcijske parametre za sustav s ChCl-EG 1:2, kao primjer. **Tablica 4.27.** i **Tablica 4.28.** prikazuju sve interakcijske parametre određene u ovom istraživanju.

**Tablica 4.26.** Potpuna tablica parametara modela NRTL i UNIQUAC dobivenih 1) prijenosom interakcijskih parametara za parove komponenti niske molekulske mase iz literaturnih podataka u sedmerokomponentne sustave [Sander 2017] i 2) optimiranjem interakcijskih parametara povezanih DES-om s obzirom na eksperimentalne podatke u kvazisedmerokomponentnim sustavima u ovom istraživanju. Svim  $\alpha$ -parametrima modela NRTL pridružena je vrijednost 0,3.

NRTL	<i>n</i> -heksan	<i>n</i> -heptan	<i>i</i> -oktan	toluen	tiofen	piridin	ChCl-EG 1:2
<i>n</i> -heksan	0	0,1398	0,2700	0,8425	-0,0629	1,2504	5,8506
<i>n</i> -heptan	-0,1428	0	0,1206	0,9016	-1,0997	1,0673	5,8506
<i>i</i> -oktan	-0,2814	-0,1228	0	0,8795	-0,3767	1,1947	5,8506
toluen	-0,5900	-0,6595	-0,6579	0	-0,5990	1,8554	2,5965
tiofen	0,6560	1,0528	0,9689	-0,4575	0	1,2960	11,8095
piridin	0,9255	1,1736	1,2711	1,1988	-0,8452	0	1,8695
ChCl-EG 1:2	5,9858	5,9858	5,9858	-1,3317	-0,4157	-0,3100	0
UNIQUAC	<i>n</i> -heksan	<i>n</i> -heptan	<i>i</i> -oktan	toluen	tiofen	piridin	ChCl-EG 1:2
<i>n</i> -heksan	1	1	1	0,5184	0,3659	0,5109	0,0254
<i>n</i> -heptan	1	1	1	0,5237	0,2711	0,6907	0,0254
<i>i</i> -oktan	1	1	1	0,5288	0,7013	0,4855	0,0254
toluen	1,6470	1,6380	1,6290	1	1,6860	1,3556	1,8899
tiofen	1,2831	1,9127	0,9839	0,5306	1	0,4197	2,1670
piridin	1,1539	0,9648	1,1954	2,3717	1,7690	1	0,0152
ChCl-EG 1:2	0,0221	0,0221	0,0221	0,1331	0,1166	3,7256	1

**Tablica 4.27.** Interakcijski  $\tau$ -parametri modela NRTL i UNIQUAC izračunati u ovom radu – prvi dio. Prikazani su samo parametri koji se razlikuju za svaki DES. Svim  $\alpha$ -parametrima modela NRTL pridružena je vrijednost 0,3.

NRTL	ChCl-EG 1:2	ChCl-EG	ChCl-EG	ChCl-Gly	ChCl-Gly	ChCl-Gly
alifatski	5,8506	5,6490	6,3964	7,7397	5,9927	7,0309
toluen	2,5965	2,2527	2,0252	14,2636	14,6326	18,2285
tiofen	11,8095	17,6728	16,9290	16,7038	22,1281	23,3944
piridin	1,8695	1,0786	2,9120	0,5040	0,0414	-0,2980
UNIQUAC	ChCl-EG 1:2	ChCl-EG 1:3	ChCl-EG 1:3,5	ChCl-Gly 1:1,5	ChCl-Gly 1:2	ChCl-Gly 1:3
alifatski	0,0254	0,0398	0,0525	0,4298	0,0202	0,0445
toluen	1,8899	1,6570	1,6145	1,5952	0,9282	1,4692
tiofen	2,1670	0,9414	1,3751	2,2217	1,9440	2,1001
piridin	0,0152	0,0475	0,0338	0,1591	0,1936	0,2459

**Tablica 4.28.** Interakcijski  $\tau$ -parametri modela NRTL i UNIQUAC izračunati u ovom radu – drugi dio. Prikazani su samo parametri koji se razlikuju za svaki DES. Svim  $\alpha$ -parametrima modela NRTL pridružena je vrijednost 0,3.

NRTL	alifatski	toluen	tiofen	piridin
ChCl-EG 1:2	5,9858	-1,3317	-0,4157	-0,3100
ChCl-EG 1:3	5,6168	-1,2924	-0,7613	-0,6830
ChCl-EG 1:3,5	5,3803	-1,3533	-0,7176	-1,8444
ChCl-Gly 1:1,5	4,5033	17,7687	25,8397	22,6089
ChCl-Gly 1:2	3,6891	20,7472	23,1096	20,9226
ChCl-Gly 1:3	5,0203	18,6298	25,9942	22,7379
UNIQUAC	alifatski	toluen	tiofen	piridin
ChCl-EG 1:2	0,0221	0,1331	0,1166	3,7256
ChCl-EG 1:3	0,0136	0,4463	0,5176	3,0445
ChCl-EG 1:3,5	0,0129	0,3113	0,4224	4,5538
ChCl-Gly 1:1,5	0,0437	0,2246	0,0052	7,8535
ChCl-Gly 1:2	0,0209	0,6952	0,0345	13,5865
ChCl-Gly 1:3	0,0336	0,5110	0,0137	2,8563

Na temelju dobivenih parametara, izračunati su ravnotežni sastavi obje faze. Rezultati su prikazani numerički u tablicama, u usporedbi s eksperimentalnim vrijednostima (**Tablica 4.17.**). Ista je usporedba za odabrani sustav prikazana i grafički na **Slikama 4.66. – 4.69**.



Slika 4.66. Usporedba eksperimentalnih i izračunatih raspodjela komponenata (maseni udjeli) za kvazi-sedmerokomponentne sustave s masenim omjerom m(DES) / m(modelni benzin) od 1:4 – cijeli raspon sastava.



Slika 4.67. Usporedba eksperimentalnih i izračunatih raspodjela komponenata (maseni udjeli) za kvazi-sedmerokomponentne sustave s masenim omjerom m(DES) / m(modelni benzin) od 1:4 – raspon nižeg masenog udjela.



Slika 4.68. Usporedba eksperimentalnih i izračunatih raspodjela komponenata (maseni udjeli) za kvazi-sedmerokomponentne sustave s masenim omjerom m(DES) / m(modelni benzin) od 1:4 – raspon srednjeg masenog udjela.



Slika 4.69. Usporedba eksperimentalnih i izračunatih raspodjela komponenata (maseni udjeli) za kvazi-sedmerokomponentne sustave s masenim omjerom m(DES) / m (modelni benzin) od 1:4 – raspon višeg masenog udjela.

Za usporedbu, za sustav s ChCl-EG 1:2, s masenim omjerom m(DES) / m(modelni benzin) od 1:4 i s modelom NRTL, izračunati sastavi rafinatne faze (u masenim udjelima) iznosili su  $w^{R} = \{0,2674, 0,2802, 0,2654, 0,0864, 0,0422, 0,0434, 0,0149\}$ , a sastavi ekstraktne faze  $w^{E} = \{0,0296, 0, 0304, 0,0283, 0,0698, 0,0228, 0,0556, 0,7634\}$ . Za isti sustav s modelom UNIQUAC, sastav rafinatne faze iznosio je  $w^{R} = \{0,2784, 0,2916, 0,2760, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,0917, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,0000, 0,0$ 0.0351, 0.0273, 0.0000, a ekstraktne faze  $w^{\rm E} = \{0.0001, 0.0000, 0.0000, 0.0541, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.0444, 0.044$ 0,1037, 0,7977}. Na prvi pogled čini se da su rezultati za oba modela zadovoljavajući. Naime, na Slici 4.66. vidi se da su eksperimentalni maseni udjeli prema modelnima lijepo raspoređeni oko dijagonale. No ipak, mogu se prepoznati određena karakateristična odstupanja. Preferirana ekstrakcija piridina, tiofena i toluena u odnosu na alifatske ugljikovodike opisana je s oba modela. Piridin je komponenta koja se najbolje ekstrahira, zatim slijede toluen i tiofen, što se vidi na Slici 4.67. Međutim, model NRTL predviđa znatne količine ekstrahiranih alifatskih komponenti, što nije potvrđeno eksperimentom, a što se vidi kao grupa točaka unutar osjenčanog eliptičnog područja na Slici 4.67. S druge pak strane, model UNIQUAC ne predviđa pojavu alifatskih ugljikovodika u ekstraktnoj fazi, što prikazuju točke na Slici 4.67. unutar zasjenjenog kruga što obuhvaća ishodište grafa. Slika 4.68. prikazuje raspon srednjih koncentracija, tj. masene udjele alifatskih ugljikovodika u rafinatnoj fazi. Oba modela daju slične rezultate i raspršenje podataka može poslužiti za procjenu mjerne nesigurnosti metode

koja se koristi za određivanje ravnotežnih sastava. Na **Slici 4.69.** prikazan je raspon viših koncentracija. Tu se mogu promatrati točke koje odgovaraju koncentracijama eutektičnog otapala u ekstraktnoj fazi. Bolje slaganje s eksperimentalnim podatcima dobiveno je kod modela UNIQUAC. Naime, model NRTL sa zadanim skupom parametara predviđa prilično veliku topljivost eutektičnog otapala u rafinatnoj fazi, što prikazuju ostale točke unutar zasjenjenog eliptičnog područja na **Slici 4.67.** Stoga u ekstraktnoj fazi nedostaje količina eutetičnog otapala otopljena u rafinatnoj fazi.

Općenito govoreći, rezultati dobiveni uz oba modela s drugim skupom interakcijskih parametara (gdje se jedan dio parametara prenio iz srodnih sedmerokomponentnih sustava s ionskim kapljevinama, a drugi dio je dobiven optimiranjem iz eksperimentalnih podataka u kvazi-sedmerokomponentnim sustavima s odgovarajućim eutektičnim otapalima) bolji su od onih izračunatih s prvim skupom parametara (gdje se svi parametri prenose iz odgovarajućih kvazi-trokomponentnih sustava bez dodatnog optimiranja). To se posebno očituje u topljivosti toluena u eutektičnim otapalima. Eksperimenti u kvazi-trokomponentnim sustavima ukazuju na zanemarivu topljivost toluena u svim ispitivanim eutektičnim otapalima. Nasuprot tome, topljivost u istim eutektičnim otapalima, ali u kvazi-sedmerokomponentnih sustava ne može dati dobre rezultate. Osim toga, rezultati pokazuju je da se model UNIQUAC pokazao boljim od modela NRTL, osobito pri koreliranju netopljivosti eutektičnog otapala u rafinatnoj fazi kao i netopljivosti alifatskih ugljikovodika u ekstraktnoj fazi.

## 4.6. Ekstrakcije u sustavima s realnim benzinom

Kako modelni benzin sadrži samo po jednu dušikovu (piridin) i sumporovu (tiofen) komponentu, u usporedbi s realnim benzinom koji sadrži veliki broj takvih komponenti, ekstrakcije eutektičnim otapalima provedene su i na uzorcima realnog benzina. Ostvarene vrijednosti djelotvornosti ekstrakcije dušikovih spojeva prikazane su u **Tablici 4.29.**, dok su djelotvornosti ekstrakcije sumporovih spojeva prikazane u **Tablici 4.30.**, pri čemu je djelotvornost ekstrakcije računata prema jednadžbi:

$$E_i = \frac{w_i^{\mathrm{F}} - w_i^{\mathrm{R}}}{w_i^{\mathrm{F}}},\tag{4.24}$$

gdje *w* označava maseni udio, F početni uzorak benzina, R rafinatnu fazu nakon ekstrakcije, a *i* predstavlja ukupni sadržaj sumpora ili dušika u benzinu.

	sadržaj ukupnog N / (mg kg ⁻¹ )								
FCC benzin	ChCl-Gly	ChCl-Gly	ChCl-Gly	ChCl-EG	ChCl-EG	ChCl-EG			
	1:1,5	1:2	1:3	1:2	1:3	1:3,5			
početni sastav	77	77	77	77	77	77			
sastav nakon ekstrakcije	70	69	68	49	51	50			
djelotvornost ekstrakcije/%	9,09	10,39	11,69	36,36	33,77	35,06			

**Tablica 4.29.** Sadržaj ukupnog dušika u FCC benzinu pri 25 °C i 101 kPa prije i nakon ekstrakcije.

**Tablica 4.30**. Sadržaj ukupnog sumpora u FCC benzinu pri 25 °C i 101 kPa prije i nakon ekstrakcije.

	sadržaj ukupnog S / mas. %								
FCC benzin	ChCl-Gly	ChCl-Gly	ChCl-Gly	ChCl-EG	ChCl-EG	ChCl-EG			
	1:1,5	1:2	1:3	1:2	1:3	1:3,5			
početni sastav	0,076	0,076	0,076	0,076	0,076	0,076			
sastav nakon ekstrakcije	0,076	0,075	0,076	0,082	0,076	0,075			
djelotvornost ekstrakcije/%	-	1,31	-	-	-	1,32			

Ukupni sadržaj dušika smanjen je primjenom obje vrste eutektičnih otapala, i onih na osnovi glicerola i onih na osnovi etilen-glikola. Međutim, ekstrakcijska djelotvornost primjenom ChCl-Gly je slaba (< 12 %), što je mnogo manje od djelotvornosti postignute s modelnim benzinom (cca. 31 %). Od tri ispitana molarna omjera, najboljim se iz te grupe pokazalo eutektično otapalo s najvećim udjelom glicerola. Veća ekstrakcijska djelotvornost postignuta je s eutektičnim otapalima na osnovi etilen-glikola: oko 35 % za sva tri molarna omjera. Slične su vrijednosti dobivene i u eksperimentima s modelnim benzinom primjenom ChCl-EG 1:2 i ChCl-EG 1:3, dok je primjenom ChCl-EG 1:3,5 djelotvornost bila malo veća (40,1 %).

Što se tiče desulfurizacije realnog benzina, sadržaj ukupnog sumpora nakon provedene ekstrakcije svim ispitanim eutektičnim otapalima ostao je konstantan, ili se čak neznatno povećao (pri primjeni ChCl-EG 1:2), vjerojatno kao rezultat izražene ekstrakcije komponenti koje ne sadrže sumpor, odnosno smanjenja ukupne mase rafinatne faze u odnosu na masu početnoga uzorka goriva.

Iz dobivenih rezultata čini se da modelni benzin ne može u potpunosti predstaviti ponašanje realnog benzina. Razlog može biti različit profil sumporovih i dušikovih spojeva ili različit raspon sadržaja S i N. Naime, koncentracije S i N bile su znatno manje u FCC-benzinu nego u modelnom benzinu (cca. 2 % S i 1 % N). Dobiveni rezultati jasno pokazuju da su sva ispitivana eutektična otapala prikladnija za denitrifikaciju nego za desulfurizaciju realnog benzina.



## 5. ZAKLJUČCI

U ovom doktorskom radu ispitana je mogućnost primjene niskotemperaturnih eutektičnih otapala na osnovi kolin-klorida i glicerola ili etilen-glikola u različitim molarnim omjerima: ChCl-Gly 1:1,5, ChCl-Gly 1:2, ChCl-Gly 1:3, ChCl-EG 1:2, ChCl-EG 1:3 i ChCl-EG 1:3,5, kao ekstrakcijskih otapala za selektivno uklanjanje tiofena, piridina i toluena iz ugljikovodičnih smjesa koje predstavljaju modelni FCC-benzin, te za uklanjanje sumporovih i dušikovih spojeva iz realnih struja FCC-benzina. S tom je svrhom određena ravnoteža kapljevina-kapljevina u kvazi-trokomponentnim sustavima n-heksan / n-heptan / i-oktan / toluen(1) – piridin / tiofen(2) – eutektično otapalo(3) da bi se odredila međusobna mješljivost eutektičnog otapala s ugljikovodicima te s piridinom i tiofenom pri radnim uvjetima. Za određivanje sastava rafinatne faze primijenjena je refraktometrijska metoda. Određeni su uvjeti provedbe ekstrakcijskih eksperimenata na modelnom i realnom FCC-benzinu, te su ispitane jednostupanjske i višestupanjske ekstrakcije s ciljem izbora optimalnog eutektičnog otapala i optimalnih uvjeta za učinkovitu desulfurizaciju i denitrifikaciju FCC-benzina. Razvijena je analitička metoda plinske kromatografije za određivanje sastava rafinatne faze modelnog benzina, dok su sadržaji ukupnog dušika i sumpora u realnom benzinu određivani normiranim metodama. Na temelju eksperimentalnih podataka određeni su interakcijski parametri u kvazi-trokomponentnim i kvazi-sedmerokomponentnim sustavima. Primjenom modela koeficijenta aktivnosti NRTL i UNIQUAC izračunati su ravnotežni sastavi te su uspoređeni s eksperimentalnim rezultatima. Pripravljenim eutektičnim otapalima određena su fizikalna svojstva ključna za njihovu primjenu u ekstrakcijskim procesima.

Na temelju rezultata moguće je izvesti sljedeće zaključke.

Ravnoteža kapljevina-kapljevina u kvazi-trokomponentnim sustavima

- Komponente modelnog goriva (n-heksan, n-heptan, i-oktan, toluen) praktički su netopljive u eutektičnim otapalima; s druge strane, tiofen i piridin su topljivi, što upućuje na poželjnu selektivnost pripravljenih otapala. Nadalje, eutektična otapala nisu topljiva u modelnom gorivu što je također poželjno svojstvo ekstrakcijskoga otapala.
- Predstavnik dušikovih spojeva, piridin, znatno je topljiviji u eutektičnim otapalima nego tiofen. Topljivost piridina u eutektičnom otapalu povećava se s povećanjem udjela glicerola ili etilen-glikola u eutektičnom otapalu. Topljivost tiofena smanjuje se

s povećanjem udjela glicerola, a povećava se s povećanjem udjela etilen-glikola. Najveća topljivost i piridina i tiofena je u ChCl-EG 1:3,5.

- Iz faznog ponašanja kvazi-trokomponentnih sustava može se zaključiti da će sva ispitivana otapala biti prikladnija za uklanjanje dušikovih nego sumporovih spojeva iz modelnog benzina, budući da je ravnotežna topljivost tiofena u eutektičnom otapalu (ekstraktna faza) znatno manja od njegove topljivosti u alifatskim ugljikovodicima (rafinatna faza), dok je topljivost piridina u eutektičnom otapalu veća nego u alifatskim ugljikovodicima.
- Modelne vezne linije izračunate pomoću obaju modela koeficijenta aktivnosti, NRTL i UNIQUAC, izvrsno se podudaraju s eksperimentalnim veznim linijama u kvazitrokomponentnim sustavima s piridinom, dok se u sustavima s tiofenom ravnotežni sastavi ekstraktne faze većinom nisu ni mogli odrediti zbog pojave treće faze u sustavu.

Ekstrakcijski eksperimenti u kvazi-sedmerokomponentnim sustavima:

- Maseni omjer m(DES) / m(modelni benzin) utječe na djelotvornost ekstrakcije najveća se djelotvornost postiže uz najveći ispitani omjer 1:1.
- Jednaku vrijednost djelotvornosti jednostupanjske ekstrakcije s masenim omjerom m(DES) / m(modelni benzin) od 1:1 moguće je postići trostupanjskom ekstrakcijom uz m(DES) / m(modelni benzin) od 1:4 što pridonosi uštedi otapala od 25 %.
- Molarni omjer eutektičnog otapala utječe na djelotvornost ekstrakcije povećanjem udjela glicerola ili etilen-glikola u otapalu, povećava se djelotvornost ekstrakcije.
- Ekstrakcijski kapacitet eutektičnih otapala smanjuje se s povećanjem broja ekstrakcijskih stupnjeva.
- Eutektična se otapala uspješno regeneriraju vakuumskim isparavanjem ekstrahiranih komponenti iz otapala između svakog ekstrakcijskog stupnja.
- Sva ispitana otapala pokazuju izrazit potencijal za denitrifikaciju modelnog benzina i realnog FCC-benzina, dok je on dosta manji za desulfurizaciju, zatim dearomatizaciju. U realnom FCC-benzinu nije došlo do uklanjanja sumpora.
- Dušikovi se spojevi mogu potpuno ukloniti višestupanjskom ekstrakcijom.
- Veći stupanj denitrifikacije ostvaruje se s etilen-glikolom kao HBD-komponentom nego s glicerolom.
- Prijenos parametara modela NRTL i UNIQUAC iz kvazi-trokomponentnih u kvazisedmerokomponentne sustave ne daje dobre rezultate. Bolje slaganje eksperimentalnih

i računskih sastava ravnotežnih faza kod oba modela dobiveni su korištenjem skupa interakcijskih parametara u kojem je jedan dio parametara prenesen iz srodnih sedmerokomponentnih sustava s ionskim kapljevinama, a drugi dio je dobiven izravnim optimiranjem iz eksperimentalnih podataka u kvazi-sedmerokomponentnim sustavima s odgovarajućim eutektičnim otapalima. Pritom se model UNIQUAC pokazao boljim od modela NRTL.

Niskotemperaturna eutektična otapala

- Eutektična otapala na osnovi glicerola veće su gustoće u odnosu na otapala na osnovi etilen-glikola. Stoga bi u eventualnoj primjeni osigurala brže raslojavanje ravnotežnih faza.
- Eutektična otapala na osnovi nižih su viskoznosti u odnosu na otapala na osnovi glicerola. Stoga bi u eventualnoj primjeni omogućila brži međufazni prijenos tvari.
- Eutektična je otapala moguće regenerirati vakuumskim isparavanjem ekstrahiranih komponenti.
- Sva ispitana otapala selektivna su prema nepoželjnim sumporovim i dušikovim komponentama u modelnom i realnom gorivu.
- ChCl-EG 1:3,5 predlaže se kao otapalo za ekstrakcijsku denitrifikaciju FCC-benzina.

Općenit cilj istraživanja bio je unaprijediti postupak desulfurizacije i denitrifikacije kapljevitih goriva – naftnih derivata putem zamjene postojećih postupaka alternativnima, prvenstveno ekstrakcijom pomoću tzv. zelenih otapala.

Istražen je ekstrakcijski postupak desulfurizacije, denitrifikacije i paralelno dearomatizacije modelnog i realnog FCC-benzina primjenom niskotemperaturnih eutektičnih otapala na bazi kolin-klorida i glicerola ili etilen-glikola koji se ubrajaju u skupinu zelenih otapala. Međutim, taj alternativni postupak ne može u potpunosti zamijeniti dosadašnju hidrodesulfurizaciju, ali se predlaže njegova integracija u postojeće sustave – naime uklanjanje dušikovih spojeva (denitrifikacija) predloženim DES-ovima povoljno bi utjecala na djelotvornost kasnije hidrodesulfurizacije.

Poseban cilj istraživanja bio je nalaženje optimalnog sastava eutektične smjese za učinkovito i selektivno uklanjanje sumporovih i dušikovih spojeva iz ugljikovodičnih goriva.

 Među ispitanim eutektičnim otapalima izabrano je najučinkovitije otapalo, točno definiranog sastava i molarnog omjera, a to je ChCl-EG 1:3,5. Hipoteze istraživanja bile su sljedeće:

- niskotemperaturna eutektična otapala na osnovi kolin-klorida i glicerola, odnosno kolinklorida i etilen-glikola prikladnoga sastava mogu djelotvorno ekstrahirati sumporove i dušikove spojeve iz kapljevitog ugljikovodičnog goriva, uz mogućnost njihove učinkovite regeneracije

 Hipoteza je potvrđena na svim ispitanim eutektičnim otapalima; sva ispitana niskotemperaturna eutektična otapala ekstrahiraju sumporove i dušikove spojeve te se mogu uspješno regenerirati.

- na osnovi rezultata ograničenih eksperimenata i modeliranja neidealnosti kapljevina uobičajenim modelima poput NRTL-a i UNIQUAC-a moguće je konstruirati učinkovit višestupnjeviti postupak ekstrakcije za odvajanje sumporovih i dušikovih spojeva iz motornih benzina

 Hipoteza je potvrđena s oba ispitana modela koeficijenta aktivnosti, no UNIQUAC uspješnije opisuje eksperimentalne podatke i stoga se može predložiti za modeliranje višestupnjevite ekstrakcije.

LITERATURA

## 6. LITERATURA

[Abbott 2001] A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, V. Tambyrajah, Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains, Chem. Commun. (2001) 2010–2011.

[Abbott 2003] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride / urea mixtures, Chem. Commun. (2003) 70–71.

[Abbott 2004a] A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc 126 (2004) 9142–9147.

[Abbott 2004b] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, Ionic liquid analogues formed from hydrated metal salts, Chem. Eur. J. 10 (2004) 3769–3774.

[Abbott 2007a] A. P. Abbott, J. C. Barron, K. S. Ryder, D. Wilson, Eutectic-based ionic liquids with metal-containing anions and cations, Chem. Eur. J. 13 (2007) 6495–6501.

[Abbott 2007b] A. P. Abbott, R. C. Harris, K. S. Ryder, Application of hole theory to define ionic liquids by their transport properties, J. Phys. Chem. B 111 (2007) 4910–4913.

[Abbott 2011] A. P. Abbott, R. C. Harris, K. S. Ryder, C. D'Agostino, L. F. Gladden, M. D. Mantle, Glycerol eutectics as sustainable solvent systems, Green Chem. 13 (2011) 82–90.

[Abbott 2014] A. P. Abbott, A. A. Al-Barzinjy, P. D. Abbott, G. Frisch, R. C. Harris, J. Hartley, K. S. Ryder, Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl₃·6H₂O and urea, Phys. Chem. Chem. Phys. 16 (2014) 9047–9055.

[Ahmed 2014] I. Ahmed, J. W. Jun, B. K. Jung, S. H. Jhung, Adsorptive denitrogenation of model fossil fuels with Lewis acid-loaded metal–organic frameworks (MOFs), Chem. Eng. J. 255 (2014) 623–629.

[Al-Azzawi 2019] M. Al-Azzawi, F. S. Mjalli, A. Al-Hashmi, T. Al-Wahaibi, B. Abu-jdayil, Optimal liquid fuel extractive desulfurization in micro and mini-channels, Chem. Eng. Process. 140 (2019) 43–51.

[Alfonsi 2008] K. Alfonsi, J. Colberg, P. Dunn, T. Fevig, S. Jennings, T. Johnson, P. Kleine, C. Knight, M. Nagy, D. Perry, M. Stefaniak, Green chemistry tools to influence a medicinal chemistry and research chemistry based organization, Green Chem. 10 (2008) 31–36.

[Alhamed 2009] Y. A. Alhamed, H. S. Bamufleh, Sulfur removal from model diesel fuel using granular activated carbon, from dates' stones activated by ZnCl₂, Fuel 88 (2009) 87–94.

[Ali 2016] M. C. Ali, Q. Yang, A. A. Fine, W. Jin, Z. Zhang, H. Xing, Q. Ren, Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents, Green Chem. 18 (2016) 157–164.

[Ali 2018a] R. D. Alli, I. M. AlNashef, M. C. Kroon, Removal of 2- and 3-methylthiophene from their mixtures with *n*-heptane using tetrahexylammonium bromide-based deep eutectic solvents as extractive desulfurization agents, J. Chem. Thermodyn. 125 (2018) 172–179.

[Ali 2018b] R. D. Alli, M. C. Kroon, Extraction of benzothiazole and thiophene from their mixtures with *n*-heptane using tetrahexylammonium bromide-based deep eutectic solvents as extractive denitrogenation and desulfurization agents, Fluid Phase Equilib. 477 (2018) 1–11.

[AlOmar 2016] M. K. AlOmar, M. Hayyan, M. A. Alsaadi, S. Akib, A. Hayyan, M. Ali Hashim, Glycerol-based deep eutectic solvents: Physical properties, J. Mol. Liq. 216 (2016) 98–103.

[Anastas 1998] P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice. Oxford University Press, Oxford, 1998.

[ASTM] ASTM D 5453-2012, Standard test method for determination of total sulfur in light hydrocarbons, spark ignition engine fuel, diesel engine fuel, and engine oil by ultraviolet fluorescence, https://www.astm.org/Standards/D5453.htm, (pristup 1.9.2020.)

[Babich 2003] I. V. Babich, J. A. Moulijn, Science and technology of novel processes for deep desulfurization of oil refinery streams: a review, Fuel 82 (2003) 607–631.

[Bajkacz 2018] S. Bajkacz, J. Adamek, Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples, Food Anal. Methods 11 (2018) 1330–1344.

[Bosiljkov 2017] T. Bosiljkov, F. Dujmić, J. Hribar, R. Vidrih, M. Brnčić, E. Zlatic, S. Jokić, Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins, Food Bioprod. Process. 102 (2017) 195–203. [Bu 2011] J. Bu, G. Loh, C. G. Gwie, S. Dewiyanti, M. Tasrif, A. Borgna, Desulfurization of diesel fuels by selective adsorption on activated carbons: Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons, Chem. Eng. J. 166 (2011) 207–217.

[Cao 2018] J. Cao, L. Chen, M. Li, F. Cao, L. Zhao, E. Su, Efficient extraction of proanthocyanidin from *Ginkgo biloba* leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity, J. Pharm. Biomed. Anal. 158 (2018) 317–326.

[Carriazo 2012] D. Carriazo, M. C. Serrano, M. C. Gutiérrez, M. L. Ferrer, F. del Monte, Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials, Chem. Soc. Rev. 41 (2012) 4996–5014.

[Casal 2010] M. F. Casal, Desulfurization of Fuel Oils by Solvent Extraction with Ionic Liquids, Dissertation for the doctoral degree, University of Santiago de Compostela, 2010

[Chang 1998] Y. K. Chang, S. K. Rhee, J. H. Chang, H. N. Chang, Desulfurization of dibenzothiophene and diesel oils by a newly isolated *Gordona* sp. strain, CYKS 1., Appl. Environ. Microbiol. 64 (1998) 2327–2331.

[Chemat 2016] F. Chemat, H. Anjum, A. M. Shariff, P. Kumar, T. Murugesan, Thermal and physical properties of (choline chloride plus urea plus L-arginine) deep eutectic solvents, J. Mol. Liq. 218 (2016) 301–308.

[Choi 2011] Y. H. Choi, J. van Spronsen, Y. T. Dai, M. Vermerne, F. Hollmann, I. W. C. E. Arends, G. J. Witkamp, R. Verpoorte, Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?, Plant. Physiol. 156 (2011) 1701–1705.

[Cunha 2018] S. C. Cunha, J. Fernandes, Extraction techniques with deep eutectic solvents, Trends Anal. Chem. 105 (2018) 225–239.

[Dehkordi 2009] A. M. Dehkordi, Z. Kiaei, M. A. Sobati, Oxidative desulfurization of simulated light fuel oil and untreated kerosene, Fuel Process. Technol. 90 (2009) 435–445.

[DiracDelta]

http://www.diracdelta.co.uk/science/source/g/l/glycerol/source.html#.Wzt8A3x9ipo (pristup 1.6.2018.)

[Domańska 1989] U. Domańska, Solubility of *n*-alkanols ( $C_{16}$ ,  $C_{18}$ ,  $C_m$ ) in binary solvent mixtures, Fluid Phase Equilib. 46 (1989) 223–248.

[Domańska 2009] U. Domańska, M. Laskowska, Measurements of activity coefficients at infinite dilution of aliphatic and aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, MTBE, and water in ionic liquid [BMIM][SCN] using GLC, J. Chem. Thermodyn. 41 (2009) 645–650.

[Dong 1997] D. Dong, S. Jeong, F. E. Massoth, Effect of nitrogen compounds on deactivation of hydrotreating catalysts by coke, Catal. Today 37 (1997) 267–275.

[Durand 2013] E. Durand, J. Lecomte, P. Villeneuve, Deep eutectic solvents: Synthesis, application, and focus on lipase-catalyzed reactions, Eur. J. Lipid Sci. Technol. 115 (2013) 379–385.

[Ermakova 2002] A. Ermakova, A. V. Mashkina, L. G. Sakhaltueva, Kinetic study of catalytic hydrogenation of thiophene on a palladium sulfide catalyst, Kinet. Catal. 43 (2002) 528–535.

[Farzin Nejad 2011] N. Farzin Nejad, E. Karimi Zand, A new approach to dearomatization of gasoline by ionic liquid and liquid–liquid extraction, Pet. Sci. Technol. 29 (2011) 2372–2376.

[Florindo 2017] C. Florindo, L. C. Branco, I. M. Marrucho: Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments, Fluid Phase Equilib. 448 (2017) 135–142.

[Fukumoto 2005] K. Fukumoto, M. Yoshizawa, H. Ohno, Room temperature ionic liquids from 20 natural amino acids, J. Am. Chem. Soc. 127 (2005) 2398–2399.

[Furimsky 1999] E. Furimsky, F. E. Massoth, Deactivation of hydroprocessing catalysts, Catalysis Today 52 (1999) 381–495.

[Gamsjäger 2008] H. Gamsjäger, J. W. Lorimer, P. Scharlin, D. G. Shaw, Glossary of terms related to solubility (IUPAC Recommendations 2008), Pure Appl. Chem. 80 (2008) 233–276.

[Gano 2015] Z. S. Gano, F. S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, I. M. AlNashef, Extractive desulfurization of liquid fuel with FeCl₃-based deep eutectic solvents: experimental design and optimization by central-composite design, Chem. Eng. Process. 93 (2015) 10–20.

[Garcia 2015] G. Garcia, S. Aparicio, R. Ullah, M. Atilhan, Deep eutectic solvents: physicochemical properties and gas separation applications, Energy Fuels 29 (2015) 2616–2644.

[Garcia-Alvarez 2015] J. Garcia-Alvarez, Deep eutectic mixtures: Promising sustainable solvents for metal-catalysed and metal-mediated organic reactions, Eur. J. Inorg. Chem. 2015 (2015) 5147–5157.

[Ge 2017] X. Ge, C. Gu, X. Wang, J. Tu, Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision, Mater. Chem. A 5 (2017) 8209–8229.

[Ghareh 2013] B. F. S. Ghareh, K. Shahbaz, F. S. Mjalli, I. M. AlNashef, M. Ali Hashim, Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: measurements and artificial intelligence-based prediction, Fluid Phase Equilib. 356 (2013) 30–37.

[Girgis 1991] M. J. Girgis, B. C. Gates, Reactivities, reaction network, and kinetics in high pressure catalytic processing, Ind. Eng. Chem. Res. 30 (1991) 2021–2058.

[Grinbaum 2006] B. Grinbaum, The existing models for simulation of pulsed and reciprocating columns – how well do they work in the real world?, Solvent Extr. Ion Exch. 24 (2006) 796–822.

[Gu 2013] Y. Gu, F. Jerome, Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalyis and organic chemistry, Chem. Soc. Rev. 42 (2013) 9550–9570.

[Guajardo 2016] N. Guajardo, C. R. Müller, R. Schrebler, C. Carlesi, P. Domínguez De María, Deep eutectic solvents for organocatalysis, biotransformations, and multistep organocatalyst / enzyme combinations, ChemCatChem. 8 (2016) 1020–1027.

[Guo 2010] B. Guo, E. Duan, A. Ren, Y. Wang, H. Liu, Solubility of SO₂ in caprolactam tetrabutyl ammonium bromide ionic liquids, J. Chem. Eng. Data 55 (2010) 1398–1401.

[Guthrie 1884] F. Guthrie, LII. On eutexia, Philos. Mag. Ser. 5 (1884) 462-482.

[Gutiérrez 2018] A. Gutiérrez, M. Atilhan, S. Aparicio, Theoretical study of oil desulfuration by ammonium-based deep eutectic solvents, Energ. Fuel. 32 (2018) 7497–7507.

[Hizaddin 2014] H. F. Hizaddin, A. Ramalingam, M. A. Hashim, M. K. O. Hadj-Kali, Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents, J. Chem. Eng. Data 59 (2014) 3470–3487. [Hizaddin 2015] H. F. Hizaddin, M. Sarwono, M. Ali Hashim, I. M AlNashef, M. K. Hadj-Kali, Coupling the capabilities of different complexing agents into deep eutectic solvents to enhance the separation of aromatics from aliphatics, J. Chem. Thermodyn. 84 (2015) 67–75.

[Hizaddin 2016] H. F. Hizaddin, M. K. Hadj-Kali, A. Ramalingam, M. A. Hashim, Extractive denitrogenation of diesel fuel using ammonium- and phosphonium-based deep eutectic solvents, J. Chem. Thermodyn. 95 (2016) 164–173.

[Hou 2015] Y. Hou, Z. Li, S. Ren, W. Wu, Separation of toluene from toluene/alkane mixtures with phosphonium salt based deep eutectic solvents, Fuel Process. Technol. 135 (2015) 99–104.

[Hrvatska enciklopedija] URL: http://www.enciklopedija.hr/natuknica.aspx?id=17468 (pristup 17.7.2020.)

[Ibrahim 2017] M. H. Ibrahim, M. AliHashim, A. Hayyan, The role of ionic liquids in desulfurization of fuels: A review, Renew. Sus. Energ. Rev. 76 (2017) 1534–1549.

[Imperato 2005] G. Imperato, E. Eibler, J. Niedermaier, B. Konig, Low-melting sugar–urea– salt mixtures as solvents for Diels–Alder reactions, Chem. Commun. 9 (2005) 1170–1172.

[Ivanovic 2018] M. Ivanovic, M. E. Alanon, D. Arraez-Roman, A. Segura-Carretero, Enhanced and green extraction of bioactive compounds from *Lippia citriodora* by tailor-made natural deep eutectic solvents, Food Res. Int. 111 (2018) 67–76.

[Janović 2011] Z. Janović, Naftni i petrokemijski procesi i proizvodi, 2. izdanje, Hrvatsko društvo za goriva i maziva, Zagreb, 2011.

[Jeong 2015] K. M. Jeong, J. Zhao, Y. Jin, S. R. Heo, S. Y. Han, D. E. Yoo, J. Lee, Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media, Arch. Pharm. Res. 38 (2015) 2143–2152.

[Jiang 2016] W. Jiang, H. Li, C. Wang, W. Liu, T. Guo, H. Liu, W. Zhu, H. Li, Synthesis of ionic-liquid-based deep eutectic solvents for extractive desulfurization of fuel, Energy Fuels 30 (2016) 8164–8170.

[Jiang 2017] W. Jiang, L. Dong, W. Liu, T. Guo, H. Li, S. Yin, W. Zhu, H. Li, Biodegradable choline-like deep eutectic solvents for extractive desulfurization of fuel, Chem. Eng. Process. 115 (2017) 34–38.

[Jiang 2019] H. Jiang, B. Diao, D. Xu, L. Zhang, Y. Ma, J. Gao, Y. Wang, Deep eutectic solvents effect on vapor-liquid phase equilibrium for separation of allyl alcohol from its aqueous solution, J. Mol. Liq. 279 (2019) 524–529.

[Jibril 2014] B. Jibril, F. Mjalli, J. Naser, Z. Gano, New tetrapropylammonium bromide-based deep eutectic solvents: Synthesis and characterizations, J. Mol. Liq. 199 (2014) 462–469.

[Kabe 1999] T. Kabe, A. Ishihara, W. Qian, Hydrodesulfurization and Hydrodenitrogenation: Chemistry and Engineering, Wiley VCH. 1999.

[Kareem 2012a] M. A. Kareem, F. S. Mjalli, M. Ali Hashim, I. M. AlNashef, Liquid–liquid equilibria for the ternary system (phosphonium based deep eutectic solvent–benzene–hexane) at different temperatures: A new solvent introduced, Fluid Phase Equilib. 314 (2012) 52–59.

[Kareem 2012b] M. A. Kareem, F. S. Mjalli, M. Ali Hashim, M. K. O. Hadj-Kali, F.Saadat G. Bagha, I. M. AlNashef, Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha, Fluid Phase Equilib. 333 (2012) 47–54.

[Kareem 2013] M. A. Kareem, F. S. Mjalli, M. Ali Hashim, M. K. O. Hadj-Kali, F. S. G. Bagh, I. M. AlNashef, Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha, J. Chem. Thermodyn. 65 (2013) 138–149.

[Kato 2004] R. Kato, J. Gmehling, Activity coefficients at infinite dilution of various solutes in the ionic liquids  $[MMIM]^+[CH_3SO_4]^-$ ,  $[MMIM]^+[CH_3OC_2H_4SO_4]^-$ ,  $[MMIM]^+[(CH_3)2PO_4]^-$ ,  $[C_5H_5NC_2H_5]^+[(CF_3SO_2)_2N]^-$  and  $[C_5H_5NH]^+[C_2H_5OC_2H_4OSO_3]^-$ , Fluid Phase Equilib. 226 (2004) 37–44.

[Khandelwal 2016] S. Khandelwal, Y. K. Tailor, M. Kumar, Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations, J. Mol. Liq. 215 (2016) 345–386.

[Khezeli 2015] T. Khezeli, A. Daneshfar, Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine from biological samples based on green deep eutectic solvents and Fe₃O₄@MIL-100 (Fe) core-shell nanoparticles grafted with pyrocatechol, RSC Adv. 5 (2015) 65264–65273.

[Kim 2006] J. H. Kim, X. Ma, A. Zhou, C. Song, Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism, Catal. Today 111 (2006) 74–83.

[Koltai 2002] T. Koltai, M. Macauda, A. Guevara, E. Schulz, M. Lemaire, R. Bacaud, M. Vrinat, Comparative inhibiting effect of polycondensed aromatics and nitrogen compounds on the hydrodesulfurization of alkyldibenzothiophenes, Appl Catal A: Gen. 231 (2002) 253–261.

[Kumar 2015] S. Kumar, V. C. Srivastava, S. M. Nanoti, A. Kumar, Solvent evaluation for desulfurization and denitrification of gas oil using performance and industrial usability indices, AIChE J. 61 (2015) 2257–2267.

[Larriba 2015] M. Larriba, P. Navarro, E. J. González, J. García, F. Rodríguez, Dearomatization of pyrolysis gasolines from mild and severe cracking by liquid–liquid extraction using a binary mixture of [4empy][Tf₂N] and [emim][DCA] ionic liquids, Fuel Process. Technol. 137 (2015) 269–282.

[Larriba 2018] M. A. Larriba, M. Ayuso, P. Navarro, N. Delgado-Mellado, M. Gonzalez-Miquel, J. Garcia, F. Rodriguez, Choline chloride-based deep eutectic solvents in the dearomatization of gasolines, ACS Sustain. Chem. Eng. 6 (2018) 1039–1047.

[Lee 1995] M. K. Lee, J. D. Senius, M. J. Grossman, Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene, Appl. Environ. Microbiol. 61 (1995) 4362–4366.

[Lee 2019] K. X. Lee, J. A. Valla, Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review, React. Chem. Eng. 4 (2019) 1357–1386.

[Leron 2012a] R. B. Leron, A. N. Soriano, M.-H. Li, Densities and refractive indices of the deep eutectic solvents (choline chloride+ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K, J. Taiwan Inst. Chem. Eng. 43 (2012) 551–557.

[Leron 2012b] R. B. Leron, M.-H. Li, Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water, Thermochim. Acta 530 (2012) 52–57.

[Leron 2013] R. B. Leron, M. H. Li, Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures, J. Chem. Thermodyn. 57 (2013) 131–136.

[Letcher 2009] T. M. Letcher, D. Ramjugernath, M. Królikowski, M. Laskowska, P. Naidoo, U. Domańska, Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid *N*-butyl-4-methylpyridinium tosylate using GLC at T = (328.15, 333.15, 338.15, and 343.15) K, Fluid Phase Equilib. 276 (2009) 31–36.

[Li 2008] X. Li, M. Hou, B. Han, X. Wang, L. Zou, Solubility of CO₂ in a choline chloride + urea eutectic mixture, J. Chem. Eng. Data 53 (2008) 548–550.

[Li 2012] Z. Li, C. P. Li, Y. S. Chi, A. L. Wang, Z. D. Zhang, H. X. Li, Q. S. Liu, U. Welz-Biermann, Extraction process of dibenzothiophene with new distillable amine-based protic ionic liquids, Energy Fuels 26 (2012) 3723–3727.

[Li 2013] C. Li, D. Li, S. Zou, Z. Li, J. Yin, A. Wang, Y. Cui, Z. Yao, Q. Zhao, Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents, Green Chem. 15 (2013) 2793–2799.

[Li 2016a] C. Li, J. Zhang, Z. Li, J. Yin, Y. Cui, Y. Liu, G. Yang, Extraction desulfurization of fuels with 'metal ions' based deep eutectic solvents (MDESs), Green Chem. 18 (2016) 3789–3795.

[Li 2016b] J.-J. Li, H. Xiao, X.-D. Tang, M. Zhou, Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization, Energy Fuels 30 (2016) 5411–5418.

[Li 2018] Z. Li, D. Liu, Z. Men, L. Song, Y. Lv, P.-P. Wu, B. Lou, Y. Zhang, N. Shi, Q. Chen, Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic solvents: an innovative evaluation criterion to filtrate extractants using the compatibility index, Green Chem. 20 (2018) 3112–3120.

[Li 2019] Z. Li, Y. Cui, C. Li, Y. Shen, Deep desulfurization of fuels based on deep eutectic theory, Sep. Purif. Technol. 219 (2019) 9–15.

[Lian 2016] Y. H. Lian, H. Zhen, Denitrification of diesel by the ionic liquid triethylammonium hydrogensulfate, Pet. Sci. Technol. 34 (2016) 78–83.

[Lima 2018] F. Lima, J. Gouvenaux, L. C. Branco, A. J. D. Silvestre, I. M. Marrucho, Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents, Fuel 234 (2018) 414–421.
[Lima 2019] F. Lima, M. Dave, A. J. D. Silvestre, L. C. Branco, I. M. Marrucho, Concurrent desulfurization and denitrogenation of fuels using deep eutectic solvents, ACS Sustain. Chem. Eng. 7 (2019) 11341–11349.

[Lin 2014] C. M. Lin, R. B. Leron, A. R. Caparanga, M. H. Li, Henry's constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride / ethylene glycol, choline chloride / glycerol, choline chloride / malonic acid) systems, J. Chem. Thermodyn. 68 (2014) 216–220.

[Liu 2013] B. Liu, J. Zhao, F. Wei, Characterization of caprolactam based eutectic ionic liquids and their application in SO₂ absorption, J. Mol. Liq. 180 (2013) 19–25.

[Liu 2014] Y. T. Liu, Y.-A. Chen, Y.-J. Xing, Synthesis and characterization of novel ternary deep eutectic solvents, Chinese Chem. Lett. 25 (2014) 104–106.

[Liu 2015] P. Liu, J.-W. Hao, L.-P. Mo, Z.-H. Zhang, Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions, RSC Adv. 5 (2015) 48675–48704.

[Liu 2019] X. Liu, D. Xu, B. Diao, L. Zhang, J. Gao, D. Liu, Y. Wang, Choline chloride based deep eutectic solvents selection and liquid-liquid equilibrium for separation of dimethyl carbonate and ethanol, J. Mol. Liq. 275 (2019) 347–353.

[Lopez-Porfiri 2016] P. Lopez-Porfiri, J. F. Brennecke, M. Gonzalez-Miquel, Excess molar enthalpies of deep eutectic solvents (DESs) composed of quaternary ammonium salts and glycerol or ethylene glycol., J. Chem. Eng. Data 61 (2016) 4245–4251.

[Ma 2007] X. Ma, A. Zhou, C. Song, A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption, Catal. Today 123 (2007) 276–284.

[Magnussen 1981] T. Magnussen, P. Rasmussen, A. Fredenslund, UNIFAC parameter table for prediction of liquid-liquid equilibria, Ind. Eng. Chem. Process Des. Dev. 20 (1981) 331–339.

[Martinez-Palou 2014] R. Martinez-Palou, R. Luque, Applications of ionic liquids in the removal of contaminants from refinery feedstocks: an industrial perspective, Energy Environ. Sci. 7 (2014) 2414–2447.

[Martins 2019] M. A. R. Martins, S. P. Pinho, J. A. P. Coutinho, Insights into the nature of eutectic and deep eutectic mixtures, J. Solution Chem. 48 (2019) 962–982.

[Merza 2018] F. Merza, A. Fawzy, I. AlNashef, S. Al-Zuhair, H. Taher, Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils, Energy Rep. 4 (2018) 77–83.

[Mjalli 2014] F. Mjalli, N. M. Abdel-Jabbar, Acoustic investigation of choline chloride based ionic liquids analogs, Fluid Phase Equilib. 381 (2014) 71–76.

[Mohebali 2008] G. Mohebali, A. S. Ball, Biocatalytic desulfurization (BDS) of petrodieselfuels, Microbiology 154 (2008) 2169–2183.

[Mulyono 2014] S. Mulyono, H. F. Hizaddin, I. M. AlNashef, M. Ali Hashim, A. H. Fakeeha, M. K. Hadj-Kali, Separation of BTEX aromatics from *n*-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent–experiments and COSMO-RS prediction, RSC Adv. 4 (2014) 17597–17606.

[Naderpour 2008] N. Naderpour, Petrochemical Production Processes, SBS Publishers, Delhi, India, 2008.

[Naeemullah 2016] K. Naeemullah, M. Tuzen, T. G.Kazi, J. Ali, Green and deep eutectic solvent microextraction method for FAAS determination of trace level cadmium in water samples using multivariate strategic approach, Atom. Spectrosc. 37 (2016) 244–251.

[Naik 2016] P. K. Naik, P. Dehury, S. Paul, T. Banerjee, evaluation of deep eutectic solvent for the selective extraction of toluene and quinoline at T = 308.15 K and p = 1 bar, Fluid Phase Equilib. 423 (2016) 146-155.

[Nebig 2009] S. Nebig, V. Liebert, J. Gmehling, Measurement and prediction of activity coefficients at infinite dilution ( $\gamma^{\infty}$ ), vapor–liquid equilibria (VLE) and excess enthalpies ( $H^{E}$ ) of binary systems with 1,1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund), Fluid Phase Equilib. 277 (2009) 61–67.

[Nie 2017] J. Nie, G. Yu, Z. Song, X. Wang, Z. Li, Y. She, M. Lee, Microwave-assisted deep eutectic solvent extraction coupled with headspace solid-phase microextraction followed by GC-MS for the analysis of volatile compounds from tobacco, Anal. Methods. 9 (2017) 856–863.

[Ogunlaja 2014] A. S. Ogunlaja, M. J. Coombes, N. Torto, Z. R. Tshentu, The adsorptive extraction of oxidised sulfur-containing compounds from fuels by using molecularly imprinted chitosan materials, React. Funct. Polym. 81 (2014) 61–76.

[Oliveira 2013] F. S. Oliveira, A. B. Pereiro, L. P. N. Rebelo, I. M. Marrucho, Deep eutectic solvents as extraction media for azeotropic mixtures, Green Chem. 15 (2013) 1326–1330.

[Olivier 2010] E. Olivier, T. M. Letcher, P. Naidoo, D. Ramjugernath, Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate using gas–liquid chromatography at T = (313.15, 323.15, and 333.15) K, J. Chem. Thermodyn. 42 (2010) 78–83.

[Othmer 1941] D. F. Othmer, R. E. White, E. Trueger, Liquid-liquid extraction data, Ind. Eng. Chem. 33 (1941) 1240–1248.

[Poletti 2007] L. Poletti, C. Chiappe, L. Lay, D. Pieraccini, L. Polito, G. Russo, Glucosederived ionic liquids: exploring low-cost sources for novel chiral solvents, Green Chem. 9, (2007) 337–341.

[Radošević 2015] K. Radošević, M. Cvjetko Bubalo, V. Gaurina Srček, D. Grgas, T. Landeka Dragičević, I. Radojčić Redovniković, Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents., Ecotoxicol. Environ. Saf. 112 (2015) 46–53.

[Rahma 2017] W. S. A. Rahma, F. S. Mjalli, T. Al-Wahaibi, A. A. Al-Hashmi, Polymericbased deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions, Chem. Eng. Res. Des. 120 (2017) 271–283.

[Ramachandran 1982] R. Ramachandran, F. E. Massoth, The effects of pyridine and coke poisoning on benzothiophene HDS over cobaltmolybdenum/alumina catalyst, Chem. Eng. Commun. 18 (1982) 239–254.

[RNS 2014] URL:

https://mzoe.gov.hr/UserDocsImages//Okoli%C5%A1na%20dozvola/OUZOpostoje%C4%87e//rjesenje_ministarstva_od_14_svibnja_2014_godine_(rafinerija_sisak).pdf (pristup 17.7.2020.)

[Rodriguez 2017] N. R. Rodriguez, T. Gerlach, D. Scheepers, M. C. Kroon, I. Smirnova, Experimental determination of the LLE data of systems consisting of {hexane plus benzene plus deep eutectic solvent} and prediction using the Conductor-like Screening Model for Real Solvents, J. Chem. Thermodyn. 104 (2017) 128–137.

[Rogošić 2013] M. Rogošić, Kemijsko-inženjerska termodinamika, nastavni tekstovi, Fakultet kemijskog inženjerstva I tehnologije Sveučilišta u Zagrebu, 2013. [Rogošić 2014] M. Rogošić, A. Sander, M. Pantaler, Application of 1-pentyl-3-

methylimidazolium bis[trifluoromethylsulfonyl) imide for desulfurization, denitrification and dearomatization of FCC gasoline., J. Chem. Thermodyn. 76 (2014) 1–15.

[Rogošić 2016] M. Rogošić, A. Sander, V. Kojić, J. Parlov Vuković, Liquid-liquid equilibria in the ternary and multicomponent systems involving hydrocarbons, thiophene or pyridine and ionic liquid (1-benzyl-3-metylimidazolium bis(trifluorometylsulfonyl)imide), Fluid Phase Equilib. 412 (2016) 39–50.

[Rogošić 2018] M. Rogošić, K. Zagajski Kučan, Modelling of liquid–liquid equilibria in quasi-seven-component systems with deep eutectic solvents as extraction media, Kem. Ind. 67 (2018) 385–402.

[Row 2017] X. Li, K. H. Row, Purification of antibiotics from the millet extract using hybrid molecularly imprinted polymers based on deep eutectic solvents, RSC Adv. 7 (2017) 16997–17004.

[Rus 2012] C. Rus, B. Konig, Low melting mixtures in organic synthesis – an alternative to ionic liquids?, Green Chemistry 14 (2012) 2969–2982.

[Samarov 2018] A. A. Samarov, M. A. Smirnov, M. P. Sokolova, and A. M. Toikka, Liquidliquid equilibrium data for the system *n*-octane + toluene + DES at 293.15 and 313.15 K and atmospheric pressure, Theor. Found. Chem. Eng. 52 (2018) 258–263.

[Sander 2016] A. Sander, M. Rogošić, A. Slivar, B. Žuteg, Separation of hydrocarbons by means of liquid-liquid extraction with deep eutectic solvents, Solvent Extr. Ion Exc. 34 (2016) 86–98.

[Sander 2017] A. Sander, M. Rogošić, B. Ferčec, J. Parlov Vuković, Liquid–liquid equilibrium for the systems hydrocarbon–thiophene or pyridine–1-hexyl-3,5-dimethylpyridinium bis(trifluoromethylsulfonyl)imide, Sep. Sci. Technol. 52 (2017) 2557–2572.

[Sander 2018] A. Sander, M. Koščak, D. A. Kosir, N. Milosavljević, J. Vuković Parlov, L. Magić, The influence of animal fat type and purification conditions on biodiesel quality, Renew. Energy 118 (2018) 752–760.

[Sarker 2018] M. Sarker, J. Y. Song, A. R. Jeong, K. S. Min, S. H. Jhung, Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal-organic frameworks, J. Hazard. Mater. 344 (2018) 593–601.

[Schweizer 1979] P. A. Schweizer, Handbook of Separation Techniques for Chemical Engineers, McGraw-Hill, Inc. 1979.

[Sertić-Bionda 2006] K. Sertić-Bionda, Procesi prerade nafte, predavanja, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2006.

[Shah 2019] D. Shah, D. Gapeyenko, A. Urakpayev, M. Torkmahalleh, Molecular dynamics simulations on extractive desulfurization of fuels by tetrabutylammonium chloride based deep eutectic solvents, J. Mol. Liq. 274 (2019) 254–260.

[Shahbaz 2011] K. Shahbaz, F. S. Mjalli, M. Ali Hashim, I. M. AlNashef, Prediction of deep eutectic solvents densities at different temperatures, Thermochim. Acta 515 (2011) 67–72.

[Sharma 2013] M. Sharma, P. Sharma, J. N. Kim, Solvent extraction of aromatic components from petroleum derived fuels: a perspective review, RSC Adv. 3 (2013) 10103–10126.

[Shirazinia 2020] S. R. Shirazinia, A. Semnani, M. Nekoeinia, M. Shirani, A. Akbari, Novel sustainable metal complex based deep eutectic solvents for extractive desulphurisation of fuel, J. Mol. Liq. 301 (2020) 112364 (1–8).

[Shu 2016] C. Shu, T. Sun, Extractive desulfurisation of gasoline with tetrabutyl ammonium chloride-based deep eutectic solvents, Sep. Sci. Technol. 51 (2016) 1336–1343.

[Singh 2018] A. Singh, R. Walvekar, K. Shahbaz, M. Khalid, T. C. S. M. Gupta, W. W. Yin, Thermophysical properties of glycerol and polyethylene glycol (PEG 600) based DESs., J. Mol. Liq. 252 (2018) 439–444.

[Skjold-Joergensen 1979] S. Skjold-Joergensen, B. Kolbe, J. Gmehling, P. Rasmussen, Vapor-liquid equilibria by UNIFAC group contribution. Revision and extension, Ind. Eng. Chem. Process Des. Dev. 18 (1979) 714–722.

[Smith 2014] E. L. Smith, A. P. Abbott, K. S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (2014) 11060–11082.

[Song 2003] C. Song, An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catal. Today 86 (2003) 211–263.

[Srivastava 2012] V. C. Srivastava, An evaluation of desulfurization technologies for sulfur removal from liquid fuels, RSC Adv. 2 (2012) 759–783.

[Sun 2013] H. Sun, Y. Li, X. Wu, G. Li, Theoretical study on the structures and properties of mixtures of urea and choline chloride, J. Mol. Model. 19 (2013) 2433–2441.

[Sun 2015] S. Sun, Y. Niu, Q. Xu, Z. Sun, X. Wei, Efficient SO₂ absorptions by four kinds of deep eutectic solvents based on choline chloride, Ind. Eng. Chem. Res. 54 (2015) 8019–8024.

[Tan 2015] T. Tan, X. Qiao, Y. Wan, H. Qiu, Deep eutectic solvent: A new kind of mobile phase modifier for hydrophilic interaction liquid chromatography (HILIC), Se Pu 33 (2015) 934–937.

[Tang 2013] B. Tang, K. H. Row, Recent developments in deep eutectic solvents in chemical sciences, Monatsh. Chem. 144 (2013) 1427–1454.

[Tang 2014] B. Tang, W. Bi, H. Zhang, K. H. Row, Deep eutectic solvent-based HS-SME coupled with GC for the analysis of bioactive terpenoids in *Chamaecyparis obtusa* leaves, Chromatographia 77 (2014) 373–377.

[Thornton 2011] J. D. Thornton u Thermopedia[™], DOI: 10.1615/AtoZ.e.extraction_liquid-liquid_(pristup 17.7.2020.)

[Topsøe 1996] H. Topsøe, B. S. Clausen, F. E Massoth, Catalysis: Science and Technology, Vol. 11, Springer, New York, 1996, str. 310.

[Treybal 1981] R. E. Treybal, Mass Transfer Operations, 3rd Edition, McGraw Hill Book Company, Singapore, 1981.

[Troter 2017] D. Z. Troter, Z. B. Todorović, D. R. Đokić-Stojanović, B. S. Đorđević, V. M. Todorović, S. S. Konstantinović, V. B. Veljković, The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents, J. Serb. Chem. Soc. 82 (2017) 1039–1052.

[Uredba o kvaliteti] URL: Uredba o kvaliteti tekućih naftnih goriva (NN 113/13, 76/14, 56/15), https://narodne-novine.nn.hr/clanci/sluzbeni/full/2013_09_113_2458.html (pristup 17.7.2020.)

[Uredba o tehničkim standardima 1] Uredba o tehničkim standardima zaštite okoliša od emisija hlapivih organskih spojeva koje nastaju skladištenjem i distribucijom benzina (NN 135/06), URL: https://narodne-novine.nn.hr/clanci/sluzbeni/2006_12_135_3047.html (pristup 17.7.2020.)

[Uredba o tehničkim standardima 2] Uredba o tehničkim standardima zaštite okoliša za smanjenje emisija hlapivih organskih spojeva koje nastaju tijekom punjenja vozila benzinom na benzinskim postajama (NN 44/16), URL: https://narodne-novine.nn.hr/clanci/sluzbeni/2016_05_44_1140.html (pristup 17.7.2020.)

[van Osch 2015] D. J. G. P. van Osch, L. F. Zubeir, A. van den Bruinhorst, M. A. A. Rocha,
M. C. Kroon, Hydrophobic deep eutectic solvents as water-immiscible extractants, Green
Chem. 17 (2015) 4518–4521.

[Verevkin 2015] S. P. Verevkin, A. Yu. Sazonova, A. K. Frolkova, Dz. H. Zaitsau, I. V. Prikhodko, C. Held, Separation performance of biorenewable deep eutectic solvents, Ind. Eng. Chem. Res. 54 (2015) 3498–3504.

[Vuksanovic 2018] J. Vuksanović, M. Lj. Kijevčanin, I. R. Radović, Effect of water addition on extraction ability of eutectic solvent choline chloride + 1,2-propanediol for separation of hexane/heptane plus ethanol systems, Korean J. Chem. Eng. 35 (2018) 1477–1487.

[Walas 1985] S. M. Walas, Phase Equilibria in Chemical Engineering, Elsevier, Amsterdam, 1985.

[Wang 2014] A. Wang, X. Zheng, Z. Zhao, C. Li, X. Zheng, Deep eutectic solvents to organic synthesis, Prog. Chem. 26 (2014) 784–795.

[Wang 2016] Y. Wang, Y. Hou, W. Wu, D. Liu, Y. Ji, S. Ren, Roles of a hydrogen bond donor and a hydrogenbond acceptor in the extraction of toluene fromn-heptane using deep eutectic solvents, Green Chem. 18 (2016) 3089–3097.

[Wang 2019] H. Wang, S. Liu, Y. Zhao, J. Wang, Z. Yu, Insights into the hydrogen bond interactions in deep eutectic solvents composed of choline chloride and polyols, ACS Sustainable Chem. Eng. 7 (2019) 7760–7767.

[Warrag 2018a] S. E. E. Warrag, I. Adeyemi, N. R. Rodriguez, I. M. Nashef, M. van Sint Annaland, M. C. Kroon, C. J. Peters, Effect of the type of ammonium salt on the extractive desulfurization of fuels using deep eutectic solvents, J. Chem. Eng. Data 63 (2018) 1088– 1095.

[Warrag 2018b] S. E. E. Warrag, C. Pototzki, N. R. Rodriguez, M. S. Annaland, M. C. Kroon, C. Held, G. Sadowski, C. J. Peters, Oil desulfurization using deep eutectic solvents as sustainable and economical extractants via liquid-liquid extraction: Experimental and PC-SAFT predictions, Fluid Phase Equilib. 467 (2018) 33–44.

[Wei 2011] L. Wei, Y. J. Fan, Progress of deep eutectic solvents and their applications, Chem. Bull. / Huaxue Tongbao 77 (2011) 333–339.

[Weidlich 1987] U. Weidlich, J. Gmehling, A modified UNIFAC model. 1. Prediction of VLE,  $h^{\rm E}$ , and  $\gamma^{\infty}$ , Ind. Eng. Chem. Res. 26 (1987) 1372–1381.

[Xiong 2016] X. Xiong, Q. Han, L. Shi, S. Xiao, C. Bi, Application of deep-eutectic solvents in green organic synthesis, Chinese J. Org. Chem. 36 (2016) 480–489.

[Xu 2018] H. Xu, D. Zhang, F. Wu, X. Wei, J. Zhang, Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents, Fuel 225 (2018) 104–110.

[Yadav 2014] A. Yadav, S. Trivedi, R. Rai, S. Pandey, Densities and dynamic viscosities of (choline chloride + glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range [283.15–363.15] K., Fluid Phase Equilib. 367 (2014) 135–142.

[Yan 2017] Y. C. Yan, W. Rashmi, M. Khalid, K. Shahbaz, T. C. S. M. Gupta, N. Mase, Potential application of deep eutectic solvents inheat transfer application, J. Eng. Sci. Tech. Special Issue May (2017) 1–14.

[Yang 2013] D. Yang, M. Hou, H. Ning, J. Zhang, J. Ma, G. Yang, B. Han, Efficient SO₂ absorption by renewable choline chloride–glycerol deep eutectic solvents, Green Chem. 15 (2013) 2261–2265.

[Yang 2016] F.-X. Yang, P. Xu, J.-G. Yang, J. Liang, M.-H. Zong, W.-Y. Lou, Efficient separation and purification of anthocyanins from saskatoon berry by using low transition temperature mixtures, RSC Adv. 6 (2016) 104582–104590.

[Yousefi 2017] S. M. Yousefi, F. Shemirani, S. A. Ghorbanian, Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: Application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique, Talanta 168 (2017) 73–81.

[Yucui 2018] H. O. U. Yucui, Y. A. O. Congfei, W. U. Weize, Deep eutectic solvents: green solvents for separation applications, Acta Phys.-Chim. Sin. 34 (2018) 873–885.

[Zagajski Kučan 2018] K. Zagajski Kučan, M. Perković, K. Cmrk, D. Načinović, M. Rogošić, Betaine + (glycerol or ethylene glycol or propylene glycol) deep eutectic solvents for extractive purification of gasoline, ChemistrySelect 3 (2018) 12582–12590.

[Zakon] Zakon o zaštiti zraka (NN130/11, 47/14), URL: https://www.zakon.hr/z/269/Zakono-za%C5%A1titi-zraka (pristup 17.7.2020.)

[Zhang 2012] Q, Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108–7146.

[Zhang 2012] Q. Zhang, V. K. De Oliveira, S. Royer, F. Jerome, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108–7146.

[Zhao 2015] B.-Y. Zhao, P. Xu, F.-X. Yang, H. Wu, M.-H. Zong, W.-Y. Lou, Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from *Sophora japonica*, ACS Sustain. Chem. Eng. 3 (2015) 2746–2755.

## ŽIVOTOPIS

Kristina Zagajski Kučan Svoje školovanje započela je 1987. godine u Osnovnoj školi Velika Mlaka u Šćitarjevu. Do 1999. godine pohađala je XV. gimnaziju u Zagrebu gdje je maturirala s odličnim uspjehom uz maturalni rad na temu Ugljikovodici, nomenklatura i izomerija. Iste godine upisuje Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, a ponovno po bolonjskom programu 2006. godine, studij Kemijsko inženjerstvo. Tijekom studiranja stručnu praksu odrađuje u farmaceutskoj kompaniji Pliva d.d. u pogonu Biosinteza uz mentorstvo dipl. inž. Igora Lisca. Godine 2008. u Zavodu za analitičku kemiju izrađuje Završni rad na temu Određivanje arsenovih spojeva spektrometrijskim metodama uz mentorstvo dr. sc. Tomislava Bolanče. Iste godine upisuje diplomski studij na matičnom fakultetu, studij Kemijsko inženjerstvo, modul Kemijskoprocesno inženjerstvo. Dvije godine kasnije, u Zavodu za analitičku kemiju, uz mentorstvo dr. sc. Tomislava Bolanče, diplomira na temu Upotreba unaprijednih umjetnih neuronskih mreža s povratnim rasprostiranjem pogreške za predviđanje svojstava cementa u procesima zbrinjavanja otpada i stječe zvanje magistra inženjerka kemijskog inženjerstva. Sljedeće godine zapošljava se u tvtki Galápagos d.o.o. na radnom mjestu mlađega znanstvenika medicinskoga kemičara. Od 2015. radi kao asistentica na Fakultetu kemijskog inženjerstva i tehnologije u Zavodu za fizikalnu kemiju. Iste godine upisuje sveučilišni znanstveni poslijediplomski doktorski studij Kemijsko inženjerstvo i primijenjena kemija na Fakultetu kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu uz mentorstvo prof. dr. sc. Marka Rogošića. U tom periodu sudjeluje na sedam skupova, objavljuje dva rada u zbornicima skupova, te sedam radova u časopisima citiranina u bazi Web of Science. Godine 2020. Fakultet kemijskog inženjerstva i tehnologije dodjeljuje joj nagradu Ivan Plotnikov kao najboljoj mladoj znanstvenici za 2019. godinu.

Popis objavljenih radova:

 [1] M. Rogošić, K. Zagajski Kučan, Deep eutectic solvent based on choline chloride and propylene glycol as a potential medium for extraction denitrification of hydrocarbon fuels, Chem. Eng. Res. Des. 161 (2020) 45–57.

[2] M. Rogošić, K. Zagajski Kučan, Deep eutectic solvents based on choline chloride and ethylene glycol as media for extractive denitrification/desulfurization/dearomatization of motor fuels, J. Ind. Eng. Chem. 72 (2019) 87–99.

[3] K. Zagajski Kučan, M. Rogošić, Purification of motor fuels by means of extraction using deep eutectic solvent based on choline chloride and glycerol, J. Chem. Technol. Biotechnol. 94 (2019) 1282–1293.

 [4] M. Rogošić, A. Krišto, K. Zagajski Kučan, Deep eutectic solvents based on betaine and propylene glycol as potential denitrification agents: a liquid-liquid equilibrium study, Braz. J. Chem. Eng. 36 (2019) 1703–1716.

[5] A. Mitar, M. Panić, J. Prlić Kardum, J. Halambek, A. Sander, K. Zagajski Kučan, I. Radojčić Redovniković, K. Radošević, Physicochemical properties, cytotoxicity, and antioxidative activity of natural deep eutectic solvents containing organic acid, Chem. Biochem. Eng. Q. 33 (2019) 1–18.

[6] M. Rogošić, K. Zagajski Kučan, Modeling of liquid–liquid equilibria in quasi-sevencomponent systems with deep eutectic solvents as extraction media, Kem. Ind. 67 (2018) 385–402.

[7] K. Zagajski Kučan, M. Perković, K. Cmrk, D. Načinović, M. Rogošić, Betaine + (glycerol or ethylene glycol or propylene glycol) deep eutectic solvents for extractive purification of gasoline, ChemistrySelect 3 (2018) 12582–12590.

U zborniku radova:

[8] K. Zagajski Kučan, M. Perković, K. Cmrk, D. Načinović, M. Rogošić, Liquid fuel denitrification and desulfurization by means of choline chloride and betaine based deep eutectic solvents, Proceedings: Natural Resources, Green Technology & Sustainable Development, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 2018., str. 40–44.

[9] K. Zagajski Kučan, M. Rogošić, A. Sander, Primjena ionskih kapljevina i eutektičkih otapala u ekstrakcijskoj desulfurizaciji i denitrifikaciji, Zbornik radova: 16. Ružičkini dani "Danas znanost – sutra industrija", Hrvatsko društvo kemijskih inženjera i tehnologa i Prehrambeno-tehnološki fakultet Osijek Sveučilišta J. J. Strossmayera u Osijeku, Osijek i Zagreb, 2017., str. 86–96.