Sinteza i spektroskopska karakterizacija novih aminosupstituiranih tetracikličkih derivata imidazo[4,5b]piridina

Boček, Ida

Master's thesis / Diplomski rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:493332

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-24

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI DIPLOMSKI STUDIJ

Ida Boček

DIPLOMSKI RAD

Zagreb, srpanj 2017.

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI DIPLOMSKI STUDIJ

Ida Boček

SINTEZA I SPEKTROSKOPSKA KARAKTERIZACIJA NOVIH AMINO-SUPSTITUIRANIH TETRACIKLIČKIH DERIVATA IMIDAZO[4,5-*b*]PIRIDINA

DIPLOMSKI RAD

Voditelj rada: izv. prof. dr. sc. Marijana Hranjec

Članovi ispitnog povjerenstva:

- 1. izv. prof. dr. sc. Marijana Hranjec, izv.prof. FKIT-a
- 2. dr. sc. Nataša Perin, poslijedoktorandica FKIT-a
- 3. izv. prof. dr. sc. Dragana Mutavdžić Pavlović, izv.prof. FKIT-a

Zagreb, srpanj 2017.

Zahvaljujem izv. prof. dr. sc. Marijani Hranjec, mentorici, na predloženoj temi, predanosti u ispravljanju ovog rada u svim etapama njegovog nastanka te na stručnoj potpori i strpljenju.

Zahvaljujem dr. sc. Nataši Perin, neposrednoj voditeljici, na velikoj pomoći, susretljivosti i korisnim savjetima koje mi je pružila tijekom izrade i pisanja ovog rada.

Posebno zahvaljujem svojoj obitelji na bezuvjetnoj podršci tijekom čitavog mog školovanja.

SAŽETAK

SINTEZA I SPEKTROSKOPSKA KARAKTERIZACIJA NOVIH AMINO-SUPSTITUIRANIH TETRACIKLIČKIH DERIVATA IMIDAZO[4,5-*b*]PIRIDINA

U ovom radu prikazana je sinteza i spektroskopska karakterizacija novih amino supstituiranih tetracikličkih derivata imidazo[4,5-*b*]piridina. Brojna istaživanja pokazala su da derivati imidazo[4,5-*b*]piridina imaju širok spektar biološkog djelovanja, a upravo tetraciklički derivati pokazali su antitumorsko djelovanje. Za pripravu ciljanih molekula korištene su klasične metode organske kemije, dok je posljednji stupanj sinteze potpomognut mikrovalnim zračanjem.

Kondenzacijom derivata imidazo[4,5-*b*]piridina **3** s 2-klorbenzoil-kloridom ili 4-fluor-2-klorbenzoil-kloridom, priređeni su aciklički prekursori **5** i **19**. Termičkom ciklizacijom priređena je smjesa cikličkih regioizomera **6a** i **6b** te **20a** i **20b** iz kojih su dobiveni 5-klor supstituirani tetraciklički derivati **9** i **10** te 2-fluor-5-klor supstituirani derivati **21** i **22**. Amino i diamino supstituirani regioizomeri **9-16** i **24-28** i **30** priređeni su nekataliziranom reakcijom aminacije potpomognutom mikrovalovima.

Strukture priređenih spojeva potvrđene su ¹H i ¹³C NMR spektroskopijom, a struktura regioizomera utvrđena je 2D NMR spektroskopskim tehnikama. Odabrani derivati **11**, **15**, **25** i **29** okarakterizirani su UV/Vis i fluorimetrijskom spektroskopijom.

Ključne riječi: imidazo[4,5-*b*]piridini, regioizomeri, 2D NMR spektroskopija, sinteza potpomognuta mikrovalovima

SUMMARY

SYNTHESIS AND SPECTROSCOPIC CHARACTERIZATION OF NOVEL AMINO-SUBSTITUTED TETRACYCLIC IMIDAZO[4,5-*b*]PYRIDINE DERIVATIVES

Within this work, the synthesis and spectroscopic characterization of novel aminosubstituted tetracyclic imidazo[4,5-*b*]pyridine derivatives was presented. According to previous research, imidazo[4,5-*b*]pyridine derivatives have a broad spectrum of biological activities and tetracyclic derivatives showed potent antitumour activity. For the synthesis of novel targeted compounds, classical organic synthesis reactions as well as microwave assisted synthesis were used.

Due to the condensation of imidazo[4,5-*b*]pyridine derivative with 2-chlorobenzoyl chloride or 4-fluoro-2-chlorobenzoyl chloride, acyclic precursors 5 and 19 were prepared. In reaction of termic cyclization, the mixture of cyclic regioisomers 6a and 6b or 20a and 20b was prepared. Furthermore, from 6a and 6b, or 20a and 20b, 5-chloro (7 and 8) and 2-fluoro-5-chloro- (21 and 22) substituted tetracyclic derivatives were obtained in the next step. Amino substituted 9 – 16 and diamino substituted 24 – 28 and 30 regioisomers were prepared by uncatalyzed microwave assisted amination.

Structures of newly prepared compounds were confirmed by means of ¹H and ¹³C NMR spectroscopy. Structure of regioisomers was determined by 2D NMR spectroscopy. Spectroscopic characterization of derivatives **11**, **15**, **25** and **29** was performed by using UV/Vis and fluorimetric spectroscopy in methanol.

Key words: imidazo[4,5-*b*]pyridines, regioisomers, 2D NMR spectroscopy, microwave assisted synthesis

Sadržaj

1.	UVOD	. 1
2.	OPĆI DIO	. 3
3.	EKSPERIMENTALNI DIO	33
	3.1. Opće napomene	34
	3. 2. Priprava amino supstituiranih tetracikličkih derivata imidazo[4,5- <i>b</i>]piridina	35
	3. 3. Priprava diamino supstituiranih tetracikličkih derivata imidazo[4,5- <i>b</i>]piridina	41
4.	RASPRAVA I REZULTATI	47
	4.1. Cilj rada	48
	4.2. Sinteza priređenih spojeva	49
	4.3. Spektroskopska karakterizacija UV/Vis i fluorimetrijskom spektroskopijom	65
	4.4. Fluorescencija u čvrstom stanju	67
5.	ZAKLJUČAK	68
6.	POPIS SIMBOLA	71
7.	LITERATURA	73
8.	PRILOZI	77
9.	ŽIVOTOPIS 1	01

Ovaj rad je izrađen na Zavodu za organsku kemiju Fakulteta kemijskog inženjerstva i tehnologije pod mentorstvom izv. prof. dr. sc. Marijane Hranjec i neposrednim voditeljstvom dr. sc. Nataše Perin u sklopu projekata Hrvatske nacionalne zaklade br. 5596 (Synthesis and cytostatic evaluations of novel nitrogen heterocycles library) i 3386 (Design and Synthesis of Novel Nitrogen-Containing Heterocyclic Fluorophores and Fluorescent Nanomaterials for pH and Metal- Ion Sensing).

1. UVOD

Imidazo[4,5-*b*]piridini su strukturni analozi prirodnih purinskih baza i ulaze u interakciju s važnim biomakromolekulama. Derivati imaju širok spektar biološkog djelovanja što potvrđuju činjenice da su pronašli primjenu u medicini, dok se mnogi još nalaze u kliničkim i pretkliničkim ispitivanjima. Intenzivno se istražuju novi derivati ove heterocikličke jezgre budući da je poznato da aktivnost spoja ovisi o funkcionalnim skupinama koje su supstituirane na heterocikličkoj jezgri jer, uz dušikove atome, ostvaruju interakcije s ciljanom metom. Imidazo[4,5-*b*]piridini pokazali su aktivnost prema tumorskim stanicama i bakterijama koje su razvile rezistenciju prema uobičajenim kemoterapeuticima. Osobit interes za derivate imidazo[4,5-*b*]piridina proizlazi iz činjenica da, kao male molekule, pokazuju inhibitornu aktivnost specifičnih enzima koji se povezuju karcinogenezom dok tetraciklički derivati antitumorsko djelovanje ostvaruju mehanizmom interkaliranja. Biološka aktivnost derivata imidazo[4,5-*b*]piridina nije u potpunosti istražena, kao ni mogući sintetski putevi.

2. OPĆI DIO

Rak je maligna bolest karakterizirana nekontroliranom, brzom i patološkom proliferacijom abnormalnih stanica.¹ Značajan napredak postignut je razvojem stanične i molekularne biologije. Rezultat je razvoj potencijalnih selektivnijih antitumorskih agensa koji uništavaju tumorske stanice uz što manje nuspojava.² Kemoterapija je efikasan tretman za čvrste tumore. Korištenjem tako agresivnih lijekova, osim tumorskih, stradavaju i normalne stanice, a antitumorski lijekovi bi trebali selektivno uništavati tumor bez oštećenja normalnih stanica. Spojevi koji sadrže heterocikličku jezgru imidazo[4,5-b]piridina smatraju se strukturnim analozima purina, te se istražuju zbog raznolike biološke aktivnosti i farmakoloških svojstava.³ Derivati imidazo[4,5-b]piridina dokazano su antagonisti različitih bioloških receptora poput angiotenzina II i trombocit-aktivirajućeg faktora, a dobro su poznata i antitumorska, antivirusna, antimikrobna svojstva. Supstituirani derivati pokazali su potencijalnu antitumorsku aktivnost, a mogli bi se koristiti i kao selektivni antihistaminici.⁴ Novija istraživanja ukazala su na potencijalnu upotrebu derivata imidazo[4,5-b]piridina kao inhibitora Aurora kinaza i cikličke nukleotidne fosfodiesteraze.⁵ Biološka aktivnost derivata imidazo[4,5-b]piridina nije u potpunosti istražena, kao ni mogući sintetski putevi. Uobičajena metoda sinteze tih spojeva je kondenzacija 2,3-diaminopiridina s karboksilnim kiselinama ili reakcija aldehida u prisutnosti oksidansa.⁶ Sinteza 3-supstituiranih-2-aril/heteroaril imidazo[4,5-b]piridina iz N-supstituiranih 2,3-diaminopiridina i karboksilnih kiselina u prisutnosti polifosforne kiseline provodi se na 150 °C ali rezultira slabim iskorištenjima i problematičnom izolacijom produkta. Zbog prepoznate biokemijske važnosti derivata imidazo[4,5-b]piridina, bilo je potrebno osmisliti i optimirati sintezu koja će efikasno generirati velik broj različito supstituiranih analoga. Upotreba paladijevih katalizatora postala je dobar izbor za stvaranje novih ugljik-ugljik veza reakcijama unakrsnog povezivanja.⁷ Korištenje mikrovalnog zračenja dalo je velik doprinos brzini i efikasnosti transformacija, pogotovo kod aril-aril Suzukijevih reakcija.⁸ Te činjenice potaknule su istraživački tim⁹ da modificira pristup sintezi 3-supstituiranih-2-aril/heteroaril-imidazo[4,5-b]piridina. Njihov cilj bio je razviti metodu za sintezu 3-supstituiranih-2-aril/heteroaril-imdiazo[4,5-b]piridina Suzukijevom reakcijom potpomognutom mikrovalovima između supstituiranih aril/heteroaril bornih kiselina i uobičajenih 3-supstituiranih-2-jod-3*H*-imidazo[4,5-*b*]piridinskih derivata. Metoda bi omogućila sintezu velikog broja analoga, čemu u prilog ide i veliki broj komercijalno dostupnih aril/heteroaril supstituiranih bornih kiselina. Intermedijer, čija je sinteza prikazana na shemi 1, dobiva se iz supstituiranog diaminopiridina u dva stupnja. Prvi korak je reakcija u mravljoj kiselini uz refluks preko noći, a drugi korak se provodi u THF-u uz t-BuLi na -78°C.

Shema 1. Sinteza intermedijera

Intermedijer reagira u Suzukijevoj reakciji s bornom kiselinom pod utjecajem mikrovalnog zračenja uz katalizator (A-taphos)₂PdCl₂. Većina reakcija je postigla potpunu konverziju u tim uvjetima nakon 30 minuta. Produkti su dobiveni u iskorištenjima većim od 85%. Optimiranje reakcije provedeno je na intermedijeru **3a** s bornom kiselinom **4** koja u svojoj strukturi sadrži 2-dimetilaminopiridin. Ispitan je velik broj katalizatora, baza, kombinacija otapala i temperaturnih raspona kako bi se odabrao optimalan sustav. Kod većine paladijevih katalizatora uočen je nusprodukt 2 koji ne sadrži atom joda. Kombinacije otapala DME/H₂O, DME/MeOH i DMF su ispitane za optimiranje modela. Rezultati, prikazani na shemi 2, su pokazali da je vrlo učinkovita kombinacija paladijevog katalizatora (A-taphos)₂PdCl₂ korištenog uz CsF kao bazu u smjesi DME/MeOH uz izlaganje reakcijske smjese mikrovalnom zračenju. Sljedeći korak bio je ispitati utjecaj baze na Suzukijevu reakciju između intermedijera 3a i borne kiseline 4 uz konstantne uvjete i parametre. Borna kiselina 4 očuvana je u visokom iskorištenju korištenjem baze CsF. Optimiranje se nastavilo ispitivanjem različitih katalizatora, anorganskih baza, kombinacija otapala i raspona temperatura. Najveća iskorištenja dobivena su korištenjem baze CsF. Veće temperature s kraćim vremenom provođenja reakcije uzrokovale su dekompoziciju intermedijera i nemogućnost izdvajanja diarilnog produkta.

Shema 2. Sinteza supstituiranih derivata imidazo [4,5-b] piridina

Mehanizam Suzukijeve reakcije uključuje oksidativnu adiciju i formiranje organopaladijevog kompleksa. Atom bora u bornoj kiselini stvara kompleks s bazom koja potpomaže polarizaciju organskog liganda. Reduktivnom eliminacijom nastaje konačni produkt. Mehanizam Suzukijeve reakcije prikazan je na shemi 3.

Shema 3. Mehanizam Suzukijeve reakcije

Dugotrajnim liječenjem dolazi do rezistencije tumorskih stanica što stvara novu prepreku u liječenju.¹⁰ Znanstvenici intenzivno istražuju nove sintetske molekule koje su aktivne na staničnim linijama koje pokazuju višestruku rezistenciju prema lijekovima. Nakon prethodno istražene citotoksičnosti sintetiziranih heterocikličkih analoga¹¹, znanstvenici su sintetizirali regioizomerne analoge s imidazo[4,5-*b*]piridinskom jezgrom te istražili njihovo djelovanje na stanične linije tumora.

Shema 4. Opća shema reakcije

U nastavku istraživanja A. M. Sajith i suradnici¹² sintetizirali su seriju od 40 spojeva koji sadrže imidazo[4,5-*b*]piridinsku jezgru i detaljno istražili odnos strukture i aktivnosti (SAR). Intermedijer je sintetiziran linearnom sintezom u nekoliko koraka koji obuhvaćaju aminiranje, redukciju amino skupine i zatvaranje imidazolnog prstena. Bromiranje na položaju 2 provodi se u dva koraka. Prvi korak je reakcija u prisutnosti *t*-BuLi u THFu na -78 °C a drugi adicija broma.

Shema 5. Sinteza intermedijera

Sinteza aril/heteroaril imidazo[4,5-*b*]piridina provodi se Suzukijevom reakcijom potpomognutom mikrovalnim zračenjem koja je optimirana u prethodnoj fazi istraživanja. Reakcija se odvija prema shemi 6 između različitih arilnih ili heteroarilnih bornih kiselina i intermedijera s bromom na položaju 2. Korišten je već ranije poznat paladijev katalizator i CsF kao baza.

Shema 6. Katalizirana sinteza ciljanih derivata

Spojevi **13** i **14** su odgovarajući derivati hidrazina dobiveni su reakcijom spoja **12** s otopinom hidrazina u etanolu. Derivat **20** dobiven je iz brom supstituiranog intermedijera reakcijom s 4cijanofenilbornom kiselinom. Nastao je cijano supstituirani intermedijer koji je tretiran s natrijevim azidom i trietilamin-kloridom u DMFu pri čemu je dobiven željeni spoj. Sinteza ključnih spojeva prikazana je na shemi 7.

Shema 7. Sinteza ključnih spojeva 13 - 20

Stanična linija MDA-MB-342 rezistentna je prema antitumorskom lijeku Taxolu stoga su znanstvenici željeli novim derivatima imidazo[4,5-*b*]piridina savladati rezistenciju prema lijekovima. Lipofilnost molekule ima ključnu ulogu u biološkoj aktivnosti. Mogućnost spoja da prođe kroz staničnu membranu jedan je od najvažnijih kriterija za njegovo djelovanje.

Slika 1. Općenita struktura s istaknutim supstituentima koji utječu na aktivnost molekule

Ispitan je odnos strukture i aktivnosti, osobito utjecaj supstituenata prikazanih na slici 1. Nesupstituirani arilni prsten na položaju 2 pokazao je minimalnu aktivnost, no supstitucija tog arilnog prstena dovela je do značajnog poboljšanja u aktivnosti. Elektron-donorski i elektronakceptorski supstituenti na položaju 2 arilnog prstena nemaju osobit utjecaj na aktivnost spoja. Supstitucija fluorom povećava lipofilnost spoja i omogućava lakši prolazak kroz membranu čime se povećava njegova učinkovitost. Mjesto supstitucije fluorom izuzetno je bitno jer su ostali regioizomeri pokazali smanjenu lipofilnost. Supstitucija dušika alkilnom skupinom nije uzrokovala osobite promjene. Ciklopentilni analozi općenito su aktivniji od cikloheksilnih i metilnih analoga. Istražen je utjecaj derivata karboksilnih kiselina na arilnom prstenu položaja 2. Supstitucija karboksilnom kiselinom pokazala je minimalnu aktivnost, no njen metilni ester i amid znatno su povećali citotoksičnost molekule. Razlika u aktivnosti tih spojeva može se objasniti slabom staničnom permeabilnosti za analoge karboksilnih kiselina. Dalje je ispitan utjecaj heteroarilnog prstena na položaju 2 imidazo[4,5-b]piridina. Supstitucija pirimidinom pokazala se najučinkovitijom. Zanimljivo je da su druga dva pirimidinska analoga potpuno neaktivna prema ispitivanoj staničnoj liniji. Ostali heteroarilni derivati pokazali su umjerenu aktivnost. Derivati imidazo[4,5-*b*]piridina koji su pokazali bolju citotoksičnu aktivnost na MDA-MB-231 staničnoj liniji u odnosu na Taxol, testirani su u humanim i mišjim mikrosomima. Analog 13 pokazao je dobru stabilnost te je dalje ispitan na staničnim linijama različitih tumora. Pokazao se učinkovit na svim staničnim linijma uključujući MES-SA/DX5 i HL60/TX1000 koje pokazuju rezistenciju na više lijekova. Obje navedene stanične linije imaju visoku razinu MDR1 mRNK i Pgps te pokazuju rezistenciju

širokom rasponu uobičajenih kemoterapeutskih agensa. Nagađa se da spoj **13** nije supstrat za transport efluks pumpom te da je njegov mehanizam djelovanja upravo zbog toga učinkovit kod staničnih linija s razvijenom rezistencijom. Ispitana je antiproliferativna aktivnost na MDA-MB-231 staničnoj liniji. Spojevi **12a**, **13** i **17** inhibirali su proliferaciju za 25%, 77,3% i 42% pri 10 mM. Taxol je korišten kao pozitivni kontrolni uzorak, a testirani spojevi pokazali su jači citotoksični učinak od standarda. Rezultati ispitivanja prikazani su na slici 2.

Slika 2. Biološki profil spojeva

Intenzivno se istražuje efikasna sintetska metodologija koja će omogućiti pristup novim bioaktivnim spojevima. U svojim istraživanjima, znanstvenici se sve više okreću reakcijama koje su katalizirane prijelaznim metalima za direktno ariliranje i heteroariliranje.¹³ Opisane su brojne metode za sintezu različito supstituiranih heterocikala koristeći najčešće vrlo skupe metale poput paladija, rodija i platine.¹⁴ Tim znanstvenika Daugulisa¹⁵ otkrio je bakrom kataliziranu reakciju unakrsnog povezivanja heteroarena i aril-jodida na visokoj temperaturi. Istraženo je oksidativno ariliranje azola i tiazola s aril-bornim kiselinama uz katalitičko djelovanje paladija i nikla.¹⁶ Različito supstituirani heterociklički spojevi imaju važnu biokemijsku ulogu u sadašnjosti i budućnosti farmaceutske industrije, stoga je nužno istražiti zelene i ekonomski prihvatljive metode njihove sinteze i aktivacije. Moderna medicinska kemija zahtijeva sintezu velikog broja spojeva koji sadrže potencijalno biološki aktivne jezgre koje su uklopljene u različite molekulske strukture. Među istaknutim heterocikličkim jezgrama nalazi se i imidazo[4,5-*b*]piridinska jezgra koja je već pokazala različite biološke aktivnosti. Strukture dvije takve molekule prikazane su na slici 3.

Slika 3. Istaknuti derivati imidazo[4,5-b]piridina koji su pokazali biološku aktivnost

Najvažnije metode formiranja C-C veza su reakcije unakrsnog povezivanja: Suzuki¹⁷, Kumada¹⁸ i Negishi.¹⁹ Uglavnom su katalizirane paladijem i uključuju aromatske halide ili pseudohalide koji reagiraju kao elektrofili s metaliranim arenima koji preuzimaju ulogu nukleofila. Atomi metala i halogena služe kao faktori za aktivaciju i ubrzanje reakcije. Budući da takve reakcije stvaraju mnogo nusprodukata i toksičnog otpada, nisu prihvatljive za okoliš. Mnogi znanstveni timovi istraživali su ekološki prihvatljivija rješenja. Znanstveni tim i suradnici okupljeni oko A. M. Sajitha istražili su primjenu Cu soli za reakcije formiranja novih C-C veza pod utjecajem mikrovalnog zračenja.²⁰ Shema 8 prikazuje opću shemu reakcije.

Shema 8. Sinteza ciljanih derivata

Upotreba mikrovalnog zračenja značajno je smanjila reakcijsko vrijeme i povećala iskorištenje.

Direktna funkcionalizacija heterocikličke jezgre značajan je pomak u sintezi izostera purina. Sintetizirani su regioizomeri C-2 supstituirani imidazo[4,5-*b*] i imidazo[4,5-*c*]piridina u dobrim iskorištenjima te su korišteni kao intermedijeri u reakcijama C-H aktivacije sa širokim rasponom aril/heteroaril/alkil supstituiranih bornih kiselina. Nakon loših rezultata uz puno početnih reaktanata korištenjem CuCl, ispitan je utjecaj otapala, baze, liganda i izvora bakra. Rezultati su pokazali da bi najbolje bilo koristiti Cu(OAc)₂ kao izvor bakra i Cs₂CO₃ kao bazu. Daljnjim optimiranjem reakcije pronađeno je otapalo za reakciju, smjesa DMFa i vode. Od liganada, batofenantrolin se istaknuo dajući najbolje rezultate pod utjecajem mikrovalnog zračenja. Nakon pronalaska optimalnih uvjeta, započela je sinteza željenih derivata s odabranom heterocikličkom jezgrom. Većina reakcija provedena je u visokom iskorištenju s različito supstituiranim bornim kiselinama. U većini slučajeva dobra iskorištenja su postignuta i u reakcijama s heteroarilnim analozima borne kiseline. Reakcije provedene s alkilnim analozima nisu dale zadovoljavajuće rezultate. Mehanizam CH ariliranja još nije u potpunosti istražen, no literatura je ponudila mogući katalitički ciklus koji je prikazan na shemi 9.²¹

Shema 9. Mehanizam C-H aktivacije

Direktna funkcionalizacija C-H veze omogućila bi formiranje veze između dva ugljikova atoma ili ugljika i heteroatoma bez prijašnje konverzije u organometalnu česticu. Takva sinteza se intenzivno istražuje i donosi velike iskorake u organskoj kemiji heterocikala.²² Dobro optimirana sinteza imala bi doprinos u medicinskoj kemiji jer bi omogućila lakši pristup C-2 alkiliranim 3*H*-imidazo[4,5-*b*]piridinskim derivatima, koji se koriste kao fluorescentne probe. Budući da su analozi prirodnih nukleotida, ugrađuju se u DNK ili RNK te se, zahvaljujući fluorescentnim svojstvima, koriste u strukturnim analizama nukleinskih kiselina.²³ U literaturi je opisana sinteza derivata imidazo[4,5-*b*]piridina na koje je uvedena stirilna skupina na položaj 2, no radi se o žestokim reakcijskim uvjetima i malim iskorištenjima.²⁴ Iako su Ratnam i suradnici²⁵ sintetizirali slične derivate iz različito supstituiranih benzaldehida uz veliki suvišak 2-metilimidazo[4,5-*b*]piridina u dobrim iskorištenjima, nije poznat sintetski put direktnog alkeniliranja u svrhu generiranja 2-vinilimidazo[4,5-*b*]piridina.

Dominguez i suradnici²⁶ uspješno su proveli direktno ariliranje na položaju 7 imidazo[4,5*b*]piridina katalizirano bakrom. Slične reakcije katalizirane paladijem i niklom opisala je Iaroshenkova znanstvena grupa.²⁷ S. Piguel i suradnici²⁸ proveli su direktnu funkcionalizaciju purina na C-8 položaju pomoću stiril bromida kataliziranu Pd/Cu. Nastavak istraživanja usmjerili su prema položaju C-2 imidazo[4,5-*b*]piridina kako bi razvili brzu i regioselektivnu metodu za sintezu novih fluorescentnih derivata.²⁹ Optimiranje sinteze teklo je prema shemi 10. Prvi korak bio je optimiranje zaštitne skupine na dušiku imidazolnog prstena, budući da reakcije s nezaštićenim 6-bromimidazo[4,5-*b*]piridinom nisu uspjele.

Shema 10. Optimiranje zaštitne skupine na dušiku imidazolnog prstena

Tetrahidropiranilna zaštitna skupina na položaju 3, kao i *p*-metoksi benzilna, omogućile su iskorištenja od 40-52% no benzilna zaštita dovela je do još boljih rezultata. Dobiven je *E*-stereoizomer 3-benzil-2-stirilimidazo[4,5-*b*]piridina **24** u 66% iskorištenju. Ispitana je važnost strukture liganda. Korištenjem Xphos, XantPhos ili terpiridina kao liganda, iskorištenja su značajno pala pa su znanstvenici ostali pri korištenju fenantrolina.

Otkrili su da je za najveća iskorištenja važan Pd:CuI omjer 1:2. U kontrolnom eksperimentu korišten je samo jedan katalizator što je rezultiralo produktom u tragovima. Klasičnom sintezom produkt je dobiven u iskorištenju od 8%. Pokušaj zamjene dioksana s manje polarnim otapalom rezultirao je slabijim iskorištenjima te su znanstvenici zaključili da su pronašli optimalne uvjete za sintezu koji su prikazani na shemi 11. Reakcijski uvjeti su primijenjeni za uspješnu sintezu derivata koji na fenilnoj jezgri sadrže različite funkcionalne skupine poput halida, acetala, etera i cijano skupine, što je osobito važno jer one podliježu daljnjim transformacijama. Reakcija je uspješna i s heteroaril-supstituiranim alkenima dok je pokušaj sinteza alkilnog supstituenta bio neuspješan.

Shema 11. Ispitivanje utjecaja supstituenata u optimalnim reakcijskim uvjetima

Prema shemi 12 ispitan je utjecaj supstituenata na heterocikličkoj jezgri. Reakcija s halogenim supstituentima na položajima 5, 6 i 7 imidazo[4,5-*b*]piridina uspješno je provedena. 6-arilni derivati također su kompatibilni s reakcijom kataliziranog direktnog akeniliranja potpomognutog mikrovalovima. Produkt s metoksi supstituiranom fenilnom jezgrom izoliran je u niskom iskorištenju dok elektron odvlačeća skupina nije imala utjecaj na ishod reakcija u slučaju fluor-cijano supstituiranog derivata.

Shema 12. Ispitivanje utjecaja supstituenata na piridinskoj jezgri

Nova saznanja primijenjena su za sintezu dvije nove molekule u kombinaciji sa Suzukijevom reakcijom radi supstitucije imidazo[4,5-*b*]piridinske jezgre. Fotofizikalna svojstva ispitana su novim spojevima i njihovim prekursorima koji su prikazani na slici 4.

Slika 4. Strukture spojeva

Derivati **39** i **41** apsorbiraju u bliskom UV području te ne pokazuju značajan solvatokromizam. Fluorescencijska spektroskopija otkrila je izražen solvatokromizam s emisijskim maksimumima od 459 nm u cikloheksanu do 654 nm u acetonitrilu za derivat **39**. Rezultati spektroskopskih ispitivanja prikazani su na slici 5.

Slika 5. UV/Vis i fluorimetrijska spektroskopska karakterizacija

Oba novosintetizirana derivata pokazuju približno jednake Stokesove pomake što je zanimljivo s obzirom na činjenicu da etenilne derivate uobičajeno karakterizira značajno veći pomak. Fluorescentna kvantna iskorištenja su visoka u toluenu i cikloheksanu (φ =60-66%) ali se smanjuju u polarnim otapalima.

Spoj **25m** ne sadrži elektron donorski supstituent što je mogući razlog neovisnosti emisijskog spektra o otapalu s malim Stokesovim pomacima. Utjecaj donorskih i akceptorskih skupina u osnovnom i pobuđenom stanju uočen je iz promjene apsorpcijskih i emisijskih spektroskopskih karakteristika nakon protoniranja s TFA. Protoniranje uzrokuje gašenje fluorescencije kod oba spoja, što je prikazano na slici 6.

Slika 6. UV/Vis i fluorimetrijski praćeno protoniranje derivata 39 i 41

Iz provedenih istraživanja, znanstvenici su zaključili da je optimirana sinteza učinkovita za sintezu novih molekula koje imaju potencijalnu primjenu kao fluorescentne probe zbog visokih fluorescencijskih kvantnih iskorištenja i zapanjujućih solvatokromnih svojstava.

Problem rezistencije ne javlja se isključivo kod tumorskih stanica, već je u porastu rezistencija Gram pozitivnih i Gram negativnih bakterija na više terapeutika. Znanstvenici intenzivno istražuju nove antimikrobne lijekove koji će savladati rezistenciju. Dušikovi heterocikli imaju širok raspon biološke aktivnosti, a posebno se ističu derivati koji sadrže imidazolnu i benzimidazolnu jezgru s obzirom na činjenicu da su mnogi već pronašli primjenu u medicini.³⁰ Aktivnost spoja ovisi o funkcionalnim skupinama koje su supstituirane na heterocikličkoj jezgri jer one, uz dušikove atome, ostvaruju interakcije s ciljanom metom. Velik problem u razvoju antifungalnih lijekova, osim brzog razvoja rezistencije, predstavlja biokemijska sličnost s humanim stanicama što dovodi do slabe selektivnosti. Imidazolni antifungalni lijekovi poput klotrimazola, mikonazola i ketokonazola pokazuju dobru optičku aktivnost, ali su ograničene upotrebe zbog lokalne primjene, slabe bioraspoloživosti i velikih doza koje bi trebalo oralno unositi. Triazolni derivati flukonazol i itrakonazol pokazali su širok spektar antifungalne aktivnosti i smanjenu toksičnost u odnosu na imidazolne derivate.³¹ Metronidazol i N-1 supstituirani 5-nitroimidazoli poput ornidazola, sekidazola i tinidazola koriste se u liječenju bolesti koje uzrokuju protozoe i anaerobne bakterije.³² Iz navedenih razloga, grupa indijskih znanstvenika³³ sintetizirala je seriju 6-brom-2-supstituiranih fenil-1*H*imidazo[4,5-b]piridina prema shemi 13 te ispitala biološku aktivnost. Sintetizirane spojeve testirali su na četiri bakterijska i dva fungalna soja, a antioksidativna aktivnost ispitana je pomoću dvije različite metode.

Shema 13. Sinteza ciljanih derivata 44a-j

Antibakterijska aktivnost testirana je na dva soja Gram pozitivnih bakterija (*S. aureus* i *B. subtilis*) te dva soja Gram negativnih bakterija (*P. vulgaris* i *K. pneumoniae*). Testirane koncentracije spojeva su 100 i 200 μ M, a kao standard je korišten lijek kloramfenikol. Antifungalna aktivnost testirana je na sojevima *A. niger* i *P. chrysogenium* uz flukonazol kao standard. Svi spojevi pokazali su izvrsnu antibakterijsku aktivnost protiv Gram pozitivnih i Gram negativnih bakterija i gljivičnih sojeva u odnosu na korištene standarde. Antioksidativna svojstva testirana su DPPH metodom uz E vitamin kao standard, i metodom hvatača dušikova oksida uz standard kurkumin. Istaknuli su se spojevi **44a** i **44f** s vrlo dobrom, a spoj **44c** s potencijalno dobrom antioksidativnom aktivnosti. Najbolju antioksidativnu aktivnost pokazao je derivat **44h**.

Kinaze ovisne o ciklinu (CDK) su regulatori staničnog ciklusa i transkripcije. Kompleks ciklin D-CDK4/6 i ciklin E-CDK2 potpomaže prijelaz iz G1 u S fazu uzastopnom fosforilacijom proteina retinoblastoma, dok su ciklin ACDK1/2 i ciklin B-CDK1 nužni za napredovanje S faze i G2-M prijelaz.³⁴ Kinaze ovisne o ciklinu kontroliraju stanični ciklus sisavaca i dugo vremena su se smatrale ključnim za normalnu proliferaciju, razvoj i homeostazu. Ciklin H-CDK7 i ciklin T1-CDK9 sudjeluju u regulaciji transkripcije preko fosforilacije C terminalnog kraja RNK polimeraze II.³⁵ Transkripcija RNK polimeraze II je striktno regulirana i uključuje slijed događaja kojim dolazi do fosforilacije C terminalne domene. Fosforiliranje serina određenih CDK je stimulans za inicijaciju i elongaciju sinteze mRNK pomoću RNAP-II transkripcijskog kompleksa. Promjene u regulaciji različitih spojeva koji kontroliraju stanični ciklus igraju ključnu ulogu u stvaranju tumorskih stanica. Ta činjenica pokrenula je razvoj malih molekula inhibitora CDK kao antitumorskih agensa. Na temelju dosadašnjih istraživanja, nagađa se kako bi meta novih djelotvornih antitumorskih agensa mogla biti transkripcijska CDK, osobito CDK9 ili kombinacija CDK kinaza koje reguliraju stanični ciklus i transkripcijskih CDK. Upravo takav učinak ima prvi inhibitor CDK, flavopiridol, koji se koristi za liječenje kronične limfocitne leukemije.³⁶ Flavopiridol inhibira više vrsta kinaza ovisnih o ciklinu, a osobito transkripcijske CDK (ciklinT-CDK9) što dovodi do nepravilne regulacije transkripcije antiapoptotičkih proteina u stanicama kronične limfocitne leukemije.³⁷ Trenutno postoji nekoliko inhibitora CDK koji su kandidati za pretklinička i klinička ispitivanja za antitumorsku terapiju.³⁸ Dobri rezultati nadahnuli su Lukasika³⁹ i suradnike na sintezu serije N-fenil-imidazo[4,5-b]piridin-2-amina, 4-(1supstituiranih-1H-indazol-3-il)-*N*-fenilpiridin-2-amina i 4-pirazolo-[3,4-b]piridinil-N-

fenilpirimidin-2-amina kako bi istražili ovisnost strukture i aktivnosti i biološku karakterizaciju navedenih spojeva kao novih inhibitora kinaza ovisnih o ciklinu.

Slika 7. Strukture sintetiziranih spojeva

Antiproliferativna aktivnost sintetiziranih spojeva, čije su strukture prikazane na slici 7, ispitana je na HCT-116 stanicama kolorektalnog karcinoma i MCF-7 stanica raka dojke. Derivati N-fenil-imidazo[4,5-b]piridin-2-amina pokazali su slabu aktivnost (GI₅₀>40 µM), osim nitro supstituiranog analoga koji je pokazao pojačanu aktivnost protiv stanica MCF-7 raka dojke (GI₅₀=24,24 µM). Klasa 4-indazol-3-il-N-fenil-pirimidin-2-amina pokazala je sveukupno bolju aktivnost (GI₅₀<10 μ M). Spojevi koji su *m*-OH supstituirani anilini pokazali značajno lošiju aktivnost. U svrhu ispitivanja odnosa strukture i aktivnosti, najpotentnijim spojevima koji su supstituirani s m-NO2, m-SO2NH2 i p-SO2NH2, uvedena je anilinska skupina, a R₁ supstituent bio je metil. Zamjenom metilnog supstituenta s većim skupinama nije se povećala aktivnost. Spojevi 47a i 47b pokazali su se kao obećavajući citotoksični agensi na HCT-116 tumorskim stanicama s vrijednostima GI₅₀=0,59 µM odnosno GI₅₀=0,75 µM. Prema rezultatima ispitivanja, stanice raka dojke rezistentne su prema ovim spojevima. Zamjenom indazola s pirazolo[4,5-b]piridinskim prstenom dobiveni su spojevi 48a-f. Spojevi koji sadrže benzensulfonamide u para položaju anilina pokazali su bolje rezultate od analoga koji tu skupinu imaju u meta položaju. Zbog obećavajućih rezultata antiproliferativne aktivnosti za ispitivanje inhibitorne aktivnosti CDK odabrani su spojevi 46i-l, 46r-u i 47a,b. Svi su pokazali dobru inhibiciju CDK9 s K_i u rasponu 0,0017-0,30 µM osim spoja 46u koji se pokazao kao najselektivniji inhibitor CDK9. Spoj 47a nije pokazao zadovoljavajuću inhibitornu aktivnost CDK7 i sveukupno je najmanje selektivan od ispitivanih spojeva jer su mu meta sva tri ispitivana oblika CDK. Budući da je spoj 47b pokazao najbolju inhibitornu aktivnost CDK9, proučen je njegov mehanizam djelovanja u stanici. Dokazano je da je njegova citotoksičnost rezultat aktivacije kaspaze 3/7 i indukcija apoptoze u stanicama kolorektalnog raka.

Aurora proteini A, B i C su serin treonin kinaze koje imaju ključnu ulogu u regulaciji mitoze i povezane su s inicijacijom i progresijom raka.⁴⁰ Aurora-A i –B kinaze nalaze se u prekomjernom broju u raznim tumorima uključujući rak dojke, jajnika i testisa te kolorektalni rak i gliom.⁴¹ Aurora-A kinaza uključena je u inicijaciju mitoze poticanjem sazrijevanja centrosoma i stvaranjem diobenog vretena. Inhibicijom Aurora-A kinaze došlo bi do stvaranja nefunkcionalnog diobenog vretena, a stanica ne bi prešla iz G2 faze u M što bi rezultiralo zaustavljanjem mitoze.⁴² Iz navedenih razloga istraživanja novih antitumorskih lijekova usmjerena su prema inhibitorima Aurora kinaza. U literaturi su poznati strukturno različiti inhibitori Aurora kinaza s antitumorskom aktivnosti, a najčešće uključuju heterocikličke jezgre poput kinazolina i tetrahidropirolo[3,4-*c*]pirazola. V. Bavetsias i suradnici⁴³ istražili su inhibitornu aktivnost novih derivata imidazo[4,5-*b*]piridina. Glavni pristup temeljen je na visokoprobirnom pretraživanju spojeva u bazi na aktivnost rekombinantne humane Aurora-A kinaze.⁴⁴

Paralelno s tim pristupom, pokrenut je program razvoja malih molekula piperazinilkinazolina **50** sintetiziranih S_NAr reakcijama supstitucije na 4-klor-6,7-dimetoksikinazolinu **49** prema reakciji na shemi 14.

Shema 14. Sinteza malih molekula piperazinilkinazolina

Derivati iz navedene serije pokazali su inhibitornu aktivnost protiv Aurora-A kinaze. Rezultati visokoprobirnog pretraživanja pokazali su da derivat imdazo[4,5-*b*]piridina **51** inhibira Aurora-A kinazu na što ukazuje IC₅₀ vrijednosti od 0,57 μ M. Drugi analog **52** nije supstituiran u položaju 6 i pokazao je znatno slabiju inhibitornu aktivnost (IC₅₀=4,3 μ M). Taj podatak bio je početak istraživanja odnosa strukture i aktivnosti, a upućuje na veliku važnost mjesta supstitucije.

51 X=CI 52 X=H

Slika 8. Derivati imidazo[4,5-b]piridina koji su pokazali inhibitornu aktivnost prema Aurora-A kinazi

Većina spojeva sintetizirana je reakcijom oksidativne kondenzacije 2,3-diaminopiridina s aldehidima u nitrobenzenu, prema shemi 15. Alternativna metoda je reakcija 2,3-diaminopiridina s benzojevom kiselinom u POCl₃.

Shema 15. Sinteza novih derivata

Istražena je važnost atoma dušika na položajima 3 i 4 za inhibiciju enzima, a potom je fokus istraživanja usmjeren prema 2-arilnoj skupini. Prvo je ispitan utjecaj supstitucije na položajima 6 i 7 zasebno, a potom utjecaj njihove kombinacije. Cilj je bio detaljno ispitati odnos strukture i aktivnosti. Važnost piridinskog i imidazolnog dušika ispitana je na derivatima 55, 56 i 57 te je inhibitorna aktivnost uspoređena s već ranije otkrivenim derivatom 52. Rezultati su prikazani u tablici 1. Spoj 55 sadrži imidazo[4,5-*c*]piridinsku jezgru i pokazao je malo slabiju inhibitornu aktivnost. Spojevi 56 i 57 imaju znatno slabiju inhibitornu aktivnost ji imidazolnog dušika za vezanje na enzim Aurora-A jer se preko njih ostvaruju vodikove veze.

Tablica 1. Utjecaj imidazolnog i piridinskog dušika na inhibitornu aktivnost

Spoj	Struktura	Aurora-A IC ₅₀ (µM)			
52		4,3			
55		12,5, 35% na 10 µM			

56	8% na 100 µM
57	26% na 100 μM

Na početku istraživanja odnosa strukture i aktivnosti uočena je važnost supstituenta na položaju 6. Sintetizirano je 9 novih spojeva kako bi se pronašao supstituent koji najviše doprinosi inhibitornoj aktivnosti. Arilni derivati **58** – **66** dobiveni su Suzukijevim reakcijama unakrsnog povezivanja. Iako se reakcija može provesti u konvencionalnim uvjetima, sinteza potpomognuta mikrovalovima skraćuje vrijeme trajanja reakcije na 6 minuta u odnosu na raspon od 25 minuta do 7 sati konvencionalne sinteze. Rezultati ispitivanja inhibitorne aktivnosti sintetiziranih spojeva prikazani su u tablici 2. Zamjenom 6-Cl s Br i CF₃ zadržana je inhibitorna aktivnost, što nije bio slučaj s uvođenjem metilne skupine. 6-arilnom supstitucijom nije postignuta bolja aktivnost iz čega se zaključuje da je limitirana interakcija između enzima i spoja u položaju 6.

Spoj	X	Aurora-A IC50 (µM)					
51	Cl	0,57					
52	Н	4,3					
58	Br	0,49					
59	CF ₃	0,74					
60	Me	6,9					
61	Jr.	20					
62	J. J.	33% na 100 µM					
63	HO	18, 31% na 10 µM					

Tablica 2.	Utjecaj	supstitucije	na položaju	6 na	inhibitornu	aktivnost
------------	---------	--------------	-------------	------	-------------	-----------

64		9
65	N N N	28% na 10 μM
66	J'i	34% na 10 µM

Istražen je utjecaj položaja supstitucije na arilnom supstituentu, čiji su rezultati prikazani u tablici 3. Supstitucija s –NMe₂ daje najbolju inhibitornu aktivnost u *para* položaju, *meta* položaj također pokazuje zadovoljavajuću aktivnost dok *ortho* položaj nije poželjan. Sličan trend primijećen je kod supstitucije s –OMe. Dobru aktivnost pokazali su spojevi kod kojih je arilni supstituent u *para* položaju supstituiran s pirolidinskom i piridinskom skupinom.

Spoj	X	Aurora-A IC50 (µM)						
52	<i>p</i> -NMe ₂	4,3						
67	<i>m</i> - NMe ₂	10,0						
68	<i>o</i> - NMe ₂	20% na 10 µM						
69	<i>p</i> -OMe	6,6						
70	<i>m</i> -OMe	16						
71	o-OMe	29						
72	<i>p</i> -pirolidin-2-il	4,6						
73	<i>p</i> -piridin-2-il	4,4						
74	<i>p</i> -CN	38% na 10 µM						

Tablica 3. Utjecaj supstitucije arilnog supstituenta na inhibitornu aktivnost

Proučavanjem rezultata iz baze podataka, znanstvenici su odlučili sintetizirati nove piperanizil imidazo[4,5-*b*]piridinske derivate radi dodatnog poboljšanja aktivnosti. Uvedena je (piperazin-1-il)-*N*-(tiazol-2-il)acetamidna skupina. Sinteza spoja **80** prikazana je na shemi 16.

Shema 16. Sinteza novog derivata 80

Rezultati ispitivanja inhibitorne aktivnosti novih derivata prikazani su u tablici 4. Budući da je spoj **80** pokazao izuzetno dobru inhibitornu aktivnost, znanstvenici su iskoristili saznanja koja su stekli istraživanjem odnosa strukture i aktivnosti te su sintetizirali spoj **81** uvođenjem klora u položaj 6.

Spoj	Х	Y	Aurora-A IC_{50} (μ M)					
51	Cl	Н	0,57					
52 H		Н	4,3					
75	Cl	Cl	0,25					
76 H		Me	7					
77 H		Cl	2,4					
80 H			0,87					

Tablica 4. Utjecaj supstitucije heterocikličke jezgre na inhibitornu aktivnost

Ostvarili su veliki uspjeh jer su istraživanjem odnosa strukture i aktivnosti pronašli put do spoja s izuzetnom inhibitornom aktivnosti enzima Aurora-A čija IC_{50} vrijednost iznosi 0,042 μ M.

Slika 9. Rezultati ispitivanja odnosa strukture i aktivnosti

Spoj **81** testiran je *in vitro* korištenjem pročišćenih rekombinatornih proteina te je pokazao inhibiciju Aurora-B i Aurora-C kinaza s IC₅₀ vrijednostima 0,198 μ M i 0,227 μ M što ukazuje na određenu selektivnost prema inhibiciji Aurora-A kinaze. Inhibirao je rast stanične linije kolorektalnog raka HCT116 i rast Hela stanica. Pokazao je dobru metaboličku stabilnost i relativno slabu inhibitornu aktivnost prema citokromu P450 *in vitro*. Struktura spoja **81** poslužila je kao okosnica za daljnja istraživanja i optimizaciju.

Znanstvenici intenzivno istražuju male molekule kao potencijalne inhibitore Aurora kinaza jer postoji mogućnost njihove primjene u liječenju čvrstih tumora i hematoloških malignih oboljenja uključujući akutnu mijeloičnu leukemiju.⁴⁵ V. Bavetsias sa svojim znanstvenim timom otkrio je novi oralno bioraspoloživ inhibitor Aurora kinaze koji inhibira rast SW620 stanične linije humanog kolorektalnog karcinoma, čiji je pretklinički razvoj bio ograničen uskim okvirima sigurnosti protiv hERG i niskom stabilnošću u mikrosomima humane jetre.⁴⁶ Potaknut tim neuspjehom, znanstveni tim⁴⁷ nastavio je istraživanje u svrhu

pronalaska oralno bioraspoloživog dualnog inhibitora FLT3/Aurora kinaze s većom metaboličkom stabilnosti i širim terapeutskim indeksom protiv hERG.

Shema 17. Sinteza novih spojeva

Ciljani spojevi **84 a-e** sintetizirani iz prekursora kondenzacijom s odgovarajućim benzaldehidima uz prisutnost $Na_2S_2O_4$ prema shemi 17. Na isti način, kondenzacijom prekursora s odgovarajućim benzaldehidom ili aldehidom, sintetizirani su spojevi **85 a-f**, **86 a-i** i **87 a-e** čije strukture su prikazane u tablici 5.

Tablica 5. Strukture sintetiziranih spojeva

$R_1 \xrightarrow{N}_{N} R_2$									
Spoj	R ₁	R ₂	Spoj	R ₁	R ₂	Spoj	R ₁	R ₂	
85a	Cl	-S-C-N-N-	86a	Br	N N N N	87a	C1	S N N	
85b	Cl	F	86b	Cl	N N N N	87b	Cl	S N	
85c	Cl		86c	Cl	3	87c	Cl	S N F N F	

			86d	Br	O Ar	87d	Cl	× × ×
85d	Cl	5 / N	86e	Cl		87e	Cl	N-H
		5	86f	Br	N=N S			
85e	Cl	-S-C-N-O	86g	Cl	ST N			
85f	Cl		86h	Cl	N-N 25			
		- <u></u> }	86i	Cl	N N			

Istraživanjem odnosa strukture i aktivnosti modificiran je supstituent R₃, odnosno sintetiziran je spoj **88**, čija je struktura prikazana na slici 10. Karakterizira ga oralna bioraspoloživost i dvostruka inhibicija FLT3/Aurora kinaze s visokom selektivnosti prema testiranom kinomu. Spoj **88** inhibira mutiranu FLT3 kinazu, uključujući FTL3-ITD, koja uzrokuje aktivaciju FTL3 kinaze i primijećena je kod 20-35% odraslih i 15% djece koja boluju od akutne mijeloične leukemije. Testiranja *in vivo* pokazala su da **88** značajno inhibira rast FLT3-ITD pozitivnog AML ljudskog tumorskog ksenografta s modulacijom biomarkera kad je lijek slobodno izložen u plazmi s dvostrukom inhibicijom FTL3 i Aurora kinaze.

Slika 10. Struktura spoja 88

Na temelju provedenih istraživanja i dokazanih rezultata, **88** odabran je za kandidata za pretklinički razvoj kao potencijalni terapeutik humanih malignih bolesti s naglaskom na liječenje akutne mijeloične leukemije kod odraslih i djece kod kojih se razvila rezistencija na ostale terapije.

Imidazo[4,5-*b*]piridini su strukturni analozi purina čiji derivati lako ulaze u interakciju s velikim biomolekulama poput DNK, RNK i različitim proteinima in vivo. Navedene biomolekule predstavljaju glavne mete u strateškom razvoju novih generacija terapeutika za neizlječive bolesti poput raka. Uvid u interakcije malih molekula s DNK temelj je racionalnog razvoja lijekova i novih, selektivnijih protutumorskih agensa.^{48,49} Znanstveni tim M. Hranjec sintetizirao je seriju amidino-supstituiranih heterocikličkih derivata benzimidazola, benzimidazo[1,2-a]kinolina i diaza-ciklopenta[c]fluorena te istražio njihovu biološku aktivnost.^{50,51} Nakon provedene citostatske procjene, interakcija s DNK/RNK i proteomskog profiliranja, potvrđeno je potencijalno protutumorsko djelovanje sintetiziranih spojeva te su nastavljena *in vivo* testiranja zbog potencijalne kliničke primjene. Isto istraživanje je pokazalo da su imidazolinil-supstituirani benzimidazo[1,2-a]kinolini najaktivniji, s izraženom selektivnosti prema stanicama raka debelog crijeva. Neki pozitivno nabijeni derivati benzimidazo[1,2-a]kinolina i diaza-ciklopenta[c]flourena interkaliraju u DNK ili RNK, što je mogući uzrok njihovog antiproliferativnog djelovanja. Zbog navedenih rezultata, ista grupa znanstvenika⁵² odlučila se na istraživanje i sintezu novih derivata imidazo[4,5-*b*]piridina i triaza-benzo[c]fluorena supstituiranih na različitim položajima heterocikličke jezgre čija je struktura prikazana na slici 11.

1.

100 R1=H, R2=H, X=CH, Y=H

103 R₁=H, R₂=H, X=N, Y=H

101 R1=H, R2=NO2, X=CH, Y=H

102 R1=H, R2=NO2, X=CH, Y=Br

106 R1=H, R2=NH2, X=CH, Y=H

107 R_1 =H, R_2 =NH₂, X=CH, Y=Br **108** R_1 =H, R_2 =NH₃⁺Cl⁻, X=CH, Y=H **109** R_1 =H, R_2 =NH₃⁺Cl⁻, X=CH, Y=Br **114** R_1 =CN, R_2 =H, X=CH, Y=H **115** R_1 =CN, R_2 =H, X=CH, Y=Br

116 R₁=2-imidazolinil, R₂=H, X=CH, Y=H

 $\begin{array}{l} \textbf{95} \; \textbf{R}_1 \!\!=\!\! \textbf{H}, \; \textbf{R}_2 \!\!=\!\! \textbf{H}, \; \textbf{R}_3 \!\!=\!\! \textbf{H}, \; \textbf{X} \!\!=\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{H} \\ \textbf{96} \; \textbf{R}_1 \!\!=\!\! \textbf{CI}, \; \textbf{R}_2 \!\!=\!\! \textbf{H}, \; \textbf{R}_3 \!\!=\!\! \textbf{H}, \; \textbf{X} \!\!=\!\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{H} \\ \textbf{97} \; \textbf{R}_1 \!\!=\!\! \textbf{CI}, \; \textbf{R}_2 \!\!=\!\! \textbf{H}, \; \textbf{R}_3 \!\!=\!\! \textbf{NO}_2, \; \textbf{X} \!\!=\!\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{H} \\ \textbf{98} \; \textbf{R}_1 \!\!=\!\! \textbf{CI}, \; \textbf{R}_2 \!\!=\!\! \textbf{H}, \; \textbf{R}_3 \!\!=\!\! \textbf{NO}_2, \; \textbf{X} \!\!=\!\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{H} \\ \textbf{98} \; \textbf{R}_1 \!\!=\!\! \textbf{CI}, \; \textbf{R}_2 \!\!=\!\! \textbf{H}, \; \textbf{R}_3 \!\!=\!\! \textbf{NO}_2, \; \textbf{X} \!\!=\!\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{B} \\ \textbf{99} \; \textbf{R}_1 \!\!=\!\! \textbf{CI}, \; \textbf{R}_2 \!\!=\!\! \textbf{H}, \; \textbf{R}_3 \!\!=\!\! \textbf{H}, \; \textbf{X} \!\!=\!\! \textbf{N}, \; \textbf{Y} \!\!=\!\! \textbf{H} \\ \textbf{112} \; \textbf{R}_1 \!\!=\!\! \textbf{H}, \; \textbf{R}_2 \!\!=\!\! \textbf{CN}, \; \textbf{R}_3 \!\!=\!\! \textbf{H}, \; \textbf{X} \!\!=\!\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{H} \\ \textbf{113} \; \textbf{R}_1 \!\!=\!\! \textbf{H}, \; \textbf{R}_2 \!\!=\!\! \textbf{CN}, \; \textbf{R}_3 \!\!=\!\! \textbf{H}, \; \textbf{X} \!\!=\!\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{B} \\ \textbf{113} \; \textbf{R}_1 \!\!=\!\! \textbf{H}, \; \textbf{R}_2 \!\!=\!\! \textbf{CN}, \; \textbf{R}_3 \!\!=\!\! \textbf{H}, \; \textbf{X} \!\!=\!\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{B} \\ \textbf{H} \\ \textbf{113} \; \textbf{R}_1 \!\!=\!\! \textbf{R}, \; \textbf{R}_2 \!\!=\!\! \textbf{CN}, \; \textbf{R}_3 \!\!=\!\! \textbf{H}, \; \textbf{X} \!\!=\!\! \textbf{CH}, \; \textbf{Y} \!\!=\!\! \textbf{B} \\ \textbf{R} \\ \textbf{R} \!\!=\!\! \textbf{R} \!\!=\!\! \textbf{R} \!\!=\!\! \textbf{R} \!\!=\!\! \textbf{R} \!\!=\!\! \textbf{R} \\ \textbf{R} \!\!=\!\! \textbf{R} \!\!=\!\! \textbf{R} \!\!=\!\! \textbf{R} \\ \textbf{R} \!\!=\!\! \textbf{R} \!\!=\!\!$

104 R₁=H, R₂=H **105** R₁=H, R₂=NO₂

117 R₁=2-imidazolinil, R₂=H, X=CH, Y=Br

Slika 11. Strukture sintetiziranih spojeva
Testirana je antiproliferativna aktivnost većine sintetiziranih spojeva na sedam staničnih linija humanih karcinoma. Mogući antiproliferativni mehanizam i mete djelovanja detaljno su istražene za spojeve **106** i **116** dok su vezna mjesta na DNK proučavani za spojeve **104**, **106** i **116**. Spojevi su sintetizirani konvencionalnim metodama organske sinteze kojim se pripravljaju slični heterociklički spojevi prema shemi 18. Iz *E*-3-fenilsupstituiranih akrilnih kiselina, reakcijom ciklokondenzacije s odgovarajuće supstituiranim 2,3-diaminopiridinima uz prisutnost polifosforne kiseline sintetizirani su derivati *E*-2-stiril-imidazo[4,5-*b*]piridina **95-99**. Njihovi ciklički derivati, triaza-benzo[*c*]fluoreni **100-103**, priređeni su termičkim reakcijama koristeći sulfolane za cikličku dehidrohalogenaciju pri 280 °C pri čemu su dobivene smjese dva nerazdvojiva regioizomera. Nesupstituirani derivat **100** pripravljen je fotokemijskom dehidrociklizacijom iz etanolne otopine derivata **95**. *N*-metilirani derivati **104** i **105** priređeni su iz spojeva **100** i **101**, dok metiliranje derivata triaza-benzo[*c*]fluorena nije uspješno provedeno.

Shema 18. Sinteza ciljanih derivata

Amino supstituirani triaza-benzo[c]derivati **106** i **107** pripremljeni su, prema shemi 4, redukcijom s SnCl₂x2H₂O iz nitro supstituiranih prekursora u vrlo dobrim iskorištenjima.

Hidrokloridne soli amino derivata dobivene su protoniranjem s HCl_(g) radi postizanja bolje topljivosti spojeva.

Shema 19. Sinteza cikličkih derivata

Cijano-supstituirani E-2-stiril-imidazo[4,5-b]piridini **112-113** priređeni su u vrlo dobrim iskorištenjima reakcijama kondenzacije između odgovarajućih 2-metilimidazo[4,5-b]piridina i p-cijanobenzaldehida u zatvorenim cijevima pri 180 °C prema shemi 20. Cijano-supstituirani triaza-benzo[c]fluoreni **114-115** priređeni su fotokemijski izlaganjem etanolnih otopina spojeva **102-103** isijavanju visokotlačne živine lampe. Reakcije su praćene UV/Vis spektroskopijom. 2-imidazolinil-supstituirani triaza-benzo[c]fluoreni kao hidrokloridne soli pripravljeni su Pinnerovom reakcijom sinteze amidina.

Shema 20. Sinteza imidazolinskih derivata

Za istraživanje interakcija s DNK, odabrani su aktivni spojevi **104**, **106** i **116**. Navedeni spojevi okarakterizirani su elektronskom apsorpcijskom (UV/Vis) i fluorescencijskom emisijskom spektroskopijom. Ispitivanja su pokazala da povišenje temperature na 98 °C ima neznatan utjecaj na spektroskopska svojstva te da je reproducibilnost nakon hlađenja na 25 °C očuvana. UV/Vis spektrofotometrijskim titracijama praćene su interakcije spojeva s *ct*-DNK u vodenom mediju. Dodatak *ct*-DNK rezultirao je batokromnim i hipokromnim efektom u UV/Vis spektru. Za spojeve **104** i **116** uočeno je značajno odstupanje od izosbestičke točke što upućuje na postojanje barem dva različita kompleksa. Fluorimetrijske titracije pokazale su da dodatkom *ct*-DNK dolazi do potpunog gašenja fluorescencije spoja **116**, što je prikazano na slici 12, i jakog gašenja fluorescencije spoja **104** u odnosu na fluorescenciju spoja **106** čija se emisija neznatno promijenila. Podaci iz UV/Vis i fluorimetrijskih titracija obrađeni su pomoću Schathardove jednadžbe iz kojih su dobivene vrijednosti konstanti stabilnosti *Ks*. Usporedbom *Ks* vrijednosti dokazan je veći afinitet spojeva **106** i **116** prema *ct*-DNK u odnosu na analog **104** sa slobodnim aminskim supstituentom.

Slika 12. Emisijske krivulje ispitivanja spoja **106** s ct-DNK (A), ovisnost intenziteta emisije na 446 nm o koncentraciji ct-DNK

Iz rezultata CD spektrofotometrijskih titracija zaključeno je da se spojevi 104 i 116 u interakciji s *ct*-DNK ponašaju kao interkalatori jer je uočena negativna ICD vrpca u području karakterističnom za interkalatore. Novim sintetiziranim derivatima imidazo[4,5-b]piridina i triaza-benzo[c]flourena ispitana je antitumorska aktivnost na sedam staničnih linija humanih karcinoma: HeLa grlića maternice), SW620 (metastatski kolorektalni (karcinom adenokarcinom), MiaPaCa-2 (karcinom gušterače), MCF-7 (metastatski epitelni adenokarcinom dojke), Hep-2 (epidermoidni karcinom grkljana) i SK-BR-3 (metastatski adenokarcinom dojke) kao i normalni diploidni humani fibroblasti (W138). Njihov citostatički učinak uspoređen je s cisplatinom i 5-fluoruracilom, koji su često korišteni kemoterapeutici.

Osim spojeva **99** i **100**, koji su pokazali nikakvu ili umjerenu antiproliferativnu aktivnost, svi spojevi pokazali su snažni citotoksični učinak na svim testiranim staničnim linijama. Osobito su se istaknuli spojevi *E*-2-stiril supstituirani derivati imidazo[4,5-*b*]piridina **95**, **96**, **98** i **113** i derivati triaza-benzoflourena **104**, **106**, **107**, **108**, **116**, **117** jer su citotoksični učinak pokazali već u mikromolarnim koncentracijama u rasponu od 1 do 10 μ M. Spojevi **106** i **108** pokazali su selektivni učinak na staničnu liniju SK-BR-3 dok je spoj **104** uz to pokazao i specifičnu inhibiciju rasta MCF-7 i HeLa stanica. Iz klase spojeva triaza-benzo[*c*]flourena, spojevi **116** i **117** pokazali su najjače nespecifično djelovanje na stanične linije u mikromolarnim koncentracijama. Navedeni spojevi sadrže 2-imidazolinilni supstituent, što pridonosi njihovoj citotoksičnosti koja je u rangu citotoksičnosti cisplatina i 5-fluoruracila. Spojevi **106** i **108** pokazali su manju toksičnost na normalne humane fibrinoblaste u odnosu na druge biološki aktivne spojeve.

Zbog obećavajućih rezultata, detaljnije je istražen mehanizam djelovanja spojeva **106** i **116**, osobito jer je spoj **106** visoko selektivan prema staničnoj liniji metastatskog adenokarcinoma dojke uz nisku citotoksičnost prema normalnih humanim fibroblastima, a spoj **116** visoko je selektivan prema dvije metastatske stanične linije koje su rezistentne prema uobičajenim kemoterapeuticima. Spoj **116** u visokim koncentracijama inducira apoptozu što je povezano s interkaliranjem.

3. EKSPERIMENTALNI DIO

3.1. Opće napomene

¹H i ¹³C NMR spektri snimljeni su na spektrometrima Bruker AV600 i Bruker AV600. ¹H NMR spektri snimani su pri 300 i 600 MHz, dok su ¹³C NMR spektri snimani pri 75 i 150 MHz. Svi NMR spektri snimani su u DMSO- d_6 kao otapalu, koristeći tetrametilsilan kao interni standard. Kemijski pomaci (δ) izraženi su u ppm vrijednostima, a konstante sprege (J) u Hz.

Tališta priređenih spojeva određena su na SMP11 Bibby i Büchi 535 aparatu te nisu korigirana.

UV/Vis spektri snimljeni su na Varian Cary 50 spektrofotometru. Fluorescencijski emisijski spektri snimljeni su na Cary Eclipse spektrofotometru. U oba slučaja korištene su kvarcne kivete promjera 0,5 cm te volumena 3 cm³.

Reakcije potpomognute mikrovalnim zračenjem provedene su u Milestone Start Synth mikrovalnom reaktoru u kvarcnim posudama (40 bar).

Kromatografska odjeljivanja provedena su na kolonama punjenim silikagelom 0,063–0,2 nm (Kemika, Merck).

Slika 13. Mikrovalni reaktor

3. 2. Priprava amino supstituiranih tetracikličkih derivata imidazo[4,5-*b*]piridina

Shema 21. Priprava amino supstituiranih tetracikličkih derivata imidazo[4,5-b]piridina

3.2.1. Priprava 2-(1H-imidazo[4,5-b]piridin-2-il)acetonitrila 3

U okruglu tikvicu stavi se 3,000 g (27,00 mmol) 2,3-diaminopiridina **1** i 2,510 g (30,00 mmol) 2-cijanoacetamida **2**, dobro se promiješa i zagrijava u uljnoj kupelji pri 190 °C 20 minuta. Smjesa se prekristalizira iz 130 ml 50% etanola, kratko prokuha s aktivnim ugljenom i upari na mali volumen. Nastali talog se profiltrira. Dobiveno je 1,422 g (33%) svijetlo smeđeg praškastog produkta. T.t. 262 - 266 °C.

¹H NMR (300 MHz, DMSO): δ = 13,06 (šs, 1H, H_{imidazopiridin}), 8,34 (s, 1H, H_{arom}), 8,00 (s, 1H, H_{arom}), 7,25 (dd, 1H, J_1 = 8,02 Hz, J_2 = 4,79 Hz, H_{arom}), 4,45 (s, 2H, CH₂).

3. 2. 2. Priprava (Z)-3-(2-klorfenil)-3-hidroksi-2-(1*H*-imidazo[4,5-*b*]piridin-2il)akrilonitrila 5

Reakcijska smjesa 1,000 g (6,32 mmol) 2-(1*H*-imidazo[4,5-*b*]piridin-2-il)acetonitrila **3**, 7 ml piridina i 0,80 ml 2-klorbenzoil-klorida **4** refluksira 1,5 h. Po završetku reakcije smjesi se doda 50 ml vode, a nastali talog se profiltrira. Dobiveno je 1,24 g (66%) narančastog praškastog produkta. T.t. >300 °C.

¹H NMR (300 MHz, DMSO): δ = 13,81 (šs, 1H, OH), 13,29 (šs, 1H, H_{imidazopiridin}), 8,28 (dd, 1H, *J*₁ = 5,22 Hz, *J*₂ = 1,23 Hz, H_{arom}), 7,97 (dd, 1H, *J*₁ = 7,88 Hz, *J*₂ = 1,16 Hz, H_{arom}), 7,52 (dd, *J*₁ = 7,68 Hz *J*₂ = 2,01 Hz, H_{arom}), 7,48 – 7,40 (m, 3H, H_{arom}), 7,32 (dd, 1H, *J*₁ = 7,91 Hz, *J*₂=5,27 Hz, H_{arom}); ¹³C NMR (75 MHz, DMSO) δ = 195,04, 186,51, 154,01, 149,16, 140,93, 130,82, 129,93, 129,89, 128,85, 127,53, 121,15, 120,01, 118,59, 64,48.

3. 2. 3. Priprava 5-okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 6a i 5-okso-5,7-dihidropirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 6b

Reakcijska smjesa 1,190 g (4,01 mmol) 3-(2-klorfenil)-3-hidroksi-2-(1*H*-imidazo[4,5*b*]piridin-2-il)akrilonitrila **5**, 1,125 g *t*-KOBu i 14 ml DMFa refluksira 2 h. Po završetku reakcije smjesa se upari pod sniženim tlakom do suhog i doda se 50 ml vode. Nastali talog se profiltrira. Dobiveno je 0,759 g (73%) svijetlo smeđeg praškastog produkta koji se sastoji od smjese regioizomera u omjeru **6a:6b** = 1:5. T.t. >300 °C.

6a: ¹H NMR (300 MHz, DMSO): $\delta = 9,64$ (d, 1H, J = 8,01 Hz, H_{arom}), 8,37 (dd, 1H, $J_1 = 4,67$ Hz, $J_2 = 1,16$ Hz, H_{arom}), 8,28-8,23 (m, 1H, H_{arom}), 7,90 (dd, 1H, $J_1 = 6,08$ Hz, $J_2 = 1,37$ Hz, H_{arom}), 7,77 (d, 1H, J = 1,17 Hz, H_{arom}), 7,57-7,55 (m, 1H, H_{arom}), 7,45 (dd, 1H, $J_1 = 7,92$ Hz, $J_2 = 5,19$ Hz, H_{arom});

6b: ¹H NMR (300 MHz, DMSO): $\delta = 8,82$ (d, 1H, J = 8,04 Hz, H_{arom}), 8,49 (d, 1H, J = 8,37 Hz, H_{arom}), 8,35-8,37 (m, 2H, H_{arom}), 7,85 (td, 1H, $J_1 = 7,70$, $J_2 = 1,50$ Hz, H_{arom}), 7,55 (t 1H, J = 7,49 Hz, H_{arom}), 7,31 (dd, 1H, $J_1 = 8,13$ Hz, $J_2 = 5,43$ Hz, H_{arom}).

3. 2. 4. Priprava 5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 7 i 5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 8

Reakcijska smjesa 0,500 g (1,92 mmol) 5-okso-5,7-dihidropirido[2',3':4,5]imidazo[1,2-a]kinolin-6-karbonitrila **6a** i 5-okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2-a]kinolin-6-karbonitrila **6b**, 0,214 g PCl₅ i 11 ml POCl₃ refluksira 1,5 h pri 110 °C. Po završetku reakcije smjesa se upari pod sniženim tlakom do suhog, doda se mala količina vode te se nastali talog profiltrira. Dobiveno je 0,373 g (78%) žutog praškastog produkta u obliku smjese regioizomera u omjeru 7:8 = 1:5 koji su odvojeni kolonskom kromatografijom na silikagelu uz CH₂Cl₂/CH₃OH kao eluens.

7: 0,027 g T.t. >300 °C.

¹H NMR (300 MHz, DMSO): $\delta = 9,94$ (d, 1H, J = 8,34 Hz, H_{arom}), 8,74 (d, 1H, J = 4,23 Hz, H_{arom}), 8,49 (d, 1H, J = 7,20 Hz, H_{arom}), 8,40 (d, 1H, J = 8,49 Hz, H_{arom}), 8,18 (t, 1H, J = 7,13 Hz, H_{arom}), 7,82 (t, 1H, J = 7,91 Hz, H_{arom}), 7,72 (t, 1H, J = 6,37 Hz, H_{arom}). **8**: 0,249 g T.t. >300 °C.

¹H NMR (300 MHz, DMSO): $\delta = 9,17$ (dd, 1H, $J_1 = 8,48$ Hz, $J_2 = 1,2$ Hz, H_{arom}), 8,86 (d, 1H, J = 8,49 Hz, H_{arom}), 8,79 (dd, 1H, $J_1 = 4,67$ Hz, $J_2 = 1,22$ Hz, H_{arom}), 8,40 (dd, 1H, $J_1 = 8,19$, $J_2 = 1,26$ Hz, H_{arom}), 8,10 (td, 1H, $J_1 = 7,89$ Hz, $J_2 = 1,32$ Hz, H_{arom}), 7,80 (t, 1H, J = 7,71 Hz, H_{arom}), 7,60 (dd, 1H, $J_1 = 8,43$ Hz, $J_2 = 4,68$ Hz, H_{arom}); ¹³C NMR (75 MHz, DMSO) $\delta = 152,88, 151,45, 149,86, 148,86, 139,02, 136,37, 132,42, 129,65, 129,46, 127,62, 124,80, 123,35, 120,05, 119,30, 117,92.$

3. 2. 5. Priprava 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila 9

Spoj **9** priređen je sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C iz 0,070 g (0,20 mmol) 5-klorpirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **7** u 10 ml acetonitrila i 0,16 ml (1,00 mmol) *N*,*N*-dimetilaminopropil-1-amina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se profiltrira pri čemu je dobiveno 0,047 g (69%) žutog praškastog produkta. T.t. 211 - 213 °C.

¹H NMR (600 MHz, DMSO): $\delta = 9,69$ (dd, 1H, $J_I = 8,40$ Hz, $J_2 = 0,84$ Hz, H_{arom}), 8,74 (šs, 1H, NH_{amin}), 8,33 (dd, 1H, $J_I = 4,74$ Hz, $J_2 = 1,44$ Hz, H_{arom}), 8,13 (d, 1H, J = 7,92 Hz, H_{arom}), 8,05 (dd, 1H, $J_I = 8,01$ Hz, $J_2 = 1,41$ Hz, H_{arom}), 7,85 (td, 1H, $J_I = 8,19$ Hz, $J_2 = 0,9$ Hz, H_{arom}), 7,52 (td, 1H, $J_I = 8,19$ Hz, $J_2 = 0,99$ Hz, H_{arom}), 7,52 (td, 1H, $J_I = 8,19$ Hz, $J_2 = 0,99$ Hz, H_{arom}), 7,41 (dd, 1H, $J_I = 7,95$ Hz, $J_2 = 4,77$ Hz, H_{arom}), 3,92 (s, 2H, CH₂), 2,43 (t, 2H, J = 6,45 Hz, CH₂), 2,21 (s, 6H, CH₃), 1,89 (dd, 2H, $J_I = 13,34$ Hz, $J_2 = 6,66$ Hz, CH₂); ¹³C NMR (150 MHz, DMSO) $\delta = 151,48, 149,88, 146,59$,

141,10, 137,49, 134,94, 133,11, 125,61, 125,38, 123,92, 120,22, 117,89, 117,65, 116,81, 71,72, 57,47, 55,25, 45,52, 44,38, 26,76.

3. 2. 6. Priprava 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila 13

Spoj **13** priređen je sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C iz 0,070 g (0,20 mmol) 5-klorpirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **8** u 10 ml acetonitrila i 0,16 ml (1,00 mmol) *N*,*N*-dimetilaminopropil-1-amina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se profiltrira pri čemu je dobiveno 0,056 g (82%) žutog praškastog produkta. T.t. 253 - 255 °C.

¹H NMR (600 MHz, DMSO): $\delta = 8,72$ (dd, 1H, $J_I = 8,25$ Hz, $J_2 = 1,35$ Hz, H_{arom}), 8,70 (šs, 1H, NH_{amin}), 8,54 (d, 1H, J = 8,16 Hz, H_{arom}), 8,50 (dd, 1H, $J_I = 4,77$ Hz, $J_2 = 1,23$ Hz, H_{arom}), 8,25 (dd, 1H, $J_I = 4,14$ Hz, $J_2 = 0,74$ Hz, H_{arom}), 7,89 (td, 1H, $J_I = 8,82$ Hz, $J_2 = 1,05$ Hz, H_{arom}), 7,59 (t, 1H, J = 7,68 Hz, H_{arom}), 7,29 (dd, 1H, $J_I = 8,19$ Hz, $J_2 = 4,77$ Hz, H_{arom}), 3,98 (t, 2H, J = 6,87 Hz, CH₂), 2,47 (t, 2H, J = 6,48 Hz, CH₂), 2,24 (s, 6H, CH₃), 1,97-1,93 (m, 2H, CH₂); ¹³C NMR (75 MHz, DMSO) $\delta = 157,13$, 151,62, 151,07, 145,58, 135,14, 133,61, 125,37, 124,55, 123,77, 121,51, 117,85, 116,94, 116,91, 116,55, 71,37, 57,36, 45,56, 44,27, 26,65.

3. 2. 7. Priprava 5-(*N*-izobutilamino)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 10 i 5-(*N*-izobutilamino)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 14

Spojevi 10 i 14 priređeni su sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C iz 0,480 g (1,72 mmol) smjese regioizomera 5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 7 i 5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 8 u 10 ml acetonitrila i 0,15 ml (8,60 mmol) izobutilamina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se upari pod sniženim tlakom. Regioizomeri 10 i 14 odvojeni su kolonskom kromatografijom na silikagelu uz CH_2Cl_2/CH_3OH kao eluens, te su dobiveni u omjeru 1:5 (47%) i izolirani kao narančasti (10) i žuti (14) praškasti produkti.

10: 0,053 g, T.t. 250 – 252 °C.

¹H NMR (300 MHz, DMSO): $\delta = 9,80$ (dd, 1H, $J_1 = 8,43$ Hz, $J_2 = 0,96$ Hz, H_{arom}), 8,50 (d, 1H, J = 7,89 Hz, H_{arom}), 8,39 (dd, 1H, $J_1 = 4,82$ Hz, $J_2 = 1,43$ Hz, H_{arom}), 8,37 (šs, 1H, NH_{amin}), 8,10 (dd, 1H, $J_1 = 8,01$ Hz, $J_2 = 1,41$ Hz, H_{arom}), 7,95 (td, 1H, $J_1 = 7,83$ Hz, $J_2 = 1,41$ Hz, H_{arom}), 7,61 (td, 1H, $J_1 = 7,74$ Hz, $J_2 = 0,87$ Hz, H_{arom}), 7,46 (dd, 1H, $J_1 = 8,01$ Hz, $J_2 = 4,83$ Hz, H_{arom}), 3,69 (t, 2H, J = 6,69 Hz, CH₂), 2,28-2,12 (m, 1H, CH), 1,01 (d, 6H, J = 6,63

Hz, CH₃); ¹³C NMR (75 MHz, DMSO) δ = 151,21, 149,87, 146,53, 141,14, 137,40, 134,95, 133,35, 125,70, 125,40, 124,32, 120,32, 117,87, 117,74, 116,72, 71,66, 51,39, 28,67, 19,99. **14**: 0,209 g, T.t. 222 - 224 °C.

¹H NMR (300 MHz, DMSO): $\delta = 8,79$ (dd, 1H, $J_I = 8,28$ Hz, $J_2 = 1,20$ Hz, H_{arom}), 8,61 (d, 1H, J = 8,19 Hz, H_{arom}), 8,55 (šs, 1H, NH_{amin}), 8,50 (dd, 1H, $J_I = 4,95$ Hz, $J_2 = 1,30$ Hz, H_{arom}), 8,41 (t, 1H, J = 6,27 Hz, H_{arom}), 7,92 (td, 1H, $J_I = 7,80$ Hz, $J_2 = 1,29$ Hz, H_{arom}), 7,62 (t, 1H, J = 7,61 Hz, H_{arom}), 7,30 (dd, 1H, $J_I = 8,19$ Hz, $J_2 = 4,83$ Hz, H_{arom}), 3,70 (t, 2H, J = 6,70 Hz, CH₂), 2,28-2,12 (m, 1H, CH), 1,01 (d, 6H, J = 6,60 Hz, CH₃); ¹³C NMR (75 MHz, DMSO) $\delta = 156,64, 151,12, 150,51, 145,11, 134,72, 133,21, 124,78, 124,45, 123,30, 121,04, 117,24, 116,46, 116,44, 116,07, 71,45, 50,96, 28,16, 19,50.$

3. 2. 8. Priprava 5-(*N*-piperidin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 11 i 5-(*N*-piperidin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 15

Spojevi **11** i **15** priređeni su sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C iz 0,400 g (1,44 mmol) smjese regioizomera 5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **7** i 5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **8** u 10 ml acetonitrila i 0,14 ml (7,20 mmol) piperidina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se upari pod sniženim tlakom. Regioizomeri **11** i **15** odvojeni su kolonskom kromatografijom na silikagelu uz CH_2Cl_2/CH_3OH kao eluens, te su dobiveni u omjeru 1:4 (54%) i izolirani kao narančasti kristalinični (**11**) i žuti praškasti (**15**) produkti.

11: 0,057 g, T.t. 240 - 243 °C.

¹H NMR (600 MHz, DMSO): $\delta = 9,84$ (dd, 1H, $J_1 = 8,43$ Hz, $J_2 = 1,05$ Hz, H_{arom}), 8,54 (dd, 1H, $J_1 = 4,71$ Hz, $J_2 = 1,47$ Hz, H_{arom}), 8,27 (dd, 1H, $J_1 = 8,07$ Hz, $J_2 = 1,47$ Hz, H_{arom}), 8,12 (dd, 1H, $J_1 = 8,25$ Hz, $J_2 = 1,29$ Hz, H_{arom}), 7,99 (td, 1H, $J_1 = 7,80$ Hz, $J_2 = 1,41$ Hz, H_{arom}), 7,65 (td, 1H, $J_1 = 7,71$ Hz, $J_2 = 1,17$ Hz, H_{arom}), 7,56 (dd, 1H, $J_1 = 8,07$ Hz, $J_2 = 4,71$ Hz, H_{arom}), 3,63 (t, 4H, J = 5,28 Hz, CH₂), 1,86 – 1,82 (m, 4H, CH₂), 1,76 – 1,73 (m, 2H, CH₂), 15: 0,205 g, T.t. > 300 °C

¹H NMR (600 MHz, DMSO): $\delta = 8,98$ (dd, 1H, $J_1 = 8,40$ Hz, $J_2 = 1,38$ Hz, H_{arom}), 8,72 (d, 1H, J = 7,98 Hz, H_{arom}), 8,62 (dd, 1H, $J_1 = 4,68$ Hz, $J_2 = 1,32$ Hz, H_{arom}), 8,16 (dd, 1H, $J_1 = 8,22$ Hz, $J_2 = 1,38$ Hz, H_{arom}), 7,96 (td, 1H, $J_1 = 7,77$ Hz, $J_2 = 1,41$ Hz, H_{arom}), 7,66 (td, 1H, $J_1 = 7,65$ Hz, $J_2 = 0,78$ Hz, H_{arom}), 7,43 (dd, 1H, $J_1 = 8,31$ Hz, $J_2 = 4,71$ Hz, H_{arom}), 3,64 (t, 4H, J = 5,22 Hz, CH₂), 1,87 – 1,82 (m, 4H, CH₂), 1,77 – 1,71 (m, 2H, CH₂).

3. 2. 9. Priprava 5-(*N*-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 12

Spoj 12 priređen je sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C iz 0,070 g (0,20 mmol) 5-klorpirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila 7 u 10 ml acetonitrila i 0,108 g (1,30 mmol) piperazina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se profiltrira pri čemu je dobiveno 0,057 g (71%) zlatnog kristaliničnog produkta. T.t. 274 - 276 °C.

¹H NMR (300 MHz, DMSO): $\delta = 9,79$ (d, 1H, *J* = 7,83 Hz, H_{arom}), 8,53 (dd, 1H, *J*_{*I*} = 4,76 Hz, *J*₂ = 1,40 Hz, H_{arom}), 8,27 (dd, 1H, *J*_{*I*} = 8,09 Hz, *J*₂ = 1,40 Hz, H_{arom}), 8,13 (dd, 1H, *J*_{*I*} = 8,28 Hz, *J*₂ = 0,72 Hz, H_{arom}), 7,96 (td, 1H, *J*_{*I*} = 7,80 Hz, *J*₂ = 1,10 Hz, H_{arom}), 7,62 (td, 1H, *J*_{*I*} = 7,70 Hz, *J*₂ = 0,89 Hz, H_{arom}), 7,56 (dd, 1H, *J*_{*I*} = 8,10 Hz, *J*₂ = 4,77 Hz, H_{arom}), 3,58 (t, 4H, *J* = 4,64 Hz, CH₂), 3,00 (t, 4H, *J* = 4,65 Hz, CH₂), 2,08 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO) $\delta = 159,14, 155,67, 148,03, 142,80, 137,04, 136,04, 133,54, 128,48 127,71, 127,19, 125,58, 120,92, 119,63, 117,88, 116,32, 54,30, 46,36.$

3. 2. 10. Priprava 5-(*N*-piperazin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 16

Spoj **16** priređen je sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C 0,070 g (0,25 mmol) 5-klorpirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **7** u 10 ml acetonitrila i 0,108 g (1,25 mmol) piperazina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se profiltrira pri čemu je dobiveno 0,062 g (76%) zlatnog kristaliničnog produkta. T.t. 276 - 280 °C.

¹H NMR (600 MHz, DMSO): $\delta = 8,93$ (dd, 1H, $J_I = 8,34$ Hz, $J_2 = 1,32$ Hz, H_{arom}), 8,66 (d, 1H, J = 8,28 Hz, H_{arom}), 8,61 (dd, 1H, $J_I = 4,68$ Hz, $J_2 = 1,32$ Hz, H_{arom}), 8,16 (dd, 1H, $J_I = 8,22$ Hz, $J_2 = 1,32$ Hz, H_{arom}), 7,92 (td, 1H, $J_I = 7,80$ Hz, $J_2 = 1,35$ Hz, H_{arom}), 7,61 (td, 1H, $J_I = 7,53$ Hz, $J_2 = 0,66$ Hz, H_{arom}), 7,41 (dd, 1H, $J_I = 8,25$ Hz, $J_2 = 4,71$ Hz, H_{arom}), 3,58 (t, 4H, J = 4,74 Hz, CH₂), 3,00 (t, 4H, J = 4,74 Hz, CH₂), 2,06 (s, 1H, NH); ¹³C NMR (75 MHz, DMSO) $\delta = 158,82, 156,43, 149,54, 146,60, 136,34, 133,85, 131,84, 128,39, 125,47, 123,54, 122,57, 119,77, 117,70, 116,96, 116,42, 88,02, 54,53, 46,46, 45,77.$

3. 3. Priprava diamino supstituiranih tetracikličkih derivata

imidazo[4,5-*b*]piridina

Shema 22. Priprava diamino supstituiranih tetracikličkih derivata imidazo[4,5-b]piridina

3.3.1. Priprava 4-fluor-2-klorbenzoil-klorida 18

U dvogrlu tikvicu stavi se 5,000 g (26,20 mmol) 4-fluor-2-klorbenzojeve kiseline **17** i 40 ml apsolutnog toluena te se dokapava 20,60 ml SOCl₂. Reakcijska smjesa refluksira 24 h pri 110 °C. Po završetku reakcije otopina se upari pod sniženim tlakom i nekoliko puta ispire s toulenom. Dobiveno je 4,974 g (98%) rozog uljastog produkta.

3. 3. 2. Priprava (Z)-3-(4-fluor-2-klor-fenil)-3-hidroksi-2-(1*H*-imidazo[4,5-*b*]piridin-2il)akrilonitrila 19

Reakcijska smjesa 1,000 g (6,32 mmol) 2-(1*H*-imidazo[4,5-*b*]piridin-2-il)acetonitrila **3**, 7 ml piridina i 1,220 g (6,32 mmol) 4-fluor-2-klor-benzoil-klorida **18** refluksira 1,5 h. Po završetku reakcije smjesi se doda 50 ml vode, a nastali talog se profiltrira. Dobiveno je 0,95 g (47%) smeđeg praškastog produkta. T.t. 275 - 279 °C.

¹H NMR (300 MHz, DMSO): $\delta = 13,68$ (šs, 1H, OH), 13,24 (šs, 1H, H_{imidazopiridin}), 8,28 (dd, 1H, J = 5,10 Hz, H_{arom}), 7,98 (d, 1H, J = 7,77 Hz, H_{arom}), 7,57 – 7,48 (m, 2H, H_{arom}), 7,35 – 7,27 (m, 2H, H_{arom}).

3. 3. 3. Priprava 2-fluor-5-okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 20a i 2-fluor-5-okso-5,7-dihidropirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 20b

Reakcijska smjesa 1,280 g (4,07 mmol) (*Z*)-3-(4-fluor-2-klorfenil)-3-hidroksi-2-(1*H*imidazo[4,5-*b*]piridin-2-il)akrilonitrila **18**, 1,130 g *t*-KOBu i 15 ml DMFa refluksira 2 h. Po završetku reakcije smjesa se upari pod sniženim tlakom do suhog i doda se 50 ml CH₂Cl₂. Nastali talog se profiltrira. Dobiveno je 0,488 g (43%) svijetlo smeđeg praškastog produkta koji se sastoji od smjese regioizomera u omjeru **20a**:**20b** = 1:4.

20a: ¹H NMR (300 MHz, DMSO): $\delta = 9,34$ (dd, 1H, $J_1 = 11,28$ Hz, $J_2 = 2,61$ Hz, H_{arom}), 8,31-8,29 (m, 1H, H_{arom}), 8,23-8,17 (m, 2H, H_{arom}), 7,78 (dd, 1H, $J_1 = 7,86$ Hz, $J_2 = 1,47$ Hz, H_{arom}), 7,28-7,26 (m, 1H, H_{arom});

20b: ¹H NMR (300 MHz, DMSO): $\delta = 8,56$ (dd, 1H, $J_1 = 8,09$ Hz, $J_2 = 1,65$ Hz, H_{arom}), 8,33-8,26 (m, 2H, H_{arom}), 8,15-8,10 (m, 1H, H_{arom}), 7,26 (td, 1H, $J_1 = 9,42$, $J_2 = 2,21$ Hz, H_{arom}), 7,06 (dd, 1H, $J_1 = 8,00$ Hz, $J_2 = 4,94$ Hz, H_{arom}).

3. 3. 4. Priprava 2-fluor-5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 21 i 2-fluor-5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 22

0,500 2-fluor-5-okso-5,7-Reakcijska smjesa g (1,85)mmol) dihidropirido[3',2':4,5]imidazo[1,2-a]kinolin-6-karbonitrila 20a i 2-fluor-5-okso-5,7dihidropirido[2',3':4,5]imidazo[1,2-a]kinolin-6-karbonitrila **20b**, 0,207 g PCl₅ i 11 ml POCl₃ refluksira 1,5 h pri 110 °C. Po završetku reakcije smjesa se upari pod sniženim tlakom do suhog, doda se mala količina vode te se nastali talog profiltrira. Dobiveno je 0,217 g (39%) žutog praškastog produkta u obliku smjese regioizomera u omjeru 21:22 = 1:4 koji su odvojeni kolonskom kromatografijom na silikagelu uz CH₂Cl₂/CH₃OH kao eluens.

21: 0,038 g T.t. 289 - 290 °C.

¹H NMR (300 MHz, DMSO): $\delta = 9,50$ (dd, 1H , $J_I = 10,50$ Hz, $J_2 = 2,49$ Hz, H_{arom}), 8,69 (dd, 1H , $J_I = 4,71$ Hz, $J_2 = 1,38$ Hz, H_{arom}), 8,44 (dd, 1H , $J_I = 8,19$ Hz, $J_2 = 1,41$ Hz, H_{arom}), 8,38 (dd, 1H , $J_I = 9,14$ Hz, $J_2 = 1,41$ Hz, H_{arom}), 7,70 (dd, 1H $J_I = 6,81$ Hz, $J_2 = 3,30$ Hz, H_{arom}), 7,64 (td, 1H, $J_I = 7,91$ Hz, $J_2 = 2,58$ Hz, H_{arom} , H_{arom}); ¹³C NMR (75 MHz, DMSO) $\delta = 167,21, 163,84, 145,23, 144,93, 136,86, 131,08, 130,94, 128,96, 122,09, 116,84, 115,25, 114,94, 113,30, 104,74, 104,35.$

22: 0,170 g T.t. >300 °C.

¹H NMR (300 MHz, DMSO): $\delta = 9,29$ (dd, 1H, $J_1 = 8,49$ Hz, $J_2 = 1,14$ Hz, H_{arom}), 8,81 (dd, 1H, $J_1 = 4,67$ Hz, $J_2 = 1,16$ Hz, H_{arom}), 8,70 (dd, 1H , $J_1 = 10,13$ Hz, $J_2 = 2,30$ Hz, H_{arom}), 8,52 (dd, 1H, $J_1 = 9,14$ Hz, $J_2 = 6,05$ Hz, H_{arom}), 7,73 (td, 1H, $J_1 = 8,63$ Hz, $J_2 = 2,24$ Hz, H_{arom}), 7,61 (dd, 1H, $J_1 = 8,46$ Hz, $J_2 = 4,68$ Hz, H_{arom}).

3. 3. 5. Pokušaj priprave 2,5-bis[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[3',2':4,5] imidazo[1,2-*a*]kinolin-6-karbonitrila 23

Spoj 2-fluor-5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril **21** 0,055 g (0,18 mmol) izložen je MW zračenju snage 800 W i temperaturi 170 °C u 10 ml acetonitrila i 0,19 ml (1,85 mmol) *N*,*N*-dimetilaminopropil-1-amina. Produkt nije izoliran.

3. 3. 6. Pokušaj priprave 2,5-bis[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[2',3':4,5] imidazo[1,2-*a*]kinolin-6-karbonitrila 27

Spoj 2-fluor-5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril **22** 0,080 g (0,27 mmol) izložen je MW zračenju snage 800 W i temperaturi 170 °C u 10 ml acetonitrila i 0,15 ml (1,34 mmol) *N*,*N*-dimetilaminopropil-1-amina. Produkt nije izoliran.

3. 3. 7. Priprava 2,5-bis(*N*-izobutilamino)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 24 i 2,5-bis(*N*-izobutilamino)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 28

Spojevi **24** i **28** priređeni su sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C iz 0,450 g (1,52 mmol) smjese regioizomera 2-fluor-5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **21** i 2-fluor-5-klorpirido [2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **22** u 10 ml acetonitrila i 0,77 ml (22,75 mmol) izobutilamina. Nakon 12 h mikrovalnog zračenja, ohlađena reakcijska smjesa se upari pod sniženim tlakom. Regioizomeri **24** i **28** odvojeni su kolonskom kromatografijom na silikagelu uz CH₂Cl₂/CH₃OH kao eluens, te su dobiveni u omjeru 1:2 (87%) i izolirani kao narančasti uljeviti (**24**) i svijetlo narančasti praškasti (**28**) produkti.

24: 0,188 g

¹H NMR (300 MHz, DMSO): $\delta = 8,97$ (d, 1H, J = 2,31 Hz, H_{arom}), 8,32 (dd, 1H, $J_I = 4,80$ Hz, $J_2 = 1,41$ Hz, H_{arom}), 8,15 (d, 1H, J = 9,27 Hz, H_{arom}), 8,02 (šs, 1H, NH_{amin}), 7,40 (dd, 1H, $J_I = 8,00$ Hz, $J_2 = 4,85$ Hz, H_{arom}), 7,17 (t, 1H, J = 5,55 Hz, H_{arom}), 6,38 (dd, 1H, $J_I = 9,18$ Hz, $J_2 = 2,31$ Hz, H_{arom}), 3,63 (t, 2H, J = 6,66 Hz, CH₂), 3,06 (t, 2H, J = 6,17 Hz, CH₂), 2,20-2,09 (m, 1H, CH), 2,05-1,93 (m, 1H, CH), 1,01 (d, 6H, J = 6,69 Hz, CH₃), 0,98 (d, 6H, J = 6,63 Hz, CH₃).

28: 0,319 g, T.t. 289-292 °C.

¹H NMR (600 MHz, DMSO): $\delta = 8,57$ (d, 1H, J = 8,10 Hz, H_{arom}), 8,46 (d, 1H, J = 4,68 Hz, H_{arom}), 8,21 (d, 1H, J = 9,24 Hz, H_{arom}), 7,55 (s, 1H, NH_{amin}), 7,28 (dd, 1H, $J_I = 8,07$ Hz, $J_2 = 4,83$ Hz, H_{arom}), 7,02 (t, 1H, J = 5,40 Hz, H_{arom}), 6,84 (dd, 1H, $J_I = 9,12$ Hz, $J_2 = 1,32$ Hz, H_{arom}), 3,64 (t, 2H, J = 6,69 Hz, CH₂), 3,10 (t, 2H, J = 6,09 Hz, CH₂), 2,17-2,12 (m, 1H, CH), 1,96-1,90 (m, 1H, CH), 1,02 (d, 6H, J = 6,60 Hz, CH₃), 0,98 (d, 6H, J = 6,60 Hz, CH₃).

3. 3. 8. Priprava 2,5-di(*N*-piperidin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6karbonitrila 25 i 2,5-di(*N*-piperidin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6karbonitrila 29

Spojevi **25** i **29** priređeni su sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C iz 0,450 g (1,52 mmol) smjese regioizomera 2-fluor-5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **21** i 2-fluor-5-klorpirido [2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **22** u 10 ml acetonitrila i 0,75 ml (7,58 mmol) piperidina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se upari pod sniženim tlakom. Regioizomeri **25** i **29** odvojeni su kolonskom kromatografijom na silikagelu

uz CH₂Cl₂/CH₃OH kao eluens, te su dobiveni u omjeru 1:4.(62%) i izolirani kao narančasti kristalinični (**25**) i zlatni praškasti (**29**) produkti.

25: 0,106 g T.t. > 300°C.

¹H NMR (600 MHz, DMSO): $\delta = 9,30$ (d, 1H, J = 1,50 Hz, H_{arom}), 8,49 (d, 1H, J = 4,44 Hz, H_{arom}), 8,19 (d, 1H, J = 8,10 Hz, H_{arom}), 7,86 (d, 1H, J = 9,84 Hz, H_{arom}), 7,51 (dd, 1H, $J_1 = 7,98$ Hz, $J_2 = 4,80$ Hz, H_{arom}), 7,23 (dd, 1H, $J_1 = 9,39$ Hz, $J_2 = 1,95$ Hz, H_{arom}), 3,58 (šs, 8H, CH₂), 1,81 (šs, 4H, CH₂), 1,73 (šs, 2H, CH₂), 1,68 (šs, 6H, CH₂).

29: 0,460 g T.t. > 300 °C.

¹H NMR (600 MHz, DMSO): $\delta = 8,69$ (d, 1H, J = 8,28 Hz, H_{arom}), 8,59 (dd, 1H, $J_1 = 4,71$ Hz, $J_2 = 1,23$ Hz, H_{arom}), 7,89 (d, 1H, J = 9,36 Hz, H_{arom}), 7,55 (d, 1H, J = 2,04 Hz, H_{arom}), 7,38 (dd, 1H, $J_1 = 8,22$ Hz, $J_2 = 4,74$ Hz, H_{arom}), 7,24 (dd, 1H, $J_1 = 9,42$ Hz, $J_2 = 2,22$ Hz, H_{arom}), 3,60 (šs, 8H, CH₂), 1,81 (šs, 4H, CH₂), 1,74 (šs, 2H, CH₂), 1,69 (šs, 6H, CH₂).

3. 3. 9. Priprava 2,5-di(N-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2-a]kinolin-6-

karbonitrila 26

Spoj **26** priređen je sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C iz 0,055 g (0,19 mmol) 2-fluor-5-klorpirido [3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **21** u 10 ml acetonitrila i 0,080 g (0,93 mmol) piperazina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se profiltrira pri čemu je dobiveno 0,074 g (97%) žutog praškastog produkta. T.t. > 300 °C.

¹H NMR (400 MHz, DMSO): $\delta = 9,28$ (d, 1H, J = 2,48 Hz, H_{arom}), 8,50 (dd, 1H, $J_I = 4,78$ Hz, $J_2 = 1,50$ Hz, H_{arom}), 8,22 (dd, 1H, $J_I = 8,14$ Hz, $J_2 = 1,50$ Hz, H_{arom}), 7,92 (d, 1H, J = 9,56 Hz, H_{arom}), 7,52 (dd, 1H, $J_I = 8,10$ Hz, $J_2 = 4,82$ Hz, H_{arom}), 7,24 (dd, 1H, $J_I = 9,24$ Hz, $J_2 = 2,60$ Hz, H_{arom}), 3,64 (t, 4H, J = 4,56 Hz, CH₂), 3,55 (t, 4H, J = 4,88 Hz, CH₂), 3,15 (t, 4H, J = 4,38 Hz, CH₂), 3,06 (t, 4H, J = 5,06 Hz, CH₂).

3. 3. 10. Priprava 2,5-di(*N*-piperazin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 30

Spoj **30** priređen je sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C 0,060 g (0,20 mmol) 2-fluor-5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **22** u 10 ml acetonitrila i 0,090 g (1,01 mmol) piperazina. Nakon 4 h mikrovalnog zračenja, ohlađena reakcijska smjesa se profiltrira pri čemu je dobiveno 0,062 g (75%) narančastog praškastog produkta. T.t. > 300 °C.

¹H NMR (400 MHz, DMSO): $\delta = 8,76$ (d, 1H, J = 8,96 Hz, H_{arom}), 8,60 (d, 1H, J = 5,00 Hz, H_{arom}), 7,95 (d, 1H, J = 9,28 Hz, H_{arom}), 7,59 (d, 1H, J = 4,48 Hz, H_{arom}), 7,39 (dd, 1H, $J_1 = 8,04$ Hz, $J_2 = 5,32$ Hz, H_{arom}), 7,25 (d, 1H, J = 9,64 Hz, H_{arom}), 3,60 (t, 4H, J = 4,24 Hz, CH₂), 3,56 (t, 4H, J = 3,94 Hz, CH₂), 3,07 (t, 4H, J = 4,02 Hz, CH₂), 2,99 (t, 4H, J = 4,78 Hz, CH₂).

4. RASPRAVA I REZULTATI

4.1. Cilj rada

Osnovni cilj ovog rada bila je sinteza, strukturna karakterizacija i izolacija amino i diamino supstituiranih tetracikličkih derivata imidazo[4,5-*b*]piridina. Zadnji stupanj sinteze proveden je sintezom potpomognutom mikrovalnim zračenjem. Strukture odvojenih regioizomera potvrđene su korištenjem jednodimenzijske i dvodimenzijske NMR spektroskopije. Provedena je i spektroskopska karakterizacija matičnih otopina regioizomera 11, 15, 25 i 29 u metanolu korištenjem UV/Vis i fluorimetrijske spektroskopije.

Slika 14. Strukture priređenih spojeva

4.2. Sinteza priređenih spojeva

Glavni prekursor za sintezu ciljanih spojeva, 2-(1*H*-imidazo[4,5-*b*]piridin-2-il)acetonitril **3**, sintetiziran je iz 2,3-diaminopiridina **1** i 2-cijanoacetamida **2**. Njihovom kondenzacijom dolazi do ciklizacije u imidazo[4,5-*b*]piridinski prsten. Reakcija se provodi bez otapala prema shemi 23, a produkt je izoliran u iskorištenju od 33%.

Aciklički prekursor (*Z*)-3-(2-klorfenil)-3-hidroksi-2-(1*H*-imidazo[4,5-*b*]piridin-2il)akrilonitril **5** priređen je kondenzacijom 2-(1*H*-imidazo[4,5-*b*]piridin-2-il)acetonitrila **3** s 2klorbenzoil-kloridom u iskorištenju od 66%.^{53, 54}

Shema 24.

Struktura priređenog spoja potvrđena je ¹H NMR spektroskopijom. Na slici 15 može se uočiti odgovarajući broj signala u aromatskom dijelu spektra te dva signala protona OH i NH skupine.

Slika 15. ¹*H NMR spektar spoja* **5**

Termičkom ciklizacijom acikličkog prekursora u DMF-u u prisutnosti *t*-KOBu priređena je smjesa regioizomera 5-okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **6a** i 5-okso-5,7-dihidropirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **6b** koja nije razdvajana u ovom stupnju.

Shema 25.

Iz ¹H NMR spektra smjese prikazanom na slici 16 vidljivo je da regioizomeri ne nastaju u jednakim količinama već u omjeru 1:5. Uočen je značajan utjecaj promjene položaja piridinskog dušika na pomake signala u NMR spektrima.

Slika 16. ¹H NMR spektar smjese produkata **6a** i **6b**

Zagrijavanjem smjese s POCl₃ i PCl₅ dobivena je smjesa regioizomera 5klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **7** i 5-klorpirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **8** prema shemi 26 u iskorištenju 48%.

¹H NMR spektar smjese na slici 17 pokazuje odgovarajući broj signala aromatskih protona oba regioizomera, u omjeru 7:8 = 1:5.

Slika 17.¹H NMR spektar smjese produkata 7 i 8

Smjesa regioizomera uspješno je odvojena kolonskom kromatografijom na silikagelu uz CH_2Cl_2/CH_3OH kao eluens te su dobivena dva regioizomera 7 i 8. Na slici 18 prikazana je usporedba ¹H NMR spektara spojeva 7 i 8 na kojima se uočava isti broj signala aromatskih protona no različit kemijski pomak.

Slika 18. ¹H NMR spektar spoja 7 (a) i 8 (b)

Amino supstituirani derivati dobiveni su reakcijom aminiranja potpomognutom mikrovalovima u acetonitrilu uz dodatak suviška odgovarajućeg amina iz derivata 7 i 8 prema shemi 27.55 Derivati 9, 12, 13, 16 dobiveni su izlaganjem odvojenih regioizomera 7 i 8 mikrovalnom zračenju dok su regioizomeri supstituirani izobutilaminom 10 i 14 te piperidinom 11 i 15 dobiveni iz smjese regioizomera 7 i 8 budući da njihova Rf vrijednost omogućava naknadno razdvajanje kolonskom kromatografijom. Iako prekursori 7 i 8 nastaju u omjerima 1:5, iskorištenja reakcija u kojima je kao reaktant korištena smjesa regioizomera su oko 50% za oba produkta. Iskorištenja reakcija u kojima su za reaktante korišteni odvojeni regioizomeri su znatno viša i kreću se oko 70-80%.

Shema 27.

Spojevi **12** i **16** priređeni su sintezom potpomognutom mikrovalovima korištenjem MW zračenja snage 800 W i temperature 170 °C, iz spojeva **7** ili **8** u 10 ml acetonitrila i uz suvišak piperazina. Produkti su dobiveni u dobrim iskorištenjima od 71% za spoj **12** i 76% za spoj **16**.

Na slikama 20 i 21 prikazani su ¹H i ¹³C NMR spektri spojeva **12** i **16**. Signali u aromatskom dijelu spektra odgovaraju protonima koji se nalaze na tetracikličkom aromatskom prstenu. U alifatskom dijelu spektra mogu se uočiti signali za protone amino supstituenta. Dva tripleta odgovaraju CH₂ skupinama piperazinskog prstena. U ¹³C NMR spektrima uočen je odgovarajuć broj signala u aromatskom dijelu spektra. U području od 116 do 160 ppm postoji 15 signala koji odgovaraju ugljikovim atomima tetracikličkog prstena i ugljikovom atomu cijano skupine. Na oba spektra vidljiva su dva signala oko 54 i 46 ppm koji su dokazuju prisutnost amino supstituenta budući da kemijskim pomakom odgovaraju CH₂ skupinama

Slika 19. a) Aromatski dio ¹H NMR spektra spoja 12, b) alifatski dio ¹H NMR spektra spoja 12, c) ¹³C NMR spektar spoja 12

Slika 20. a) Aromatski dio ¹H NMR spektra spoja **16**, b) alifatski dio ¹H NMR spektra spoja **16**, c) ¹³C NMR spektar spoja **16**

Položaj dušika utvrđen je korištenjem 2D NMR spektroskopije na regioizomerima **9** i **13**. Na slici 22 prikazan je NOESY spektar regioizomera **9**. U spektru se mogu uočiti NOE interakcije između dušikovog protona H-1' aminskog supstituenta i H-4 protona aromatske jezgre. Također uočene su NOE interakcije protona metilenskih skupina aminskog lanca s H-4 protonom aromatske jezgre kao i interakcije protona dviju metilnih skupina *N*,*N*-dimetilamino skupine s H-3 protonom aromatske jezgre.

Slika 21. NOESY spektar regioizomera 9

Slika 22. NOESY spektar regioizomera 13

Na slici 22 prikazan je NOESY spektar regioizomera **13**. U spektru se mogu uočiti NOE interakcije između dušikovog protona aminskog supstituenta i H-4 protona aromatske jezgre, kao i NOE interakcije H-1 i H-11 protona aromatske jezgre. Također uočene su NOE interakcije protona metilenskih skupina aminskog lanca s H-4 protonom aromatske jezgre kao i interakcije protona dviju metilnih skupina *N*,*N*-dimetilamino skupine s H-3 protonom aromatske jezgre.

Za sintezu acikličkog prekursora **19**, bilo je potrebno prethodno sintetizirati kiselinski klorid iz odgovarajuće supstituirane karboksilne kiseline **17**. Reakcija je provedena u apsolutnom toluenu uz pomoć reagensa SOCl₂ prema shemi 28 te je produkt dobiven u 98% iskorištenju. Aciklički prekursor dobiven je u 47% iskorištenju.

Shema 28.

Na slici 23 prikazan je ¹H NMR spektar spoja **19** na kojem su uočljivi signali koji prema kemijskom pomaku i integralu odgovaraju protonima na aromatskom prstenu. U nižem polju vidljivi su signali protona OH skupine i imidazopiridina čije su jezgre slabije zasjenjene.

Slika 23.¹H NMR spektar spoja **19**

Smjesa regioizomera 2-fluor-5-okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **20a** i 2-fluor-5-okso-5,7-dihidropirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **20b** priređena je termičkom ciklizacijom acikličkog prekursora **19** u DMF-u u prisutnosti *t*-KOBu.

Zagrijavanjem smjese s POCl₃ i PCl₅ dobivena je smjesa regioizomera 2-fluor-5-klorpirido [3',2':4,5]imidazo[1,2-a]kinolin-6-karbonitrila **21** i 2-fluor-5-klorpirido[2',3':4,5]imidazo[1,2-a]kinolin-6-karbonitrila **22** prema shemi 30 u iskorištenju 39%.

Regioizomeri **21** i **22** razdvojeni su kolonskom kromatografijom te im je struktura potvrđena korištenjem NMR spektroskopskih tehnika. Na slici 24 prikazan je ¹³C NMR spektar regioizomera **21**. Uočeni su signali za 14 ugljikovih atoma tetracikličkog aromatskog prstena i CN skupine.

✓ 145.23 ✓ 145.23 ✓ 144.93 ✓ 136.86 ✓ 130.94 ✓ 130.94 ✓ 115.84 ✓ 115.84 ✓ 115.30 ✓ 113.30 ✓ 104.74 ✓ 104.34

Slika 24. ¹³C NMR spektar spoja **21**

Na slici 25 prikazani su usporedni ¹H NMR spektri spojeva **21** i **22**. U aromatskom dijelu spektra uočljivi su signali 6 protona koji se nalaze na aromatskim jezgrama. Položaj dušikovog atoma ima značajan utjecaj na kemijske pomake u NMR spektru.

Slika 25. ¹H NMR spektar spoja 21 (a) i 22 (b)

Diamino supstituirani derivati dobiveni su reakcijom aminiranja potpomognutom mikrovalovima u acetonitrilu uz dodatak suviška odgovarajućeg amina iz derivata **21** i **22** prema shemi 31. Derivati **26** i **30** dobiveni su izlaganjem odvojenih regioizomera **21** i **22** mikrovalnom zračenju dok su regioizomeri supstituirani izobutilaminom **24** i **28** te piperidinom **25** i **29** dobiveni iz smjese regioizomera **21** i **22**. Derivati 2,5-bis[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **23** i 2,5-bis[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril **27** nisu uspješno izolirani iz reakcijske smjese.

Na slikama 26 i 27 prikazani su ¹H NMR spektri spojeva **26** i **30**. U spektru spoja **26** uočavaju se signali za 6 aromatskih protona. Signali u alifatskom dijelu spektra odgovaraju protonima CH₂ skupine piperazinskog prstena. Činjenica da su prisutna četiri takva signala dokazuje da su ovi derivati di-supstituirani. Svaki triplet je odgovarajuć signal za četiri ekvivalentna protona piperazinske jezgre.

Slika 26. a) Aromatski dio ¹H NMR spektra, b) alifatski dio ¹H NMR spektra spoja 26

Slika 27. a) Aromatski dio ¹H NMR spektra, b) alifatski dio ¹H NMR spektra spoja **30**

Strukture regioizomera 26 i 30 dodatno su potvrđene 2D NMR spektroskopijom. Na slici 28 prikazan je NOESY spektar regioizomera 26, a na slici 29 NOESY spektar regioizomera 30. U spektru spoja 26 mogu se uočiti NOE interakcije između H-10 i H-8 protona aromatske jezgre kao i između susjednih protona H-9 i H-10 te H-8 i H-9.

Regioizomer **30** pokazuje NOE interakciju između protona benzenske i piridinske jezgre. Ta interakcija je ključna za potpuno određivanje strukture regioizomera. Vidljive su interakcije između susjednih protona piridinske jezgre H-10 i H-11 te H-10 i H-9.

Slika 29. NOESY spektar regioizomera **30**
4.3. Spektroskopska karakterizacija UV/Vis i fluorimetrijskom spektroskopijom

Kvantitativni UV/Vis apsorpcijski spektri derivata 11, 15, 25 i 29 snimljeni su pri istoj koncentraciji od 2×10^{-5} mol/dm³ u metanolu. Usporedni spektri odabranih regioizomera prikazani su na slici 28.⁵⁶ Derivati 11 i 25 pokazuju veći intenzitet apsorbancije.

Slika 30. Apsorpcijski spektri spojeva a) 11 i 15 i b) 25 i 29

Emisijski spektri odabranih derivata snimljeni su pri koncentraciji od 2×10^{-7} mol/dm³ u metanolu s valnom duljinom pobude 368 nm. Spojevi **11** i **15** pri danim uvjetima snimanja nisu pokazali mjerljiv intenzitet fluorescencije.

Slika 31. Emisijski spektri regioizomera 25 i 29 snimani pri istim uvjetima (λ_{exc} =368 nm) Tablica 6. UV/Vis i fluorimetrijski podaci ispitanih spojeva 11, 15, 25 i 29 u metanolu

Spoj	11	15	25	29
λ _{max} /nm	385		421	420
	361	385 297 273 263 250 206	399	397
	292		365	367
	278		330	330
	262		297	299
	246		249	250
	228		220	218
	201		202	202
ε/dm ³ mol ⁻¹ cm ⁻¹	12850		13650	29100
	11700	6200	12250	24000
	11600	4000	10650	23400
	14850	6200	6050	11900
	16950	7450	12950	27250
	29050	13400	14750	35200
	21800	7150	9400	21450
	21950		11750	29450
λ_{emiss}/nm	-	-	472	474
I (a.u.)	-	-	777	886

4.4. Fluorescencija u čvrstom stanju

Na slici 30 prikazani su emisijski spektri regioizomera 9 i 13 u krutom stanju (a) iz kojih se može uočiti velika razlika u intenzitetu fluorescencije regioizomera 9 i 13. Također se uočava i razlika u položaju maksimuma emisije (b) pojedinih regioizomera.

Slika 32. a) Emisijski spektri regioizomera 9 i 13 snimani pri istim uvjetima (λ_{exc}=376 nm); b) normalizirani emisijski spektri regioizomera 9 i 13; c) fluorescencija regioizomera 9 pod svjetlošću valne duljine 366 nm; d) fluorescencija regioizomera 13 pod svjetlošću valne duljine 366 nm

5. ZAKLJUČAK

- U ovom radu priređeni su sljedeći spojevi: 2-(1*H*-imidazo[4,5-*b*]piridin-2-il)acetonitril 3, (Z)-3-(2-klorfenil)-3-hidroksi-2-(1H-imidazo[4,5-b]piridin-2-il)akrilonitril 5, 5okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril **6a**, 5-okso-5,7dihidropirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril **6b**, 5-klorpirido[3',2':4,5] imidazo[1,2-a]kinolin-6-karbonitril 7, 5-klorpirido[2',3':4,5]imidazo[1,2-a]kinolin-6karbonitril 8. 5-[(3-(N,N-dimetilamino)propil)amino]pirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitril 9, 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[2',3':4,5] imidazo[1,2-a]kinolin-6-karbonitril 13, 5-(N-izobutilamino)pirido[3',2':4,5]imidazo [1,2-*a*]kinolin-6-karbonitril **10**, 5-(*N*-izobutilamino)pirido[2',3':4,5]imidazo[1,2-*a*] kinolin-6-karbonitril 14, 5-(N-piperidin-1-il)pirido[3',2':4,5]imidazo[1,2-a]kinolin-6karbonitril **11**, 5-(*N*-piperidin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril 15, 5-(N-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2-a]kinolin-6-karbonitril 12, <math>5-(N-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2-a]kinolin-6-karbonitril 12, 5-(N-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2-a]kinolin-6-karbonitril 12, 5-(N-piperazin-1-il)pirido[3',2':4,5]imidazo[3',2':4,5]imidazo[3',2':4,5]imidazo[3',2':4,5]imidazo[3',2':4,5]imidazo[3',2':4,5]imidazo[3',2':4]ipiperazin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril 16, 4-fluor-2-18, (Z)-3-(4-fluor-2-klor-fenil)-3-hidroksi-2-(1H-imidazo[4,5klorbenzoil-klorid *b*]piridin-2-il)akrilonitril **19**, 2-fluor-5-okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitril **20a**, 2-fluor-5-okso-5,7-dihidropirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitril **20b**, 2-fluor-5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6karbonitril **21**, 2-fluor-5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril **22**, 2,5-bis(*N*-izobutilamino)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril **24**, 2,5bis(N-izobutilamino)pirido[2',3':4,5]imidazo[1,2-a]kinolin-6-karbonitril 28, 2,5-di(Npiperidin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril 25, 2,5-di(N-29, piperidin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitril 2,5-di(Npiperazin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 26 i 2,5-di(Npiperazin-1-il)pirido[2',3':4,5]imidazo[1,2-a]kinolin-6-karbonitril 30
- Reakcijom 2,3-diaminopiridina i 2-cijanoacetamida priređen je 2-(1*H*-imidazo[4,5*b*]piridin-2-il)acetonitril 3.
- Kondenzacijom spoja 3 s 2-klorbenzoil-kloridom priređen je aciklički prekursor 5.
- Ciklički spojevi 6a i 6b priređeni su kao smjesa regioizomera termičkom ciklizacijom u DMF uz korištenje *t*-KOBu.
- Regioizomeri 7 i 8 priređeni su zagrijavanjem smjese regioizomera 6a i 6b s POCl₃ i PCl₅ te su razdvojeni kolonskom kromatografijom na silikagelu.

- Nekataliziranom aminacijom potpomognutom mikrovalovima, iz spojeva 7 i 8 u acetonitrilu pri temperaturi od 170°C i sa suviškom odgovarajućeg amina priređeni su amino supstituirani regioizomeri 9 16.
- Kondenzacijom spoja 3 s 4-fluor-2-klorbenzoil-kloridom 18 priređen je aciklički prekursor 19.
- Ciklički spojevi **20a** i **20b** priređeni su kao smjesa regioizomera termičkom ciklizacijom u DMF uz korištenje *t*-KOBu.
- Regioizomeri 21 i 22 priređeni su zagrijavanjem smjese regioizomera 20a i 20b s POCl₃ i PCl₅ te su razdvojeni kolonskom kromatografijom na silikagelu.
- Nekataliziranom aminacijom potpomognutom mikrovalovima, iz spojeva 21 i 22 u acetonitrilu pri temperaturi od 170°C i sa suviškom odgovarajućeg amina priređeni su diamino supstituirani derivati 24 28 i 30.
- Svim novopriređenim spojevima struktura je potvrđena korištenjem ¹H i ¹³C NMR spektroskopije, a struktura odvojenih regioizomera dodatno je potvrđena 2D NMR spektroskopijom.
- Spektroskopska karakterizacija matičnih otopina derivata 11, 15, 25 i 29 u metanolu, provedena je korištenjem UV/Vis i fluorimetrijske spektroskopije.
- Iz dobivenih rezultata može se uočiti značajan utjecaj položaja dušika između regioizomera te velika razlika između spektroskopskih svojstava mono- i disupstituiranih deivata
- Iz emisijskih spektara može se zaključiti da mono supstituirani derivati 11 i 15 nemaju mjerljiv intenzitet fluorescencije dok disupstituirani pokazuju određeni intenzitet fluorescencije s međusobnom razlikom u intenzitetu zbog utjecaja promjene položaja N atoma u piridinskoj jezgri.

6. POPIS SIMBOLA

UV/Vis – ultraljubičasta/vidljiva spektroskopija

NMR - nuklearna magnetska rezonancija

NOESY – Nuclear Overhauser effect spectroscopy tj. spektroskopija nuklearnog Overhauserovog efekta

 λ_{em} - valna duljina emisije

 λ_{exc} - valna duljina ekscitacije

ε- molarni ekstincijski koeficijent

Abs – apsorbancija

DMF - dimetilformamid

7. LITERATURA

- 1. P. Kantoff, Oncology (Williston) 19 (2005) 631-636.
- K. Kaur, V. Kumar, A. K. Sharma, G. K. Gupta, *European Journal of Medicinal* Chemistry 77 (2014) 121-133.
- 3. T. George, J. W. Christopher, W. W. George, J. Chem. Soc., Perkin Trans. 1 (1999) 629.
- 4. C. Jr. Temple, J. D. Rose, R. N. Comber, G. A. Rener, J. Med. Chem. 30 (1987) 1746.
- V. Bavetsias, C. Sun, N. Bouloc, J. Reynisson, P. Workman, S. Linardopoulos, E. McDonald, *Bioorg. Med. Chem. Lett.* 17 (2007) 6567.
- 6. R. P. Kale, M. U. Shaikh, G. R. Jadhav, C. H. Gill, Tetrahedron Lett. 50 (2009) 1780.
- D. J. Cundy, G. Holan, M. Otaegui, G. W. Simpson, *Bioorg. Med. Chem. Lett.* 7 (1997) 669.
- 8. A. Suzuki, Chem. Commun. (2005) 4759.
- 9. A. M. Sajith, A. Muralidharan, Tetrahedron Letters 53 (2012) 1036-1041.
- 10. R. Naresh, Y. Nazeer, S. Palani, Medicinal Chemistry Research 22 (2013) 1938-1947.
- K. Ranjith, K. R. Haridas, N. K. Susanta, T. N. Guru Row, P. Rageesh, R. Rishikesan, N. Suchethakumari, *European Journal of Medicinal Chemistry* 49 (2012) 172-182.
- A. M. Sajith, K. K. A. Khader, N. Joshi, M. N. Reddy, M. S. A. Padusha, H. P. Nagaswarupa, M. N. Joy, Y. D. Bodke, R. P. Karuvalam, R. Banerjee, A. Muralidharan, P. Rajendra, *European Journal of Medicinal Chemistry* 89 (2015) 21-31.
- 13. Y. Shiokawa, M. Nagano, H. Itani Eur. Pat. Appl. EP. 308 (1989) 917-920.
- F. Babudri, G. M. Farinola, F. Naso and D. Panessa, J. Org. Chem. 65 (2000) 1554– 1557.
- 15. H. Q. Do, O. Daugulis, J. Am. Chem. Soc. 129 (2007) 12404-12405.
- 16. S. Ranjit, X. Liu, Chem. Eur. J. 17 (2011) 1105-1108.
- 17. N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. (1979) 20 3437-3440.
- 18. K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc 94 (1972) 4374-4376.
- 19. E. Negishi, A. O. King, N. Okukado, J. Org. Chem. 42 (1977) 1821-1823.
- 20. P. Avinesh, T. J. Jaison, A. M. Sajith, H. P. Nagaswarupa, A. Muralidharan, *Chemistry Select* 1 (2016) 2265–2270.
- 21. A. King, T. Brunol, S. Stahl, J. Am. Chem. Soc. 131 (2009) 5044-5045.
- 22. D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 107 (2007), 174-238
- 23. I. Hirao, M. Kimoto, T. Mitsui, T. Fujiwara, R. Kawai, A. Sato, Y. Harada, S. Yokoyama, *Nature Met.* 3 (2006) 729–735.

- 24. D. L. Garmaise, J. Komlossy, J. Org. Chem. 29 (1964) 3403-3405.
- 25. P. K. Dubey, C. V. Ratnam, Indian J. Chem. 18 (1979 428-431.
- 26. N. Barbero, R. Sanmartin, E. Dominguez, Org. Biomol. Chem 8 (2010) 841-845.
- 27. V. O. Iaroshenko, D. Ostrovskyi, M. Miliutina, A. Maalik, A. Villinger, A. Tolmachev, D. M. Volochnyuk, P. Langer, *Adv. Synth. Catal.* **354** (2012) 2495–2503.
- 28. R. Vabre, F. Chevot, M. Legraverend, S. Piguel, J. Org. Chem. 76 (2011), 9542-9547.
- 29. T. Baladi, A. Granzhan, S. Piguel, Eur. J. Org. Chem. 14 (2016) 2421-2434.
- H. Nakano, T. Inoue, N. Kawasaki, H. Miyataka, H. Matsumoto, T. Taguchi, N. Inagaki, H. Nagai, T. Satoh, *Bioorg. Med. Chem.* 8 (2000) 373-380.
- 31. R. A. Fromtling, Clin. Microbiol. Rev. 1 (1988) 187-208.
- 32. D. Demir-Erol, U. Calıs, R. Demirdamar, N. Yulug, M. Ertan, *J. Pharm. Sci.* 4 (1995) 462-465.
- P. Lavanya, M. Suresh, Y. Kotaiah, N. Harikrishna, C. Venkata Rao, Asian J. Pharm. Clin. Res., 4, (2011), 69-73.
- 34. S. Lapenna, A. Giordano, Nat. Rev. Drug Discov. 8 (2009) 547-566.
- 35. S. Wang, P. M. Fischer, Trends Pharmacol. Sci. 6 (2008) 302-313.
- 36. J. C. Byrd, T. S. Lin, J. T. Dalton, D. Wu, M. A. Phelps, B. Fischer, M. Moran, K. A. Blum, B. Rovin, M. Brooker-McEldowney, S. Broering, L. J. Schaaf, A. J. Johnson, D. M. Lucas, N. A. Heerema, G. Lozanski, D. C. Young, J. R. Suarez, A. D. Colevas, M. R. Grever, *Blood* 109 (2007) 399-404.
- 37. R. Chen, M. J. Keating, V. Gandhi, W. Plunkett, Blood 106 (2005) 2513-2519.
- 38. S. Wang, G. Griffiths, C. A. Midgley, A. L. Barnett, M. Cooper, J. Grabarek, L. Ingram, W. Jackson, G. Kontopidis, S. J. McClue, C. McInnes, J. McLachlan, C. Meades, M. Mezna, I. Stuart, M. P. Thomas, D. I. Zheleva, D. P. Lane, R. C. Jackson, D. M. Glover, D. G. Blake, P. M. Fischer, *Chem. Biol.* 17 (2010) 1111-1121.
- P. M. Lukasik, S. Elabar, F. Lam, H. Shao, X. Liu, A. Y. Abbas, S. Wang, *European Journal of Medicinal Chemistry* 57 (2012) 311-322.
- 40. N. Keen, S. Taylor, Nat. Rev. Cancer 4 (2004) 927.
- 41. T. Tanaka, M. Kimura, K. Matsunaga, D. Fukada, H. Mori, Y. Okano, *Cancer Res.* **59** (1999) 2041.
- K. R. Kelly, J. Ecsedy, D. Mahalingam, S. T. Nawrocki, S. Padmanabhan, F. J. Giles, J. S. Carew, *Curr. Drug Targets* 12 (2011) 2067-2078.
- V. Bavetsias, C. Sun, N. Bouloc, J. Reynisson, P. Workman, S. Linardopoulos, E McDonald, *Bioorganic & Medicinal Chemistry Letters* 17 (2007) 6567–6571.

- 44. C. Sun, Y. Newbatt, L. Douglas, P. Workman, W. Aherne, S. Linardopoulos, J. *Biomol. Screen* 9 (2004) 391.
- 45. A. S. Moore, J. Blagg, S. Linardopoulos, A. D. J. Pearson, Leukemia 24, (2010) 671-678.
- 46. V. Bavetsias, J. M. Large, C. Sun, N Bouloc, M. Kosmopoulou, M. Matteucci, N. E. Wilsher, V. Martins, J. Reynisson, B. Atrash, A. Faisal, F. Urban, M. Valenti, A. de Haven Brandon, G. Box, F. I. Raynaud, P. Workman, S. A. Eccles, R. Bayliss, J. Blagg, S. Linardopoulos, E. McDonald, *J. Med. Chem.* **53** (2010) 5213-5228.
- V. Bavetsias, S. Crumpler, C. Sun, S. Avery, B. Atrash, Amir Faisal, A. S. Moore, M. Kosmopoulou, N. Brown, P. W. Sheldrake, K. Bush, A. Henley, Gary Box, M. Valenti, A. de Haven Brandon, Fl. I. Raynaud, P. Workman, S. A. Eccles, R. Bayliss, S. Linardopoulos, J Blagg, *J. Med. Chem.*, 55 (2012) 8721–8734.
- 48. M. F. Brana, M. Cacho, A. Gradillas, B. de Pascual-Teresa, A. Ramos, Curr. Pharm. Design 7 (2005) 1745-1780.
- 49. M. Hranjec, M. Kralj, I. Piantanida, M. Sedić, L. Suman, K. Pavelić, G. Karminski-Zamola, J. Med. Chem. 50 (2007) 5696-5711.
- M. Hranjec, I. Piantanida, M. Kralj, L. Suman, K. Pavelić, G. Karminski-Zamola, J. Med. Chem. 51 (2008) 4899-4910.
- M. Sedić, M. Poznić, P. Gehrig, M. Scott, R. Schlapbach, M. Hranjec, G. Karminski-Zamola, K. Pavelić, S. Kraljević Pavelić, *Mol. Cancer Ther.* 7 (2009) 2121-2132
- 52. M. Hranjec, Borka Lučić, I. Ratkaj, S. Kraljević Pavelić, I. Piantanida, Krešimir Pavelić, G. Karminski-Zamola, *European Journal of Medicinal Chemistry* 46 (2011) 2748-2758
- 53. N. Perin, R. Nhili, K. Ester, W. Laine, G. Karminski-Zamola, M. Kralj, M. H. David-Cordonnier, M. Hranjec, *Eur. J. Med. Chem.* **80** (2014) 218–227.
- 54. N. Perin, R. Nhili, M. Cindrić, B. Bertoša, D. Vušak, I. Martin-Kleiner, W. Laine, G. Karminski-Zamola, M. Kralj, M. H. David-Cordonnier, M. Hranjec, *Eur. J. Med. Chem.* 122 (2016) 530–545.
- N. Perin, I. Martin-Kleiner, R. Nhili, W. Laine, M.-H. David-Cordonnier, O. Vurgek,
 G. Karminski-Zamola, M. Kralj, M. Hranjec, *Med. Chem. Comm.* 4 (2013) 1537–1550
- 56. M. Hranjec, E. Horak, D. Babić, S. Plavljanin, Z. Srdović, I. Murković Steinberg, R Vianello, N. Perin, New J. Chem. 41 (2017) 358–371.

8. PRILOZI

¹H NMR spektar 2-(1*H*-imidazo[4,5-*b*]piridin-2-il)acetonitrila **3**

Prilog 2

a) ¹H NMR spektar (Z)-3-(2-klorfenil)-3-hidroksi-2-(1*H*-imidazo[4,5-*b*]piridin-2-

il)akrilonitrila **5**

b) ¹³C NMR spektar (*Z*)-3-(2-klorfenil)-3-hidroksi-2-(1*H*-imidazo[4,5-*b*]piridin-2-il)akrilonitrila **5**

Prilog 3

¹H NMR spektar smjese 5-okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **6a** i 5-okso-5,7-dihidropirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **6b**

a) ¹H NMR spektar smjese 5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 7 i 5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **8**

b) ¹H NMR spektar 5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 7

c) ¹H NMR spektar 5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **8**

d) 13C NMR spektar 5-klorpirido[2',3':4,5]imidazo[1,2-a]kinolin-6-karbonitrila 8

a) aromatski dio ¹H NMR spektra 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[3',2':4,5] imidazo[1,2-*a*]kinolin-6-karbonitrila **9**

b) alifatski dio ¹H NMR spektra 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[3',2':4,5] imidazo[1,2-*a*]kinolin-6-karbonitrila **9**

c) ¹³C NMR spektar 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **9**

Prilog 6

a) aromatski dio ¹H NMR spektra 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[2',3':4,5] imidazo[1,2-*a*]kinolin-6-karbonitrila **13**

b) alifatski dio ¹H NMR spektra 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[2',3':4,5] imidazo[1,2-*a*]kinolin-6-karbonitrila **13**

c) ¹³C NMR spektar 5-[(3-(*N*,*N*-dimetilamino)propil)amino]pirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **13**

a) aromatski dio ¹H NMR spektra 5-(*N*-izobutilamino)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **10**

b) alifatski dio ¹H NMR spektra 5-(*N*-izobutilamino)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **10**

c) ¹³C NMR spektar 5-(*N*-izobutilamino)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila 10

Prilog 8

a) aromatski dio ¹H NMR spektra 5-(*N*-izobutilamino)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **14**

b) alifatski dio ¹H NMR spektra 5-(*N*-izobutilamino)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **14**

c) ¹³C NMR spektar 5-(*N*-izobutilamino)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila
14

a) aromatski dio ¹H NMR spektra 5-(*N*-piperidin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **11**

b) alifatski dio ¹H NMR spektra 5-(*N*-piperidin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **11**

a) aromatski dio ¹H NMR spektra 5-(*N*-piperidin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **15**

b) alifatski dio ¹H NMR spektra 5-(*N*-piperidin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **15**

a) aromatski dio ¹H NMR spektra 5-(*N*-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **12**

b) alifatski dio ¹H NMR spektra 5-(*N*-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **12**

c) ¹³C NMR spektar 5-(*N*-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila
12

Prilog 12

a) aromatski dio ¹H NMR spektra 5-(*N*-piperazin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **16**

b) alifatski dio ¹H NMR spektra 5-(*N*-piperazin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **16**

¹H NMR spektar (*Z*)-3-(4-fluor-2-klorfenil)-3-hidroksi-2-(1*H*-imidazo[4,5-*b*]piridin-2-il)akrilonitrila **19**

Prilog 14

¹H NMR spektar 2-fluor-5-okso-5,7-dihidropirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **20a** i 2-fluor-5-okso-5,7-dihidropirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **20b**

a) ¹H NMR spektar 2-fluor-5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **21**

b) ¹³C NMR spektar 2-fluor-5-klorpirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **21**

c) ¹H NMR spektar 2-fluor-5-klorpirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **22**

a) aromatski dio ¹H NMR spektra 2,5-bis(*N*-izobutilamino)pirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **28**

a) aromatski dio ¹H NMR spektra 2,5-di(*N*-piperidin-1-il)pirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **25**

b) alifatski dio ¹H NMR spektra 2,5-di(*N*-piperidin-1-il)pirido[3',2':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **25**

Prilog 18

a) aromatski dio ¹H NMR spektra 2,5-di(*N*-piperidin-1-il)pirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **29**

b) alifatski dio ¹H NMR spektra 2,5-di(*N*-piperidin-1-il)pirido[2',3':4,5]imidazo[1,2-*a*]kinolin-6-karbonitrila **29**

a) aromatski dio ¹H NMR spektra 2,5-di(*N*-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **26**

b) alifatski dio ¹H NMR spektra 2,5-di(*N*-piperazin-1-il)pirido[3',2':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **26**

a) aromatski dio ¹H NMR spektra 2,5-di(*N*-piperazin-1-il)pirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **30**

b) alifatski dio ¹H NMR spektra 2,5-di(*N*-piperazin-1-il)pirido[2',3':4,5]imidazo[1,2*a*]kinolin-6-karbonitrila **30**

9. ŽIVOTOPIS

Ida Boček

Osnovnu školu završila je 2007. godine

nakon čega je upisala Gimnaziju Sisak. Maturirala je 2011. godine. U razdoblju od 2000. do 2010. godine pohađala je osnovnu i srednju glazbenu školu Fran Lhotka Sisak i stekla zvanje glazbenika flautista. Fakultet kemijskog inženjerstva i tehnologije, smjer Primijenjena kemija upisala je 2011. godine. Završni rad iz područja organske kemije "Novi hidroksi supstituirani derivati benzamida kao potencijalni antioksidansi" pod vodstvom mentorice izv. prof. dr. sc. Marijane Hranjec obranila je 2015. godine i postala sveučilišna prvostupnica primijenjene kemije. Na diplomskom studiju opredijelila se za smjer Primijenjena organska kemija. S posterskim priopćenjima sudjelovala je na XI. Susretu mladih kemijskih inženjera 2016. godine pod nazivom "Novi hidroksi derivati amidino supstituiranih benzimidazola i benzamida kao potencijalni antioksidansi" te na 25. hrvatskom skupu kemičara i kemijskih inženjera 2017. godine u Poreču pod nazivom "Antioksidativna i antiproliferativna aktivnost metoksi i amidino supstituiranih benzamida i benzimidazola". S usmenim izlaganjem sudjelovala je na 3. simpoziju studenata kemičara pod nazivom "Sinteza, spektroskopska karakterizacija i antioksidativna aktivnost novih hidroksi supstituiranih heteroaromatskih derivata kao potencijalnih senzora za detekciju pH i/ili metalnih kationa u otopinama". Dobitnica je dekanove nagrade 2015./2016. za zapažen studentski znanstveni rad pod naslovom "Sinteza, spektroskopska karakterizacija i antioksidativna aktivnost novih hidroksi supstituiranih heteroaromatskih derivata kao potencijalnih senzora za detekciju pH i/ili metalnih kationa u otopinama" i Rektorove nagrade za akademsku godinu 2016./2017. za rad pod naslovom "Utjecaj položaja dušikovog atoma na spektroskopska svojstva i interakciju s DNK/RNK regioizomera temeljenih na imidazo[4,5-b]piridinu" izrađen na Zavodu za organsku kemiju Fakulteta kemijskog inženjerstva i tehnologije pod mentorstvom izv. prof. dr. sc. Marijane Hranjec. Osposobljeni je ronilac s bocama kategorije R1 po CMAS-u.