Modifikacija TiO2 nanocjevčica dobivenih elektrokemijskim postupkom-struktura i električna svojstva

Krajnović, Vedrana

Undergraduate thesis / Završni rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:877916

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ

Vedrana Krajnović

ZAVRŠNI RAD

Zagreb, rujan 2018.

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ

Vedrana Krajnović

MODIFIKACIJA TiO2 NANOCJEVČICA DOBIVENIH ELEKTROKEMIJSKIM POSTUPKOM-STRUKTURA I ELEKTRIČNA SVOJSTVA

ZAVRŠNI RAD

Voditelj rada: izv. prof. dr. sc. Vladimir Dananić Neposredni voditelj rada: dr. sc. Andreja Gajović Članovi ispitnog povjerenstva: izv. prof. dr. sc. Vladimir Dananić prof. dr. sc. Zlata Hrnjak-Murgić dr. sc. Andreja Gajović

Zagreb, rujan 2018.

ZAHVALE

Ovaj rad je sufinancirala Hrvatska zaklada za znanost projektom IP-2014-09-9419.

Zahvaljujem se svim zaposlenicima u Laboratoriju materijala za konverziju energije i senzore, koji je dio Instituta Ruđer Bošković, koji su me primili u svoj tim i pripremili me za samostalan rad u laboratoriju. Posebno se zahvaljujem voditeljici laboratorija dr. sc. Andreji Gajović na ukazanoj prilici, da pod njenim vodstvom napravim eksperimentalni dio ovog rada i na savjetima za pisanje znanstvenih radova i općenito daljnji rad u znanosti. Zahvaljujem se i Ivani Panžić mag. chem. na pomoći oko izvođenja eksperimenata i savjetima koji su također doprinijeli kvaliteti ovog rada. Srdačno zahvaljujem Vedranu Kojicu mag. appl. chem. na korisnim savjetima i konstruktivnoj kritici. Zahvaljujem se dr. sc. Domagoju Beliću na snimanju uzoraka na SEM-u i dr. sc. Ani Šantić na mjerenjima impedancijske spektroskopije. Zahvaljujem se svome mentoru izv. prof. dr. sc. Vladimiru Dananiću na strpljenju i pomoći. Srdačno zahvaljujem i kolegicama Lari Bagladi i Mariji Ivezić na njihovoj podršci i pomoći. Zahvaljujem prethodno navedenim kolegicama i našem zajedničkom prijatelju K.P. na ugodnim druženjima izvan radnog okruženja. Zahvale i mome partneru Ivanu Piskoru na neprestanoj podršci i pomoći u teškim trenutcima. Na kraju se zahvaljujem svojim roditeljima Sanji i Mladenu i prijateljici Tari na konstantnoj potpori i pomoći tijekom cjelokupnog školovanja.

SAŽETAK RADA

Ključne riječi : TiO₂, TiO₂ nanocjevčice, BaTiO₃, anodizacija, električna svojstva, senzorska svojstva

TiO₂ je zadnjih godina stekao veliku popularnost i kao običan oksid i kao nanostrukturiran, te se koristi u svakodnevnom životu i industriji. Svojstva TiO₂ nanocjevčica se također intenzivno istraživati. Cilj ovog rada je na što jeftiniji i jednostavniji način sintetizirati TiO₂ nanocjevčice te dekorirati površinu TiO₂ nanocjevčica sa BaTiO₃ nanočesticama sa svrhom istraživanja primjene za senzore svjetlosti. Kako bi se utvrdio utjecaj morfologije i strukture na funkcionalna svojstva dobivenog materijala, ispitala su se njihova morfološka, strukturna i električna svojstva. Dokazalo da se da anodizacija uistinu je izrazito efikasna metoda za kontroliranje rasta nanocjevčica. Dokazalo se i da je površina TiO₂ nanocjevčica jako porozna,ali dekoriranjem te površine poroznost se smanjuje. Što mijenja svojstva, a time i primjenu takvog materijala. Dekoriranje također utječe i na anatasnu strukturu TiO₂ nanocjevčica sa BaTiO₃ nanočesticama, nanocjevčice dobivaju novo svojstvo, a to je fotovodljivost. Pokazalo se kako je fotovodljivost veća pri nižim frekvencijama i zadržava se i nakon prestanka osvjeljivanja uzorka.

ABSTRACT

Key words: TiO_2 , TiO_2 nanotubes, $BaTiO_3$, anodization, electrical properties, sensory properties

For the past few years TiO_2 has become widely known as a standard oxide, and as a nanostructure, and for it's use in everyday life, and industry. Properties of TiO_2 nanotubes are being thoroughly investigated. The aim of this work was to synthesize TiO_2 nanotubes at the lowest cost and simplest way, and decorate its surface with $BaTiO_3$ nanoparticles to study their use as light sensors. To determine the effects of morfology and structure on functional properties of the synthesized material, their morfological, structural, and electrical properties were measured. It was proven that the surface of TiO_2 nanotubes is very porous but with decorating the surface the porosity is being reduced. That will affect the properties, and the application of mentioned materials. Decoration of the surface will also affect the anatas structure of TiO_2 nanotubes and its electrical properties. Decoration of the TiO_2 nanotube surface with $BaTiO_3$ nanoparticles will contribute to the new feature which is photoconductivity. It was proven that the photoconductivity is higher when the frequency is lower and it is retained even when the illumination has been stoped.

Sadržaj

1.	UVOD	1
2.	OPĆI DIO	2
	2.1. TiO $_2$ i njegove nanocjevčice	2
	2.2. Princip rada anodizacije	4
	2.3. BaTiO $_3$ nanočestice dobivene hidrotermalnom sintezom	5
	2.4. Ramanova spektroskopija	7
	2.5. SEM (pretražna elektronska mikroskopija)	8
	2.6. Impedancijska spektroskopija1	0
3.	EKSPERIMENTALNI DIO 1	2
4.	REZULTATI I RASPRAVA 1	.5
5.2	ZAKLIUČAK	4
6.	LITERATURA 2	.5
7.	ŽIVOTOPIS	7

1. UVOD

U posljenjih 20 godina puno se pažnje posvetilo TiO₂ kao i njegovim nanostrukturama zbog njihovih izvanrednih svojstava. TiO₂ je netoksični poluvodič niske cijene koji ima široku primjenu u svakodnevnom životu i indrustriji (DSSC, kozmetički proizvodi, biomedicinski implantati, boje za zidove). TiO₂ nanocjevčice imaju identična svojstva kao i mezoporozni TiO₂, ali s nekim poboljšanjima. Jedan od jeftinijih i jednostavnijih načina za upravljanje oblikom i veličinom TiO₂ nanocjevčica mijenjanjem procesnih parametara je metoda anodizacije. TiO₂ nanocjevčice su i dobri prekursori za dobivanje kompleksnih spojeva titanijevih oksida. Jedan od takvih oksida je BaTiO₃ koji također ima široku primjenu u proizvodnji termistora, kondenzatora, elektrooptičkih uređaja, pretvornika, itd. Jedan od najefikasnijih načina priprave, s obzirom na cijenu, takvog oksidnog sloja na površini TiO₂ nanocjevčica je hidrotermalna sinteza. Prethodno su izvođeni mnogi ekperimenti i istraživanja na tim materijalima, ali u ovom radu se fokusiralo na nastavak prijašnjih istraživanja Milivoja Plodineca (rad je naveden u literaturi pod brojem 11) na Institutu Ruđer Bošković u Laboratoriju materijala za konverziju energije i senzore. U spomenutom radu je opažena iznimno velika postojana foto vodljivost u uvjetima istosmjernog napona kod TiO2 nanocjevčica dekoriranih BaTiO₃ a u ovom radu se, uz sintezu i karakterizaciju spomenutog materijala, istražila fotovodljivost u uvjetima i istosmjernog i izmjeničnog napona.

2. OPĆI DIO

2.1. TiO₂ i njegove nanocjevčice

Titanijev dioksid je poluvodič široke zabranjene zone (engl. band gap) i visoke kemijske stabilnosti, koji posjeduje velik opseg različitih svojstava. [1] Neka od tih svojstava su: visoki oksidacijski kapacitet, superhidrofilnost, kemijska stabilnost, visoka izdržljivost, prozirnost pod vidljivom svjetlosti, otpornost na koroziju i netoksičnost. [2] Takva svojstva dovode do njegove primjene u različite svrhe (npr. paste za zube, boje, implantati u biomedicini, kozmetički proizvodi, plastika, itd.). [1]

TiO₂ se pojavljuje u tri kristalna oblika u prirodi: anatas (tetragonalna), rutil (tetragonalni) i brukit (ortorombski). Rutil TiO₂ je najstabilniji oblik, dok su anatas i brukit metastabilni i mogu se pretvoriti u rutil pri višim temperaturama.

Slika 1. Shema kristalnih struktura rutila (lijevo) i anatasa TiO₂ (desno)

Zbog visoke fotokatalitičke aktivnosti, anatas je poželjan oblik TiO₂ u mnogim primjenama kao što su odvajanje i pročišćavanje zraka i vode. [3] Strukture rutila i anatasa mogu se opisati kao TiO₆ oktaedri, u kojima je svaki Ti⁴⁺ ion okružen sa šest O²⁻ iona. U rutilnoj strukturi svaki je oktaedar u kontaktu s deset susjednih oktaedara (dva dijeljena rubna kisikova para i osam dijeljenih kutnih atoma kisika), dok je u strukturi anatasa svaki oktaedar u kontaktu s osam susjeda (četiri dijele rub i četiri dijele kut). Ove razlike u rešetkastim strukturama uzrokuju različita elektronska svojstva dvaju oblika TiO₂. Rutil ima minimalnu slobodnu energiju u usporedbi s anatasom, stoga ako joj se dovede potrebna aktivacijska energija anatasa će se pretvoriti u rutil kod većine uvjeta. Temperature pri kojima se anatas transformira u rutil kreću se u rasponu 300 – 900 °C, ovisno o nekoliko čimbenika, uključujući nečistoće prisutne u anatasu, primarne veličine čestica, teksture i naprezanje u strukturi. [4]

TiO₂ je poluvodič n-tipa koji ima energiju zabranjene zone 3,0-3,2 eV za rutil i anatas. [4] Titanov dioksid ne apsorbira svjetlost u vidljivom području (400-700 nm) nego ju dispergira, a UV apsorbira (ultraljubičasto zračenje, 100-400 nm). Ova apsorpcija uzrokuje stvaranje para elektron-šupljina (prijenosnici naboja), koji uzrokuju kemijske reakcije na površinama.

Titanijev oksid (TiO₂) je jedan od najznačajnijih fotoaktivnih spojeva, uglavnom zbog njegove karakteristične stabilnosti u primjeni kao fotonaponske ćelije, baterije, senzori, optički emiteri, fotonski kristali, kataliza i fotokatalizacija, selektivna adsorpcija, ionska izmjena, ultraljubičasto blokiranje, pametne površinske prevlake i kao pametni materijal za punjenje u tkaninama, bojama, kozmetici itd. [3]

TiO₂ sintetiziran u nano veličini može imati različite morfologije, tako postoje: kuglice, štapovi, listovi, vlakna i cijevi. [3]

TiO₂ nanostrukture imaju veliki omjer površine i volumena, poboljšani transport naboja i vijek trajanja (zbog dimenzijske anizotropije) koji omogućavaju učinkovito odvajanje fotogeneriranih šupljina i elektrona. [2] TiO₂ nanocjevčice pokazuju visoke fotoelektrokemijske performanse pod UV i vidljivim svjetlom. Bile su uspješno korištene za dizajniranje DSSC-a, za fotocijepanje vode, itd. TiO₂ nanocjevčice pokazuju visoku osjetljivost na plin s izravnom primjenom u plinskim senzorima. Nanostrukturirani titan dioksid se nedavno također pojavio kao mogući negativni materijal u Li-ion baterijama. [5]

Elektron transportna svojstva nanocjevčastih struktura dobila su sve veću pažnju. Pri niskim temperaturama otpornost cjevčica se povećava zbog dehidracije, a zatim se smanjuje zbog kristalizacije. Do 450°C nastaje anatas; na višim temperaturama pretvorba u više otporan rutil opet smanjuje ukupnu otpornost. Za fotoanode, energija zabranjenih zona može se dobiti mjerenjem foto struje. TiO₂ nanocjevčice anodizirane i toplinski obrađene imaju sličnu zabranjenu zonu od 3,2 eV. Međutim, drugačije se kinetičko ponašanje pojavljuje kada se generiraju fotoelektroni pomoću vanjskog zračenja. Za anatazni TiO₂ nanocjevčasti sloj početno povećanje struje se bilježi, nakon čega slijedi postupno smanjenje fotostruje s vremenom zbog rekombinacijskog procesa, dok se za amorfne nanocjevčice fotostruja kontinuirano povećava s vremenom. [4]

Nanostrukturirani TiO₂ poznat je po svojoj sposobnosti da detektira koncentracije raznih plinova u tragovima, obično u dijelovima na milijun (ppm) i iznad. Proces se odvija putem interakcija prijenosa naboja između senzora i kemisorbirane vrste koja mijenja otpor senzora (npr. vodik smanjuje otpornost za nekoliko redova veličine). Uz potrebu za sve većim razvojem senzora, takvi takozvani kemijski otpornici pružaju mnoge atraktivne značajke uključujući jednostavnu strukturu uređaja i djelovanje, inherentnu stabilnost i kompatibilnost s mikrotehnologijskim procesima. [5] Kombinacija osjetljivosti na plinoviti vodik i fotokatalitičkih svojstava TiO₂ nanocjevčica dovodi do zanimljivih primjena samočistećih senzora. Glavni problem s kemijskim senzorima je da senzori budu kontaminirani ili otrovani uporabom (organske pare, ugljični dim, hlapivi organski spojevi i sl.) što im ograničava životni vijek. TiO₂ nanocjevčasti senzor plina na sobnoj temperaturi može se samostalno čistiti izlaganjem UV svjetlu. [6]

2.2. Princip rada anodizacije

Postoje različite metode za pripravu slojeva TiO₂ nanocjevčica, kao što su: sol-gel metoda pomoću gel podloga, hidrotermalne predepozicije TiO₂, sonokemijski, mikroemulzija, solvotermalna, ionske tekućine, itd. Nijedan način koji se koristi za dobivanje TiO₂ nanocjevčica ne nudi toliko kontrole nad dimenzijama tih elemenata kao što nudi anodizacija titan u elektrolitima na bazi fluora. [2] Anodizacija je značajna metoda u pripremi TiO₂ nanocjevčica na podlozi, pružajući preciznu kontrolu morfologije nanocjevčica, dužine i promjera pora i stvaranje debelih zidova na podlozi (u osnovi elektrokemijsko graviranje). Priprema titanijskog nanocjevčastog sloja započinje na Ti sloju. Uspješnost taloženja Ti (s obzirom na strukturu, morfologiju, debljinu, veličinu čestica, ujednačenost,itd.), anodizacija (s obzirom na parametre taloženja) i toplinski tretman (s obzirom na parametre anodizacije) nužni su za homogenu površinu. Naknadna termička obrada potrebna je za postizanje kristalne transformacije dobivenih amorfnih nanocjevčica u anatas. [7]

Mehanizam rasta nanocjevčica:

- 1. U prvoj fazi dolazi do stvaranja i rasta kompaktnog sloja amorfnog titanijevog dioksida. Do toga dolazi zbog interakcija metala s O²⁻ ili OH⁻ ionima iz vode pod utjecajem električnog polja. Nakon toga TiO₂ sloj reagira s ionima fluora uz pomoć električnog polja koje tvori [TiF₆]²⁻, što rezultira prijelomima na metalnoj površini. Anodnim rastom kompaktnih oksida na metalnim površinama i stvaranje cjevčica upravlja natjecanje između anodnog formiranja oksida i kemijskog otapanja oksida kao topivih fluoridnih kompleksa ili direktnog otapanja metalnih iona kao topivih fluoridnih kompleksa.
- 2. Daljnji oksidni rast se kontrolira ionskim transportom potpomognutim vanjskim električnim poljem (O²⁻ i Ti⁴⁺ iona) kroz rastući oksid. Kako je sustav pod konstantnim naponom, polje unutar oksida se postupno smanjuje povećanjem debljine oksida, proces je samoograničavajući. Frakture postaju veće pore i povećava se gustoća pora. Nakon toga, pore se ravnomjerno šire preko površine.
- 3. Čim su brzina rasta oksida na prijelazu metal-oksid i omjer otapanja oksida na prijelazu oksid-otopina konačno jednake, debljina sloja barijere ostaje nepromijenjena. Smanjujuća snaga polja dovodi do eksponencijalnog padanja struje i na taj način rasta kompaktnog oksidnog sloja s konačnom debljinom. [8, 2]
- 4. Dužina nanocijevi se povećava dok se brzina elektrokemijske oksidacije ne izjednači s brzinom otapanja kemikalija na gornjoj površini nanocjevčica. Tako je dobiven samoorganizirani porozni sloj. [2]

Slika 2. Shematski prikaz anodizacije Ti u prisutnosti fluorida

Na slici 2. prikazan je mehanizam anodizacije u fluoridnom elektrolitu.

Postoje dva učinka fluoridnih iona: (i) sposobnost tvorbe kompleksa $[TiF_6]^{2-}$ topivog u vodi i (ii) mali ionski radijus koji ih čini pogodnim za ulazak u rastuću TiO_2 rešetku i prijenos oksidom primjenjenim poljem (dakle natječu se s O^{2-} transportom). Sposobnost stvaranja kompleksa dovodi do trajnog kemijskog otapanja formiranog TiO_2 i sprječava taloženje $Ti(OH)_xO_y$ tako što Ti^{4+} ioni koji dolaze na granicu oksid / otopina mogu biti solvatizirani na $[TiF_6]^{2-}$, prije nego što tvore $Ti(OH)_xO_y$ sloj. U optimiziranim uvjetima to dovodi do situacije gdje pore jednako dijele raspoloživu struju i uspostavlja se samoorganizacija u uvjetima stabilnog stanja. [2]

Ovisno o anodizacijskim uvjetima dobivene cjevčice će biti amorfne ili kristalne, a kristalna struktura će biti anatas, mješavina anatasa i rutila, ili brukit. [9]

2.3. BaTiO₃ nanočestice dobivene hidrotermalnom sintezom

Većina tehnološki važnih feroelektrika [10] (uvjet je postojanje spontane polarizacije i mogućnost promjene orijentacije polarizacije) [11] su oksidi s perovskit strukturom zato što ona ima velik kapacitet karakteriziran faktorom tolerancije. BaTiO₃ pokazuje veliki nelinearni optički koeficijent i veliku dielektričnu konstantu, koje su odgovorne za njegovu široku primjenu u proizvodnji termistora, višeslojnih kondenzatora i elektrooptičkih uređaja, elektromehaničkih uređaja, pretvornika, kondenzatora, aktuatora, piezoelektričnih uređaja, dinamičkih memorija s nasumičnim pristupom i IR detektora. [10] Također ima visoku mehaničku stabilnost i feroelektrična svojstva pri temperaturama višim od sobne. [11]

Perovskitna struktura se pripisuje spojevima koji imaju kemijsku formulu ABO₃. Kristalna struktura je kubna s A (jedno, dvo ili trovalentni metal) kao velikim kationom na vrhu i s B

(tri, četiri ili petvalentan metal) kao malim kationom u sredini, te kisikom kao anionom u centru ploha kocke. [11] Perovskitna struktura prikazana je na slici 3.

Slika 3. Jedinična ćelija perovskita tipa ABO3

BaTiO₃ zanimljiv je zbog svoje mogućnosti da prelazi iz feroelektrika u paraelektrik. Stabilnost feroelektrične faze ovisi o temperaturi, veličini kristalita, dopiranju, koncentraciji nečistoća i strukturnih defekata. [11] Zbog industrijske potrebe za smanjenjem veličina mikroelektronike, promatraju se jednodimenzionalne (1D) feroelektrične nanostrukture, koje bi mogle pokazivati drugačija svojstva od većih komada tih materijala. Dobro je poznato da su oblik i veličina čestica jako ovisni o načinu priprave i kontrolirani parametrima sinteze. [13]

Trajna fotokonduktivnost (PPC) je dobro poznati efekt karakterističan za neke poluvodiče, međutim tek je nedavno opažen kod materijala s BaTiO₃ [11, 12]. To je svojstvo materijala da nakon osvjetljivanja pokazuje povećanu vodljivost, koja se polako smanjuje do vrijednosti koju materijal ima prije osvjetljivanja. Hrapavljenjem površine sprječava se transport šupljina i stvaraju se prepreke za pobuđene nositelje naboja. Predloženi mehanizam za prestanak PPC-a je da šupljine nastale izlaskom kisika na granici BaTiO₃ i TiO₂ nanocjevčica zarobljuju elektrone i zbog energijske barijere između, elektroni i šupljine produžuju vrijeme rekombinacije. Smatra se i da je vrijeme relaksacije uključeno u smanjenje PPC-a. [12]

Za hidrotermalni postupak se smatra da je svestrana, jeftina i ekološki prihvatljiva metoda za pripremu nanočestica barij titanata s različitim veličinama i morfologijama. [13] Vrlo je efikasna metoda jer kombinira utjecaj temperature, utjecaj koncentracije NaOH, tlaka i vremena trajanja reakcije na ionsku ravnotežu koji mogu stabilizirati stvaranje poželjnih produkata, a potisnuti stvaranje neželjenih. [11] Hidrotermalno formiranje BaTiO₃ zahtijeva visoki pH (> 12), jer na niskom pH povećava se topljivost barijevog titanata. Reakcija se može provesti pri nižem pH, ali samo pri povišenoj temperaturi. Postoje dva konkurentna mehanizma (nukleacija i rast) predložena za hidrotermalnu kristalizaciju barij titanata.

Hertl je predložio model koji pretpostavlja da otopljeni Ba²⁺ i Ba(OH)⁺ ioni reagiraju topokemijski s prekursorom titana i BaTiO₃ je formiran heterogenom nukleacijom na površini. Drugi mehanizam, mehanizam otapanja i taloženja, pretpostavlja da se izvori barija i titana brzo otope i održava se homogena nukleacija barijevog titanata. Termodinamika i kinetika hidrotermalne formacije BaTiO₃ su prvenstveno diktirane svojstvima titanovih prekursora. Budući da je hidrotermalna sinteza BaTiO₃ bitno diktirana svojstvima titanovog prekursora, cilj je procijeniti utjecaj temperature i vremena sinteze na kristalografsku fazu i na anizotropni rast kristala barijevog titanata pod hidrotermalnim uvjetima kada se koriste slojeviti titan s nanocjevčastom morfologijom kao prekursor. [13]

2.4. Ramanova spektroskopija

Ramanovom spektroskopijom dobivamo kemijske i strukturne informacije koje nam služe za bolje razumijevanje materijala koji se analizira. Može se identificirati nepoznate materijale iz njihovih jedinstvenih "otisaka prstiju" u ramanskom spektru, obično koristeći baze podataka poznatih spektara. Ramanove linije nastaju direktno od molekulskih vibracija. Te vibracije su jako osjetljive u promjeni u kemiji tako da se mogu opaziti minimalne razlike u molekulskom okruženju. Skoro svi materijali pokazuju ramansko raspršenje. Jedine iznimke su čisti metali koji samo reflektiraju svjetlost. Ramanova spektroskopija ima i svojih negativnih strana kao što su: slab efekt, pa fosfoluminiscencija može zasjeniti ramanski efekt, kemijsko posuđe u koje se stavlja uzorak pri snimanju može zamaskirati ramanske signale, itd.

Prilikom emitiranja lasera neke valne duljine na materijal u zračenju raspršenom s dotičnog materijala vidimo promjenu valne duljine jer je svjetlost izgubila dio energije kod raspršenja tako što je predala dio te energije materijalu i uzrokovala vibriranje atoma. To je zapravo princip Ramanovog raspršenja. Proučavanjem vibracija atoma može se otkriti kemijski sastav i druge korisne informacije o materijalu. Ramanov spektrometar se sastoji od : jednog ili više lasera, leća (za usmjeravanje svjetla na uzorak i skupljanje raspršenog svjetla), filtera (za filtriranje reflektiranih i raspršenih zraka tako da se skupi samo ramanski raspršena svjetlost), difrakcijske prizme (ili bilo koji drugi objekt koji ima isti efekt), detektora i računala (kontrolira cijeli sistem, prikazuje spektar i omogućuje analizu podataka). Prvi korak je obasjavanje uzorka monokromatskim svjetlom (laserom). Većina svjetlosti koja je raspršena je nepromijenje energije, ali u jednom trenutku dolazi do predaje ili primanja energije koje se događa zbog toga što fotoni razmjene dio energije sa vibrirajućim molekulama u materijalu. Ukoliko se dio energije fotona predaje to je Stokesovo raspršenje, a ukoliko se energija prima to je anti-Stokesovo raspršenje. Promjena u energiji ovisi o frekvenciji vibracije molekula (visoka frekvencija-lagani atomi se drže skupa jakim vezama-promjena energije je značajna, niska frekvencija-teški atomi se drže slabim vezama-promjena energije mala). Ramanov spektar se crta tako da se na y-os ucrtava intenzitet, a na x-os ramanski pomak (cm⁻¹), odnosno razlika valnog broja pobudnog i raspršenog fotona. Iz spektra se dobivaju informacije pomoću ramanskih pomaka i relativnih intenziteta svih ramanskih vrpci materijala, te se promatra promjena svake zasebne vrpce i promjena u spektru s promjenom uzorka ili položaja na uzorku.

Kada je uzorak osvjetljen laserom može doći, osim ramanskog raspršenja i do fotoluminiscencije. Fotoluminiscencija je puno jača od ramanskog raspršenja i tako može spriječiti uspješnu ramansku analizu. Fotoluminiscencija obuhvaća i fosforescenciju i fluorescenciju. Takve smetnje se mogu izbjeći odabirom prikladne valne duljine lasera. [14]

2.5. SEM (pretražna elektronska mikroskopija)

Pretražni elektronski mikroskop (SEM) je vrsta elektronskog mikroskopa koji proizvodi slike uzorka skeniranjem površine pomoću fokusiranog elektronskog snopa. Elektroni u interakciji s atomima u uzorku proizvode različite signale koji sadrže informacije o površinskoj topografiji i sastavu uzorka. Elektronski snop skenira uzorak, a položaj snopa se kombinira s detektiranim signalom kako bi se dobila slika na ekranu. SEM visoke rezolucije može postići razlučivost bolju od 1 nanometra.

Najčešći SEM način rada je detektiranje sekundarnih elektrona koji emitiraju atomi pobuđeni elektronskim snopom. Broj sekundarnih elektrona koji se mogu otkriti, između ostalog, ovisi o topografiji uzorka. Skeniranjem uzorka i sakupljanjem sekundarnih elektrona koji se emitiraju pomoću posebnog detektora stvara se slika koja prikazuje topografiju površine. [15] Opisani princip detektiranja prikazan je na slici 4.

Slika 4. Shema SEM-a

U tipičnom SEM-u, elektronska zraka se termički emitira iz elektronskog pištolja opremljenog s volframovom niti katodom. Volfram se obično koristi u termičkim elektronskim pištoljima

jer ima najvišu točku topljenja i najniži tlak pare svih metala, čime se omogućuje da se električki zagrije dovoljno za emisiju elektrona, a i cijena mu je niska. Druge vrste elektronskih emitera uključuju lantan heksaborid (LaB₆) katode, koje se mogu koristiti u SEMa kao zamjena za standardnu volframovu nit, a ako se nadogradi vakuumski sustav može se koristiti pištolj za emisije polja (engl. field emmision gun -FEG). Takvi uređaji mogu biti tipa hladne katode upotrebom volframovih jednokristaličnih emitera ili termički potpomognutog tipa Schottky, koji koristiti emitere cirkonij oksida. [16]

Odabirom radnih parametara SEM izvora elektrona, leća i otvora, mikroskopist kontrolira karakteristike fokusirane zrake koja doseže površinu uzorka: energiju (obično odabrana u rasponu od 0,1-30 keV), promjer (0,5nm do 1 μ m), snop zraka (1pA do 1 μ A) i kut konvergencije (polukružni kut 0,001-0,05 rad). U konvencionalnom visokovakuumskom SEM-u (obično sa stupnjem pritiska komore i kolone smanjenom ispod 10⁻³ Pa), gustoća zaostalih atoma je toliko niska da je statistički nevjerojatno da elektronski snopovi susretnu bilo koji atom od zaostalog plina duž putanja leta od izvora elektrona do uzorka, udaljenosti su oko 25 cm. [17]

U mikroskope može biti ugrađen i detektor karakterističnog rendgenskog zračenja (EDXS) koji detektiranjem rendgenskih zraka prilikom specifičnih elektronskih prijelaza omogućuje kemijsku analizu uzorka.

Slika 5. Prikaz zračenja izazvanih elektronskim pištoljem

2.6. Impedancijska spektroskopija

Impedancijska mjerenja izvode se u ćeliji s dvije identične elektrode između kojih je smješten uzorak u atmosferi koja može biti zrak, inertna, reducirajuća, oksidirajuća ili vakuum.

Osnovni princip impedancijske spektroskopije je pobuda uzorka preko elektroda poznatom strujom ili naponom te mjerenje odgovora na tu pobudu, rezultantne struje ili napona. Postoji nekoliko vrsta pobude, a najčešći način je mjerenje impedancije direktno u određenom frekencijskom području kada na uzorak djeluje napon određene frekvencije. Kao odgovor bilježi se amplituda i pomak u fazi rezultantne struje na toj frekvenciji (slika 6.). Mijenjanjem pobudne frekvencije dobiva se impedancija sustava u širokom frekvencijskom području. Iznos primijenjenog napona mora biti dovoljno mali da odziv sustava bude linearan.

U uzorku koji je pod djelovanjem izmjeničnog napona određene frekvencije dolazi do velikog broja osnovnih mikroprocesa koji doprinose ukupnom električnom odgovoru, a uključuju: prijenos elektrona kroz uzorak, prijelaz elektrona kroz dodrinu površinu elektroda-uzorak te gibanje iona u ionskim vodičima. Električna svojstva materijala mogu se istraživati mijenjanjem tri međusobno neovisne veličine: a) frekvencije, b) temperature i c) atmosfere.

Djelovanje izmjeničnog napona, U(t), određene frekvencije na sustav elektroda-uzorak:

$$U(t) = U_0 \sin(\omega t)$$

gdje je: U₀ maksimalna vrijednost napona, ω kutna frekvencija, a t vrijeme, uzrokuje struju, I(t), koja je pomaknuta u fazi u odnosu na primijenjen napon i iznosi:

$$I(t) = I_0 \sin(\omega t + \theta)$$

gdje je: I₀ maksimalna vrijednost struje. θ predstavlja faznu razliku između napona i struje te iznosi nula za ponašanje idealnog otpornika.

Električna impedancija, $Z^*(\omega)$, definira se prema Ohmovom zakonu kao omjer primijenjenog napona i rezultantne struje:

$$Z^*(\omega) = U(t)/I(t)$$

s iznosom, ili modulom impedancije $|Z^*(\omega)| = U_0(\omega)/I_0(\omega)$ i faznim kutom $\theta(\omega)$.

Zbog fazne razlike između napona i struje impedancija je kompleksna veličina. Pravokutne koordinate impedancije iznose:

$$\operatorname{Re}(Z) \equiv Z' = |Z^*| \cos \theta$$
$$\operatorname{Im}(Z) \equiv Z'' = |Z^*| \sin \theta$$

gdje je: $\operatorname{Re}(Z) \equiv Z'$ realna komponenta, $\operatorname{Im}(Z) \equiv Z''$ imaginarna komponenta, $|Z^*|$ iznos impedancije, i θ fazni kut.

Postoje još tri kompleksne veličine koje opisuju električna/dielektrična svojstva materijala, a mogu se mjeriti ili izvesti iz kompleksne impedancije, Z*: kompleksna električna admitancija, kompleksni električni modul i kompleksna permitivnost. [18]

Slika 6. Prikaz primijenjenog napona, U(t) i struje, I(t), koji se koriste za računanje kompleksne impedancije, Z*

3. EKSPERIMENTALNI DIO

Uzorci nizova titan dioksidnih nanocjevčica dobiveni su elektrokemijskom anodizacijom titanove folije visoke čistoće (99,7 %). Prije početka anodizacije Ti folija mora se temeljito očistiti u ultrazvučnoj kupelji. Ti folija stavi se u čašu sa acetonom i stavi se u ultrazvučnu kupelj na 480 s. Nakon toga se ispere, osuši dušikom i stavi u čašu sa etanolom pa u ultrazvučnu kupelj na 480 s. Ponovi se postupak ispiranja i sušenja pa se folija onda čisti u destiliranoj vodi. Nakon toga se sastavi aparatura kao na slici 7. Ti folija je anoda, a katoda je Pt folija. Kao elektrolit se koristi otopina 0,3% NH₄F amonij fluorida, etilenglikol i 12% H₂O vode. U sastavljenu ćeliju pušta se istosmjerna struja, a napon koji se pušta je konstantan i iznosi 60 V. Na računalu u programu FlukeView se prati ovisnost struje o vremenu. Anodizacija traje 3h.

Slika 7. Prikaz aparature za anodizaciju

Po završetku anodizacije pločica se ispere i osuši dušikom. Dobiveni uzorci nanocjevčica titanijevog dioksida (TiO₂ NT) se stavljaju u peć na 450°C na 1h kako bi se osigurala struktura anatasa i kristaličnost. Uzorci se karakteriziraju morfološki (SEM), strukturno (Raman) i električno (IS).

Dobivena pločica se nakon toga stavi u teflonsku posudu u kojoj je prethodno pripravljena otopina. Otopina se sastoji od 20 ml 10 M NaOH i 0,65 g BaCl₂. Teflonska posuda stavi se u autoklav reaktor na 170°C u trajanju od 2h. Pločica se zatim ohladi i ponovno se stavi u teflonsku posudu u koju je dodana nova otopina istog sastava. Stavi

se u autoklav reaktor na 170°C u trajanju od 6h. Pločica se ohladi i zatim se ponovi cjelokupna karakterizacija.

Ispitivanje površine nanocjevčica provedeno je pretražnim elektronskim mikroskopom SEM JEOL JSM-7000F (slika 8.) u SE načinu rada uz akceleracijske napone 1,5 kV, 5,0 kV i 10,0 kV

Slika 8. SEM JEOL JSM-7000F

Ramanova raspršenja mjerena su Horiba Jobin-Yvon T64000 ramanskim sistemom (slika 9.) uz pobudu laserom od 532 nm, u konfokalnom micro Raman modu.

Slika 9. Ramanski sistem Horiba Jobin-Yvon T64000

Električna svojstva BaTiO₃ premaza na TiO₂ nanocjevčicama mjerena su impedancijskom spektroskopijom (Novocontrol Alpha-N dielektričnim analizatorom) u rasponu frekvencija

od 1 Hz do 1 kHz pri sobnoj temperaturi. Mjerenja fotovodljivosti površine provedena su u mračnoj komori i u prostoriji osvjetljenoj dnevnim svjetlom. Smanjenje fotovodljivosti praćeno je u vremenu i to pri frekvenciji od 1 Hz i pri frekvenciji od 1 kHz. Promjena vodljivosti se pratila tokom 2 h nakon osvjetljivanja koje je trajalo 30 min. Za električni kontakt stavljena je srebrna pasta. Premazi su razdvojeni na 2.5 mm na površini uzorka. Impedancijski spektri analizirani su pomoću modela ekvivalentnog kruga.

Eksperimentalni dio priprave uzoraka provodio se na Institutu Ruđer Bošković (IRB) u Laboratoriju materijala za konverziju energije i senzore, a karakterizacija u suradnim laboratorijima na IRB.

4. REZULTATI I RASPRAVA

Tijekom anodizacije dolazi istovremeno do kontinuiranog rasta oksida na unutarnjoj granici i kemijskog otapanja oksidnog sloja. Stabilno stanje se uspostavlja kada je brzina rasta pora na granici metalnog oksida identična brzini otapanja oksidnog filma na vanjskoj granici. U tom slučaju nanocjevčasti oksidni sloj samo kontinuirano "jede" kroz titan bez zadebljanja sloja oksida. Treba napomenuti da se kemijsko otapanje TiO₂ odvija duž cijele duljine cjevčica i zbog toga cjevčice s vremenom dobivaju oblik slova V u morfologiji, tj. na vrhovima cijevčice imaju tanje zidove nego na dnu. Razlog za odvajanje u cijevičasti oblik, za razliku od nanoporoznih struktura, još nije sasvim jasan. Može biti pripisan akumulaciji fluoridnih vrsta na dnu cjevčice i na taj način uspostavljanju slabije (i topljivije) TiO₂ strukture, koja sadrži anione, između susjednih pora / cjevčica. Što se tiče brzine rasta cjevčica jasno je da što je duže vrijeme rasta (nakon općenito nekoliko minuta), rast postaje sličniji difuziji. To znači da difuzija fluoridnih vrsta na dno cijevčica ili transport izreagiranog [TiF₆]²⁻ kompleksa počinje određivati struju koja teče kroz elektrolit. Do trenutka kada kemijsko otapanje cjevčica počne značajno skraćivati cjevčice, duljina cjevčica je također kontrolirana difuzijom.

Postupak anodizacije ovisi o mnogim parametrima kao što je koncentracija F⁻ iona, tipu otapala, temperaturi, miješanju, struji, nečistoćama, otopljenom kisiku i potencijalu anodizacije. Ipak, anodizacijski napon i koncentracija otopine amonij fluorida su najutjecjaniji parametri. Promjenom parametara anodizacije parametri nanocjevčica se mogu kontrolirati (unutarnji i vanjski promjeri cjevčica i debljina zida). Najjednostavniji način kontrole duljine cjevčica je tijekom trajanja procesa anodizacije. Vrlo mali sadržaj vode u polarnim organskim otapalima može znatno smanjiti brzinu otapanja kemikalija i tako povećava dužinu nanocjevčica.

pH otopine za anodiziranje utječe na sposobnost elektrolita da otapa formirane okside (s većim stupnjem otapanja oksida u kiselom okolišu). To je jedan od razloga zašto je otapanje anodnog oksida najniže kada se koriste fluoridne soli, a ne fluorovodična kiselina. Isto tako koncentracija fluoridnih iona mora biti niska da se minimizira otapanje, ali također mora biti na razini koja je dovoljna da se osigura nastajanje nanocjevčica. Tipične koncentracije F⁻ koje dovode do samostalnih nanocjevčica su u rasponu od 0,3-0,5 % masenog udjela.

Potrebno je odrediti optimalno vrijeme anodiziranja za određene uvjete (elektrolit, potencijal, koncentracija fluora, itd.) kako bi se produžila maksimalna duljina nanocjevčica. Proces rasta u organskim elektrolitima je jako spor, a pojave otapanja nisu tako značajne kao u vodi, iako se uvjeti i dalje trebaju prilagoditi radi optimalnog rasta. Kao rezultat toga, produljenjem vremena anodizacije od nekoliko sati do jednog dana, općenito je moguće dobiti nanocjevčice duljine preko 100 µm. Jedan od problema povezanih s korištenjem dugih vremena anodiziranja u organskom elektrolitu je prekomjerno otapanje nanocjevčica u nekim područjima. Kao što je objašnjeno, pri korištenju organske otopine uobičajeno je promatrati porozni sloj na vrhu nanocjevčica, što je ostatak početnog sloja barijera formiranih tijekom ranih faza anodizacije. Nanocjevčasti sloj razvija se ispod i pretpostavlja

se da postoje preferencijalni putevi za organski elektrolit, stoga prekomjerno otapanje nije homogeno preko cijele strukture nanocjevčica.

Temperatura elektrolita utječe na brzinu otapanja nanocjevčica koje se normalno pripravljaju pri 20-25°C (sobna temperatura). U organskim elektrolitima raspon temperature koji je najpovoljniji za rast nanocjevčica je između 0 i 40°C. Pri korištenju organskog elektrolita promjer nanocjevčica veći je pri višoj temperaturi anodizacije jer pri niskoj temperaturi dolazi do veće viskoznosti i smanjuje se ionska migracija i otapanje TiO₂ i Ti s F⁻ ionima.

Kao što je navedeno u eksperimentalnom dijelu tokom procesa anodizacije pratila se ovisnost struje o vremenu. Na slici 10. priložen je izgled jednog takvog I-t grafa.

Slika 10. I-t graf dobiven anodizacijom

Iz grafa se vidi kako puštanjem konstantnog napona kroz strujni krug struja naglo skoči na vrijednost od ~ 23 mA. Nakon toga iznos struje počinje naglo padati dok ne dosegne vrijednost od ~ 1 mA. Slijedi postepeno padanje struje od 1 mA do minimalne vrijednosti. Takvo postupno padanje struje traje više od dva i pol sata. Iznos struje ovisi o koncentraciji fluoridnih iona. Fluoridni ioni se odmah na početku reakcije potroše za stvaranje kompleksa sa titanom i jetkanje u unutrašnjost materijala. Zbog naglog smanjenja koncentracije fluorida u elektrolitu jakost struje se također naglo smanji.

Reakcije koje se odvijaju tijekom anodizacije su:

 $Ti \rightarrow Ti^{4+} + 4e^{-}$ $Ti^{4+} + 2H_2O \rightarrow TiO_2 + 4H^{+}$ $Ti^{4+} + 6F^{-} \rightarrow [TiF_6]^{2-}$

Prethodno navedene reakcije odvijaju se na anodi, a reakcija konkurentna nastajanju kompleksa sa fluorom je:

 $Ti^{4+} + (2 + n)H_2O \rightarrow TiO_{2-n}(OH)_{2n} + 4H^+$

Nastali kompleks ne taloži se na površinu nanocjevčica nego ostaje u otopini. Na katodi odvija se reakcije nastajanje vodika:

 $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Kao što je u uvodu navedeno TiO₂ nanocjevčice imaju dobra električna svojstva. Dekoriranjem površine TiO₂ nanocjevčica njihova svojstva se mijenjaju. Provedena je morfološka, strukturna i električna karakterizacija TiO₂ nanocjevčica i njihovih modificikacija kako bi im se usporedila svojstva.

Kako bi se usporedila morfološka svojstva korištena je pretražna elektronska mikroskopija. Snimljene su SEM mikrografije za TiO_2 nanocjevčice (slika 11.) i za TiO_2 nanocjevčice dekorirane sa $BaTiO_3$ na površini (slika 12.).

Slika 11. SEM snimke anodiziranih TiO₂ nanocjevčica bez BaTiO₃

Slika 12. SEM snimke anodiziranih TiO₂ nanocjevčica sa BaTiO₃

Na TiO₂ nanocjevčicama bez BaTiO₃ vidi se jasna struktura cjevčica. Na snimkama se mogu razaznati zidovi i šupljine nanocjevčica. Vidi se i različita duljina nanocjevčica koja je posljedica nejednolike raspodjele gustoće struje što je uzrokovalo različite lokalne koncentracije fluoridnih iona uz površinu folije. Podloga je jako porozna što onda i opravdava prije spomenutu uporabu TiO₂ nanocjevčica kao plinskih i biosenzora. Kako bi se proširila senzorska svojstva nanocjevčica na osjetljivost na svjetlo, u ovom radu dekorirane su sa BaTiO₃. Na TiO₂ nanocjevčicama dekoriranim sa BaTiO₃ na površini se vide nanočestične nakupine BaTiO₃ dobivene hidrotermalnom sintezom. Nanočestice BaTiO₃ sferičnog su oblika. Očito je da nakupine nisu jednako raspoređene preko cijele površine. Na onim dijelovima gdje su bile kraće TiO₂ nanocjevčica i svojstva čestica da se talože na mjesta gdje su se prethodno istaložile čestice iste vrste nego tamo gdje takvih čestica nema. Podloga je zbog sintetiziranih čestica BaTiO₃ manje porozna nego što je bila prije dekoriranja površine.

U sklopu SEM-a nalazi se i EDXS (energy-dispersive X-ray spectroscopy) detektor pomoću kojeg se odredio sastav pojedine podloge (slike 13. i 14.). Pomoću EDXS-a može se pretpostaviti kakvi su se sve procesi odvijali tijekom hidrotermalne sinteze BaTiO₃.

Element	Weight%	Atomic%
C K	0.56	1.20
O K	40.84	65.99
F K	1.44	1.96
Ti K	57.16	30.85
Totals	100.00	

Element	Weight%	Atomic%
C K	0.56	2.24
O K	18.68	56.20
Ti K	19.59	19.68
Co K	0.44	0.36
Zn L	0.62	0.46
Ba L	60.10	21.06
Totals	100.00	

Slika 14. EDXS prikaz TiO2 nanocjevčica sa BaTiO3

Iz EDXS dijagrama vidi se da TiO₂ nanocjevčice i njihova modifikacija imaju isti maseni udio ugljika (0.56 %), međutim to je najvjerojatnije bio signal ugljika od ugljične trake kojom je uzorak pričvršćen za nosač prilikom snimanja.. Maseni udio kisika se hidrotermalnom sintezom drastično smanjio (smanjio se sa 40.84% na 18.68%) što je bilo i za očekivati zbog visokog pH i visoke temperature. Zaostaci fluoridnih iona od anodizacije su hidrotermalnom sintezom u potpunosti izašli iz strukture vjerojatno zbog većeg afiniteta prema natriju. Maseni udio titana se također drastično smanjio što je bilo za očekivati zbog sinteze BaTiO₃ (pao je sa 57.16% na 19.59%). Hidrotermalnom sintezom u strukturi su se pojavili novi ioni, a to su osim očekivanog barija, cink i kobalt. Cink i kobalt pojavljuju se u tragovima, ali barij odnosi 60 % mase. Cink i kobalt su vjerojatno nečistoće koje su zaostale u teflonskoj posudi.

Ramanova spektroskopija korištena je za utvrđivanje kristalne strukture TiO₂ nanocjevčica, odnosno za provjeru jesu li uistinu anatas. Ramanov spektar snimljen je i za dekorirane TiO₂ nanocjevčice kako bi se utvrdilo kako modifikacija utječe na anatazni oblik. Dobiveni spektri prikazani su na slikama 15. i 16.

Slika 15. ramanski spektar za TiO₂ nanocjevčice

Slika 16. ramanski spektar za TiO₂ nanocjevčice dekorirane sa BaTiO₃

Što je manja veličina čestica TiO₂ materijala to su vrpce u ramanskom spektru šire. Iz ramanskog spektra čistih TiO₂ nanocjevčica vidljivo je pet vrpci karakterističnih za antasni oblik TiO₂. Anatas ima 15 optičkih vibracijskih stupnjeva slobode koji su sadržani u 10 optički aktivnih modova vibracije. U ireducibilnoj reprezentaciji se ovi modovi zapisuju kao: $\Gamma_{opt} = A_{1g} + A_{2u} + 2B_{1g} + B_{2u} + 2E_u + 3E_g$, gdje slova označavaju simetriju vibracije modova. U ramanskom spektru opaža se 6 aktivnih modova $\Gamma_{raman} = A_{1g} + 2B_{1g} + 3E_g$. Od toga su tri simetrije E_g (dvostruko degeneriran mod) na 144 cm⁻¹, 513 cm⁻¹ i 639 cm⁻¹, dvije B_{1g} na 399 cm⁻¹ i 519 cm⁻¹ i jedna A_{1g} na 197 cm⁻¹ s tim da se pikovi na 513 i 519 cm⁻¹ razlikuju tek na temperaturi ispod 73K. Anatas ima i tri IR aktivna moda A_{2u} i $2E_u$.

Barijev titanat u tetragonskoj strukturi ima 15 vibracijskih stupnjeva slobode. Ireducibilna reprezentacija optičkih vibracijskih modova barijevog titanata glasi : $\Gamma_{OP} = 3A_1 + B_1 + 4E$. $3A_1$ i 4E su IR i Raman aktivni modovi,a B₁ samo Raman aktivan mod. A₁ i E optički modovi se cijepaju na transverzalne (TO) i longitudinalne (LO) modove, iako to nije predviđeno teorijom grupa. Sada se ireducibilna reprezentacija može zapisati kao $\Gamma_{OP} = 3 [A_1 (TO) + A_1 (LO)] + B_1 + 4[E (TO) + E (LO)]$. Detaljnija asignacija svakog pojedinog moda s pridruženim valnim brojem nalazi se u tablici 1. Iz tablice se vidi da spektar TiO₂ nanocjevčica ima karakteristične vrpce anatasa, a spektar TiO₂ nanocjevčica dekoriranih s sintetiziranim BaTiO₃ osim karakterističnih vrpci za anatas (slabijih od TiO₂ NT) pokazuje i vrpce karakteristične za BaTiO₃ tetragonske strukture.

Tablica	1. Položaji ramanskih vrpci	
---------	-----------------------------	--

Anatas		TiO ₂		BaTiO₃		BaTiO₃	
		nanocjevčice		tetragonski		sintetizirani	
Valni broj	Simetrija	Valni broj	Simetrija	Valni broj	Simetrija	Valni broj	Simetrija
(cm ⁻¹)		(cm⁻¹)		(cm⁻¹)		(cm⁻¹)	
144	Eg	145	Eg	250	A1 (TO)		
197	Eg	198	Eg	307	B ₁ , E (LO)	304	B1, E
					+ E (TO)		(LO) + E
							(TO)
399	B _{1g}	395	B _{1g}	515	E (TO),		
					A1 (TO)		
513	A _{1g}	513	A _{1g}	715	E (LO), A ₁	715	E (LO),
519	B _{1g}				(LO)		A1 (LO)
639	Eg	635	Eg				

Teoretske vrijednosti za vrpce karakteristične za anatas i tetragonski BaTiO₃ uzete su iz doktorske disertacije Milivoja Plodineca (literatura [11]).

Mjerila su se električna svojstva TiO₂ nanocjevčica sa BaTiO₃ nanočestičnom prevlakom impedancijskom spektroskopijom, te je prilikom eksperimenta opažena fotovodljivost. Kako bi se detaljnije istražila opažena fotovodljivost u uvjetima istosmjernog napona (dc, odnosno vrlo male frekvencije napona od 1 Hz) i izmjeničnog napona (ac, 1 kHz) vodljivost je snimana u vremenu na te dvije frekvencije.. Dobiveni su grafovi (slika 17. i 18.) koji pokazuju ovisnost fotovodljivosti o vremenu za vrijeme i nakon osvjetljivanja.

Slika 17. Prikaz ovisnosti vodljivosti (dc) o vremenu pri frekvenciji 1 Hz

Slika 18. Prikaz ovisnosti vodljivosti (ac) o vremenu pri frekvenciji 1 kHz

Energije vodljive i valentne vrpce BaTiO₃ veće su nego kod TiO₂. Zbog različitog položaja Fermijevih nivoa na spojištu navedenih materijala, dolazi do transporta elektrona iz vodljive vrpce BaTiO₃ u vodljivu vrpcu TiO₂. Ovaj transport nosioca naboja se odvija zbog stvaranja ravnoteže i izjednačavanja Fermijevih nivoa oba materijala. Dolazi do "bandbending efekta" na spojištu. Višak pozitivnog naboja skuplja se na površini BaTiO₃,a višak negativnog naboja kod TiO₂. Nedostatak negativnog naboja doprinosi ionskoj vodljivosti BaTiO₃. Slično je i na površini TiO₂.

Iz grafova je vidljivo da će se povećanjem frekvencije smanjiti porast fotovodljivosti, odnosno fotovodljivost je bolja u sustavu kroz koji se puštao istosmjerni napon (1 Hz) nego u sustavu u kojem se puštao izmjenični napon (1 kHz). Osim smanjenja porasta, fotovodljivost će rasti sporije, a smanjiti se brže. Nakon prestanka osvjetljivanja, BaTiO₃ pokazuje fotovodljivost još neko vrijeme (PPC). Rezultati su u skladu sa već napravljenim eksperimentom koji je izveo dr. sc. Milivoj Plodinec koji je i predložio mehanizam zašto dolazi do PPC-a koji je naveden u općem dijelu.

5. ZAKLJUČAK

Morfologija i struktura poroznog sloja TiO₂ ovise o elektrokemijskim uvjetima i parametrima otopine. Korištenjem neutralnog puferskog elektrolita koji sadrži NH₄F umjesto HF dobio se samoorganizirani NT TiO₂ sloj. U etilenglikolnom elektrolitu i daljnjom optimizacijom parametara nanocjevčice imaju gotovo idealni heksagonalni raspored. Iz mikrografija dobivenih SEM-om jasno se vidi porozna površina dobivenih nanocjevčica i njihov prostorni raspored. Iz ramanskih spektara koji dokazuju da smo toplinskim tretmanom nakon anodizacija dobili anatas, može se zaključiti da je anodizacija uistinu jedna od najboljih i najlakših metoda za dobivanje TiO₂ nanocjevčica. Procesni parametri se mogu jednostavno prati mjerenjem struje koja je u direktnoj ovisnosti o koncentraciji fluorida i količini vode u elektrolitu.

Hidrotermalna sinteza je jednostavna i trenutno najpraktičnija metoda za dobivanje BaTiO₃ sloja na TiO₂ nanocjevčicama. Metoda ne zahtjeva visoku temperaturu zbog povišenog tlaka što druge metode zahtijevaju. Potrebna temperatura za npr. sol-gel metodu je oko 800°C što bi onda dovelo do prelaska anatasa u rutil čime bi narušili vodljivost i ostala dobra svojstva nanocjevčica. Struktura dobivenog BaTiO₃ provjerila se SEM-om. Vidi se da je dobiveni BaTiO₃ u obliku nanočestica i da je smanjio poroznost TiO₂ nanocjevčica, osim na onim dijelovima gdje je promjer TiO₂ nanocjevčica bio veći. Nažalost sloj kompozita nije homogen, jer hidrotermalna sinteza to neomogućava, pa se zbog toga ovakva podloga nije odgovarajuća za korištenje u razne svrhe (npr. fotonaponske ćelije). EDX-om se dokazalo da vidljivi kompozit u SEM-u uistinu je barij titanat. Ramanovom spektroskopijom utvrdilo se da je BaTiO₃ samo prekrio površinu TiO₂, a nije ušao u kristalnu strukturu, odnosno nije došlo do dopiranja nego do dekoriranja. U ramanovom spektru BaTiO₃ kompozit na TiO₂ nanocjevčicama pokazuje vrpce karakteristične za anatas, ali i one karakteristične za BaTiO₃.

Fotovodljivost mjerena impedancijskom spektroskopijom zapažena je samo kod TiO₂ nanocjevčica dekoriranih sa BaTiO₃ kompozitom. Zanimljivo je da je BaTiO₃ pokazao veći porast u vodljivosti pri nižim frekvencijama (nekoliko redova veličine), odnosno u uvjetima istosmjernog napona. Pri višim frekvencijama porast je puno manji i sporiji. Nakon prestanka osvjetljivanja BaTiO₃ pokazuje fotovodljivost još neko vrijeme, iako je u mračnoj prostoriji. Iz toga se može zaključiti da BaTiO₃ posjeduje trajnu fotovodljivost (PPC). Upravo iz tog razloga odličan je materijal za primjenu u senzorima svjetla, a ukazuje i na potencijalnu primjenu u fotonaponskim ćelijama, ali za tu svrhu bi se trebao sintetizirati drugom metodom koja će dati homogeniji sloj.

6. LITERATURA

[1] Y. Chergui, N. Nehaoua, D. E. Mekki, Comparative Study of Dye-Sensitized Solar Cell Based on ZnO and TiO₂ Nanostructures, Physics Department, LESIMS Laboratory, Badji Mokhtar University, Annaba, Algeria 2011., str. 52-53

[2] M. M. Dramičanin, V. Đorđević, B. Miličević, Rare Earth-Doped Anatase TiO₂ Nanoparticles, Vinča Institute of Nuclear Sciences, Srbija 2017., str. 29

[3] I. Zamudio Torres, J. J. Pérez Bueno, Y. Meas Vong, Process of growth TiO₂ nanotubes by anodization in an organic media, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Mexico 2014., str. 887-890

[4] Yoon-Chae Nah, Indhumati Paramasivam, Patrik Schmuki, Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications, Chemphyschem 2010., str. 2700-2709

[5] Il-Doo Kim, Avner Rothschild, Byong Hong Lee, Dong Young Kim,
Seong Mu Jo, Harry L. Tuller, Ultrasensitive Chemiresistors Based on
Electrospun TiO₂ Nanofibers, Optoelectronic Materials Research Center, Korea Institute of
Science and Technology, Republic of Korea, Department of Materials
Science and Engineering, Massachusetts Institute of Technology, Massachusetts 2006., str.
2009

[6] Gopal K. Mor, Oomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes, A review on highly ordered, vertically oriented TiO₂ nanotube arrays: Fabrication, material properties, and solar energy applications, Department of Electrical Engineering, and Materials Research Institute, Pennsylvania 2006., str. 2063-2068

[7] V. Mandić, M. Plodinec, I. Kereković, K. Juraić, V. Janicki, D. Gracin, A. Gajović, A. Moguš-Milanković, M.G. Willinger, Tailoring anatase nanotubes for the photovoltaic device by the anodization process on behalf of microstructural features of titanium thin film, Ruđer Bošković Institute, Zagreb, Fritz Haber Institute of the Max Planck Society, Berlin 2017., str. 136, 137

[8] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Department of Materials Science, LKO, University of Erlangen – Nuremberg, Germany 2007., str. 3-5

[9] D. Regonini, C. R. Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes, Materials Research Centre, Department of Mechanical Engineering, University of Bath, UK, Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland, National Metal and Materials Technology Center, Thailand 2013., str. 383, 384

[10] Upendra A. Joshi, Jae Sung Lee, Template-Free Hydrothermal Synthesis of

Single-Crystalline Barium Titanate and Strontium Titanate Nanowires, Department of Chemical Engineering and School of Environmental Science and Engineering Pohang University of Science and Technology, Pohang 2005., str. 1172, 1173

[11] Milivoj Plodinec, Fizikalna i kemijska svojstva funkcionaliziranih titanatnih nanostruktura, Prirodoslovno-matematički fakultet, fizički odsjek, Zagreb 2014., str. 39.-

[12] Milivoj Plodinec, Ana Šantić, Janez Zavašnik, Miran Čeh, Andreja Gajović, Giant persistent photoconductivity in BaTiO3/TiO2 heterostructures, Applied physics letters 2014., str.

[13] Florentina Maxim, Paula Ferreira, Paula M. Vilarinho, Ian Reaney, Hydrothermal Synthesis and Crystal Growth Studies of BaTiO3 Using Ti Nanotube Precursors, Department of Ceramics and Glass Engineering, University of Aveiro, Portugal, Department of Engineering Materials, University of Sheffield, UK 2008., str. 3309, 3310

[14] Renishaw, Raman spectroscopy explained, UK 2015., str. 3-35

[15] https://www.nanoscience.com/technology/sem-technology/

[16] Debbie J. Stokes, Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy (VP-ESEM), Chichester: John Wiley & Sons. 2008.

[17] Joseph I. Goldstein, Dale E. Newbury, Jospeh R. Michael, Nicholas W.M. Ritchie, John Henry J. Scott, David C. Joy, Scanning Electron Microscopy and X-Ray Mycroanalysis, Springer 2018., str. 2

[18] L. Pavić, , Utjecaj kristalizacije na električne procese i magnetske interakcije u željeznom fosfatnom staklu, doktorska disertacija, Zagreb : Prirodoslovno-matematički fakultet, 2014., str.176

7. ŽIVOTOPIS

Keuropass	Životopis					
OSOBNE INFORMACIJE	Krajnović Vedr	ana				
OBRAZOVANJE I OSPOSOBLJAVANJE						
01/09/2003-18/06/2011	Osnovna škola "Dragutin Tadijanović". Slavonski Brod (Hrvatska)					
03/09/2011-20/05/2015						
	Opća gimnazija "Matija Mesić", Slavonski Brod (Hrvatska)					
28/09/2015-2020	Prvostupnik primijenjene kemije Sekultat komijekog inženjembra i tehnologije. Zagrah (Hausteko)					
OSOBNE VJEŠTINE	T analist komijskog	in conjoretta riteri	iologijo, zagrob (i	(and)		
Materinski jezik	hrvatski					
Strani jezici						
	Slučanje Čitanje		Govorna interakcija Govorna produkcija		- ALT STALL	
enaleski	C2	C2	C2	C2	C2	
piemački	B1	B1	B1	B1	B1	
	Stupnjevi: A1 i A2: Početnik - B1 i B2: Samostalni korisnik - C1 i C2: Iskusni korisnik					

Zajednički europski referentni okvir za jezike