Modeliranje ravnoteže kapljevina-kapljevina u trokomponentnim sustavima voda(1) - octena kiselina(2) - organski ester(3)

Ljubičić, Ines

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:922900

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-10

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ

Ines Ljubičić

ZAVRŠNI RAD

Zagreb, rujan 2022.

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE POVJERENSTVO ZA ZAVRŠNE ISPITE

Kandidatkinja <u>Ines Ljubičić</u>

Predala je izrađen završni rad dana: <u>15. rujna 2022.</u>

Povjerenstvo u sastavu:

prof. dr. sc. Marko Rogošić, Fakultet kemijskog inženjerstva i tehnologije, Sveučilište u Zagrebu prof. dr. sc. Aleksandra Sander, Fakultet kemijskog inženjerstva i tehnologije, Sveučilište u Zagrebu dr. sc. Kristina Zagajski Kučan, poslijedoktorand, Fakultet kemijskog inženjerstva i tehnologije, Sveučilište u Zagrebu

povoljno je ocijenilo završni rad i odobrilo obranu završnog rada pred povjerenstvom u istom sastavu.

Završni ispit održat će se dana: <u>20. rujna 2022.</u>

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ

Ines Ljubičić

MODELIRANJE RAVNOTEŽE KAPLJEVINA-KAPLJEVINA U TROKOMPONENTNIM SUSTAVIMA VODA (1) – OCTENA KISELINA (2) – ORGANSKI ESTER (3)

ZAVRŠNI RAD

Voditelj rada: prof. dr. sc. Marko Rogošić

Članovi ispitnog povjerenstva: prof. dr. sc. Marko Rogošić

prof. dr. sc. Aleksandra Sander

dr. sc. Kristina Zagajski Kučan

Zagreb, rujan 2022.

SAŽETAK

U ovom radu raspravljeno je ponašanje trokomponentnih sustava voda (1) – octena kiselina (2) – organski ester (3) pri ravnoteži kapljevina-kapljevina i potencijalni čimbenici koji na nju mogu utjecati. Temeljem eksperimentalnih podataka (ravnotežnih sastava) preuzetih iz literature izračunati su interakcijski parametri za modele NRTL i UNIQUAC čija je konzistentnost testirana postupkom Marcille i suradnika. Oba modela na zadovoljavajući način opisuju ponašanje istraženih trokomponentnih sustava.

Ključne riječi: NRTL, UNIQUAC, ravnoteža kapljevina-kapljevina, voda, octena kiselina, organski ester, konzistentnost parametara

ABSTRACT

Modeling of liquid-liquid equilibria in the three-component systems water(1) – acetic acid(2) – organic ester (3)

This work discusses the behavior of water (1) – acetic acid (2) – organic ester (3) threecomponent systems at liquid-liquid equilibrium and potential factors that can affect it. Based on the experimental data (equilibrium compositions) taken from the literature, the interaction parameters for the NRTL and UNIQUAC models were calculated, and their consistency was tested by the procedure of Marcilla et al. Both models satisfactorily describe the behavior of the investigated three-component systems.

Key words: NRTL, UNIQUAC, liquid-liquid equilibrium, water, acetic acid, organic ester, parameter consistency

Sadržaj

2. TEORIJSKI DIO	2 2
	2
2.1. FAZNA RAVNOTEZA KAPLJEVINA-KAPLJEVINA	
2.1.1. UVJET FAZNE RAVNOTEŽE KAPLJEVINA-KAPLJEVINA	2
2.1.2. Jednakost aktivnosti	3
2.1.3. FAZNI DIJAGRAMI U DVOKOMPONENTNIM SUSTAVIMA	4
2.1.4. FAZNI DIJAGRAMI U TROKOMPONENTNIM SUSTAVIMA	7
2.2. MODELI KOEFICIJENTA AKTIVNOSTI	8
2.2.1. MODEL KOEFICIJENTA AKTIVNOSTI NRTL	9
2.2.2. MODEL KOEFICIJENTA AKTIVNOSTI UNIQUAC	10
2.3. TESTIRANJE KONZISTENTNOSTI INTERAKCIJSKIH PARAMETARA	12
2.3.1. TOPOLOŠKA PROVJERA BINARNIH PODSUSTAVA	12
2.3.2. TOPOLOŠKA PROVJERA VEZNIH LINIJA	13
3. RAČUNSKI DIO	15
3.1. Određivanje parametara modela koeficijenta aktivnosti postupkom prema Sørensenu i Arl	JTU
	15
3.2. Postupak proračuna i sustavi	16
3.3. ISPITIVANJE KONZISTENTNOSTI PARAMETARA MODELA NRTL I UNIQUAC	20
4. REZULTATI	24
5. RASPRAVA	34
6. ZAKLJUČAK	42
7. LITERATURA	43
8. POPIS OZNAKA	47
ŽIVOTOPIS	49

1. UVOD

Octena kiselina jedna je od najraširenijih karboksilnih kiselina¹. Kao važan reagens i komponenta u industriji ima široku primjenu u procesima proizvodnje organskih tvari poput poli(etilen-tereftalata) (materijal koji sačinjava plastične boce), celuloznog acetata (koristi se za izradu fotografskog filma) i poli(vinil-acetata) (sastojak ljepila za drvo te sintetskih vlakana i tkanina)². Moguće ju je dobiti prirodnim putem procesom fermentacije ili sintetskim metodama, no u oba slučaja nastaju razrijeđene vodene otopine³. Iako su testirani mnogi postupci za dobivanje octene kiseline iz industrijskih produkata, još nije pronađena prikladna metoda kojom se može dobiti octena kiselina pri dovoljno visokim koncentracijama². Odvajanje octene kiseline i vode destilacijom je vrlo teško jer zahtijeva mnogo koncentracijskih stupnjeva uz visok refluksni omjer što rezultira velikim troškovima³.

Ekstrakcija otapalom je učinkovita metoda za dobivanje octene kiseline iz njezinih razrijeđenih vodenih otopina, otpadnih voda ili fermentacijskih smjesa. Osim ekonomske koristi, taj postupak važan je i s gledišta zaštite okoliša. Za odabir optimalnog otapala i uvjeta ekstrakcije te unapređivanje ekstrakcijskih procesa trebaju pouzdani eksperimentalni podaci za ravnotežu kapljevina-kapljevina. Ti su podaci važni i za testiranje i razvoj termodinamičkih modela⁴.

U radu su opisani modeli koeficijenta aktivnosti NRTL i UNIQUAC koji neidealnost otopine opisuju interakcijskim parametrima. Analiza literature pokazala je da minimalno 10 % članaka objavljuje termodinamički nekonzistentne parametre, vjerojatno zbog kratkoga vremena za pripremu znanstvenih članaka i rutinske, nekritičke primjene softvera za određivanje parametara. Shodno tome, u radu je primijenjen program koji je u svom završnom radu pripremio Sejdić⁵ na osnovi postupka koji su predložili Marcilla i suradnici.⁶ Rezultat proračuna su grafički prikazi odnosa binarnih podsustava te topologije veznih linija koji omogućuju testiranje konzistentnosti izračunatih parametara.⁵

1

2. TEORIJSKI DIO

2.1. Fazna ravnoteža kapljevina-kapljevina

2.1.1. Uvjet fazne ravnoteže kapljevina-kapljevina

Uspostava fazne ravnoteže zahtijeva da se poštuju osnovni zakoni termodinamike počevši od nultog zakona – uvjeta termičke ravnoteže:

$$T^{\mathrm{I}} = T^{\mathrm{II}} \tag{1}$$

Prema tome zakonu, temperature kapljevitih faza, označene brojkama I i II, jednake su u stanju termodinamičke ravnoteže.

Prvi zakon termodinamike uključuje bilance tvari i energije. Pri uspostavi termodinamičke ravnoteže očuvana je ukupna množina tvari:

$$\sum_{i=1}^{nk} n_i^{\rm F} = \sum_{i=1}^{nk} n_i^{\rm I} + \sum_{i=1}^{nk} n_i^{\rm II}.$$
(2)

F predstavlja ukupni ulaz, *nk* broj komponenata, a *i* svaku pojedinu komponentu u sustavu. Navedena jednadžba definira raspodjelu tvari između kapljevitih faza u izoliranom ili zatvorenom sustavu u ravnotežnom stanju. Moguć je prikaz i za svaku pojedinu komponentu, uz uvjet da nema kemijskih ili elektrokemijskih reakcija u sustavu:

$$n^{\rm F} z_i^{\rm F} = n^{\rm I} x_i^{\rm I} + n^{\rm II} x_i^{\rm II}.$$
(3)

U jednadžbi je z_i^F molarni udio komponente *i* u sustavu kao cjelini dok su x_i^I i x_i^{II} molarni udjeli komponente *i* u ravnotežnim kapljevitim fazama. Bilanca tvari za pojedine faze iskazuje se sumom molarnih udjela:

$$\sum_{i=1}^{nk} x_i^{\mathrm{I}} = 1, \tag{4}$$

$$\sum_{i=1}^{nk} x_i^{\mathrm{II}} = 1.$$
⁽⁵⁾

U slučaju očuvanja energije, bilanca energije za izolirani sustav piše se kao:

$$H^{\rm F} = H^{\rm I} + H^{\rm II},\tag{6}$$

a za zatvoreni sustav u kojem se izmjenjuje toplina Q s okolinom kao:

$$H^{\rm F} = H^{\rm I} + H^{\rm II} + Q. \tag{7}$$

Entalpija smjese označena je s H^F , entalpije kapljevitih faza su H^I i H^{II} , Q je energija izmijenjena s okolinom.

Drugi zakon termodinamike definira maksimum entropije izoliranog sustava kao kriterij uspostavljanja termodinamičke ravnoteže u sustavu:

$$S = \max, dS = 0. \tag{8}$$

Jednakovrijedan skup kriterija u višekomponentnom sustavu koji se razdjeljuje na dvije kapljevite faze jest:

$$T^{I} = T^{II},$$

$$p^{I} = p^{II},$$

$$\mu_{i}^{I} = \mu_{i}^{II},$$
(9)

gdje je p tlak, a μ_i kemijski potencijal komponente i dviju faza I i II.

Uvođenjem ograničenja stalne temperature i tlaka, u zatvorenim sustavima ravnotežni uvjet je minimum Gibbsove energije:

$$G = \min, dG = 0. \tag{10}$$

2.1.2. Jednakost aktivnosti

Jednakost kemijskih potencijala komponenata u dvjema fazama kao uvjet fazne ravnoteže:

$$\mu_i^{I} = \mu_i^{II}, \tag{11}$$

raspisuje se uvođenjem standardnih kemijskih potencijala i aktivnosti:

$$\mu_i = \mu_i^{\circ} + RT \ln a_i, \tag{12}$$

čime se dobije:

$$\mu_i^{I^\circ} + RT \ln a_i^{I} = \mu_i^{II^\circ} + RT \ln a_i^{II}.$$
(13)

Pri promatranim uvjetima tlaka i temperature, kapljevine od kojih se sastoji otopina u većini slučajeva mogu postojati kao čiste komponente pa vrijedi simetrična definicija standardnog stanja:

$$\mu_i^{I^\circ} = \mu_i^{II^\circ},\tag{14}$$

iz koje proizlazi:

$$\ln a_i{}^{\rm I} = \ln a_i{}^{\rm II} \tag{15}$$

i:

$$a_i^{\ I} = a_i^{\ II},\tag{16}$$

čime je moguće uvjet ravnoteže iskazati i kao jednakost aktivnosti komponenata u objema fazama. Uvođenjem koeficijenta aktivnosti, γ_i :

$$a_i = x_i \gamma_i, \tag{17}$$

dobiva se jednadžba fazne ravnoteže kapljevina-kapljevina:

$$x_i^{\ I}\gamma_i^{\ I} = x_i^{\ II}\gamma_i^{\ II}, \tag{18}$$

koja se može prikazati u obliku koeficijenta raspodjele, K_{γ} :

$$K_{\gamma} = \frac{x_i^{\mathrm{I}}}{x_i^{\mathrm{II}}} = \frac{\gamma_i^{\mathrm{II}}}{\gamma_i^{\mathrm{I}}}.$$
(19)

2.1.3. Fazni dijagrami u dvokomponentnim sustavima

Ovisno o interakciji, kapljevine u smjesi mogu biti potpuno ili djelomično mješljive ili pak potpuno nemješljive (što je zapravo tek ekstremni slučaj djelomične mješljivosti). Kako će se otopiti jedna u drugoj može se utvrditi promatranjem ovisnosti Gibbsove energije sustava, g, o sastavu koji se iskazuje molarnim udjelom komponenata x_i što je predočeno na Slici 1. Komponente su označene brojevima 1 i 2, a osnovni oblici krivuljama A, B i C.

Slika 1. Osnovni oblici ovisnosti Gibbsove energije dvokomponentnog sustava o sastavu

Krivulja A prikazuje ponašanje međusobno netopljivih komponenata; u takvim slučajevima odsječci komponenti (tj. kemijski potencijali) koje tvori tangenta uvijek će biti viši od molarnih Gibbsovih energija čistih komponenti. Time je promjena Gibbsove energije pri miješanju pozitivna i otopina će biti nestabilna. Suprotno tome, krivulja B predstavlja potpuno topljive komponente, gdje je odsječak uvijek niži od odgovarajućih molarnih Gibbsovih energija čistih komponenti. Krivulja C prikazuje djelomično mješljiv sustav. Područje a-b na krivulji odgovara otopinama komponente 2 u komponenti 1, a područje f-h odnosi se na otopinu komponente 1 u komponenti 2. U dijelu krivulje b-f dolazi do separacije otopine na dvije faze čiji su sastavi određeni dvostrukom tangentom. Fizičko značenje te tangente jest da označava jednakost kemijskih potencijala, tj. uvjet fazne ravnoteže.

Shodno tomu, faznu ravnotežu moguće je prikazati i jednakošću aktivnosti komponenata što se vidi na Slici 2. koja predstavlja ovisnost reducirane molarne Gibbsove energije miješanja o sastavu. Slika je slična prethodnoj, no u ovom slučaju dvostruka tangenta pravi odsječke s fizikalnim smislom logaritma aktivnosti komponenata.

Slika 2. Osnovni oblici ovisnosti reducirane molarne Gibbsove energije miješanja o sastavu dvokomponentnog sustava

Ravnotežni sastav faza znatno ovisi o temperaturi pa se njezinom promjenom može očekivati prijelaz iz jednofaznog sustava u dvofazni i obrnuto. Slika 3. prikazuje tipičan odnos promjene temperature i sastava gdje će se povišenjem temperature povećati i međusobna topljivost komponenata. Određivanjem sastava pri zadanim temperaturama dobivaju se binodalna i spinodalna krivulja kojima se razdjeljuju područja s obzirom na stabilnost, a krivulje se sastaju u točki kritične temperature iznad koje dvije kapljevine postaju potpuno mješljive.

Slika 3. Shematski prikaz temperaturne ovisnosti ravnotežnih sastava kapljevitih faza

2.1.4. Fazni dijagrami u trokomponentnim sustavima

Među načinima odjeljivanja dvokomponentnih smjesa jest i dodatak pomoćne komponente, tj. sredstva za ekstrakciju, što rezultira trokomponentnim sustavom. Ravnoteža kapljevina-kapljevina se u trokomponentnim sustavima prikazuje trokutnim dijagramom, uglavnom u obliku jednakostraničnog trokuta. Vrhovi predstavljaju čiste komponente, stranice sastave dvokomponentnih smjesa, dok unutrašnjost trokuta predstavlja sastave trokomponentnih smjesa. Ovisno o različitoj topljivosti komponenata postoji klasifikacija trokomponentnih sustava po Treybalu, a općeniti tipovi prikazani su na Slici 4.

Slika 4. Shematski prikaz područja potpune i djelomične mješljivosti u trokomponentnim sustavima

Pri I) vidi se djelomična mješljivost kapljevina A i B gdje je dvofazno područje označeno brojkom 2, dok su parovi AC i BC potpuno mješljivi. Binodalna krivulja (ili krivulja topljivosti) odjeljuje djelomično i potpuno mješljivo područje, a vezne linije povezuju sastave kapljevitih faza u ravnoteži. Rastom udjela komponente C vezne linije su sve kraće, a ravnotežni sastavi faza približavaju se kritičnoj točci (engl. *plait point*) gdje postaju jednaki. Ovo je vidljivo i pri II) te IV) gdje postoji djelomična mješljivost kod parova AC i BC. Na slikama III) i V) dolazi do preklapanja područja djelomične mješljivosti gdje binodalna krivulja ima dvije nezavisne grane i ne postoji kritična točka. Slično se zbiva u VI), no tu su svi parovi djelomično mješljivi te se sva područja mješljivosti preklapaju što vodi do trofaznog područja. U njemu je sustav razdvojen na tri faze, a sastavi tih faza označeni su crnim točkama na dijagramu.

2.2. Modeli koeficijenta aktivnosti

Model koeficijenta aktivnosti opisuje ovisnost termodinamičkih svojstava otopina o temperaturi, tlaku i sastavu sa svrhom zamjene eksperimentalnih podataka skupom funkcija koje su primjenjive u daljnjim kemijsko-inženjerskim proračunima. Direktnom vezom između koeficijenta aktivnosti i ekscesne Gibbsove energije dobije se jednadžba:

$$g^{\rm ex} = RT \sum x_i \ln \gamma_i, \tag{20}$$

koja predstavlja razliku Gibbsove energije i idealne i realne otopine:

$$g^{\rm ex} = g - g^{\rm id},\tag{21}$$

Stoga iznos koeficijenta aktivnosti ovisi o odabranoj definiciji idealnog vladanja, koja najčešće uključuje sljedeći izraz:

$$g^{\rm id} = \sum x_i g_i + RT \sum x_i \ln x_i.$$
⁽²²⁾

Kombiniranjem prethodna tri izraza dobije se:

$$g = \sum x_i g_i + RT \sum x_i \ln x_i + RT \sum x_i \ln \gamma_i.$$
(23)

Za potpuno definiranje Gibbsove energije uz poznavanje odgovarajućeg modela koeficijenta aktivnosti potrebno je i poznavanje iznosa Gibbsovih energija čistih komponenata jer se koeficijenti aktivnosti odnose samo na neidealnost otopine. Koeficijente aktivnosti moguće je odrediti eksperimentom, npr. iz koligativnih svojstava ili iz eksperimentalnih podataka o ravnoteži para-kapljevina ili kapljevina-kapljevina, ali moguće ih je i izračunati pomoću prikladnih korelacija poput modela promatranih u ovom radu.

2.2.1. Model koeficijenta aktivnosti NRTL

Skraćeno za engl. *Non-Random Two-Liquid*, ovaj model koeficijenta aktivnosti postavili su američki termodinamičar John M. Prausnitz i njegov doktorand Henri Renon⁷ 1968. godine. Temelji se na Scottovoj teoriji dvokomponentne kapljevite smjese, tj. staničnom modelu koji svodi dvije komponente sustava na dva tipa čestica koji međusobno okružuju jedan drugog. To utječe na lokalni molarni udio koji ovisi o ukupnom sastavu smjese i intenzitetu međudjelovanja čestica što proizlazi iz Wilsonove definicije lokalnog sastava. No, u ovom se slučaju intenzitet međudjelovanja opisuje molarnom Gibbsovom energijom umjesto potencijalne energije međudjelovanja koja se pojavljuje kod Wilsonova modela.

Izraz za ekscesnu Gibbsovu energiju prema modelu NRTL glasi:

$$g^{\text{ex}} = x_1 x_2 \left[\frac{\tau_{21} G_{21}}{x_1 + x_2 G_{21}} + \frac{\tau_{12} G_{12}}{x_1 G_{12} + x_2} \right]$$
(24)

U izrazu oznake x_{ij} vrijede za lokalne molarne udjele, τ_{ij} za interakcijske parametre sustava koje uključuju pretežito entalpijski te u manjoj mjeri entropijski doprinos, a G_{ij} je pomoćna varijabla definirana kao:

$$G_{ij} = \exp\left(-\alpha_{ij}\tau_{ij}\right) \tag{25}$$

 α_{ij} je parametar neslučajnosti koji dopušta odstupanje od slučajne raspodjele pri definiranju lokalnog molarnog udjela. To odstupanje može biti uslijed razlike u veličini ili obliku čestica, ali i uslijed nastanka aglomerata prilikom jačih međudjelovanja što je tipično posljedica vodikovih veza. Parametar ima fizikalno značenje inverzne vrijednosti koordinacijskog broja rešetke (broja najbližih susjeda čestice u rešetkastom opisu kapljevine), $\alpha_{ij} = 1/z$.

Svi su parametri modela NRTL korelativni, što znači da ih je moguće odrediti iz eksperimenta i vrijedit će za promatrani sustav u određenom rasponu temperatura i tlakova. Temeljem brojnih ispitivanja primijećena je pravilnost vezana za parametar neslučajnosti. Stoga se on u višekomponentnim sustavima obično fiksira i to na 0,2 za nemješljive smjese, 0,3 za mješljive organske smjese i 0,4 za smjese organske kapljevine i vode.

Diferenciranjem jednadžbe (24) dobivaju se izrazi za koeficijente aktivnosti u dvokomponentnom sustavu:

$$\ln\gamma_1 = x_2^2 \left[\tau_{12} \left(\frac{G_{12}}{x_1 + x_2 G_{21}} \right)^2 + \frac{\tau_{12} G_{12}}{(x_1 G_{12} + x_2)^2} \right],$$
(26)

$$\ln\gamma_2 = x_1^2 \left[\tau_{12} \left(\frac{G_{12}}{x_1 G_{12} + x_2} \right)^2 + \frac{\tau_{21} G_{21}}{(x_1 + x_2 G_{21})^2} \right].$$

Odgovarajući izraz za koeficijent aktivnosti u višekomponentnim sustavima glasi:

$$\ln\gamma_{i} = \frac{\sum_{j=1}^{nk} x_{j}\tau_{ji}G_{ji}}{\sum_{l=1}^{nk} x_{l}G_{li}} + \sum_{j=1}^{nk} \frac{x_{j}G_{ij}}{\sum_{l=1}^{nk} x_{l}G_{lj}} \left(\tau_{ij} - \frac{\sum_{m=1}^{nk} x_{m}\tau_{mj}G_{mj}}{\sum_{l=1}^{nk} x_{l}G_{lj}}\right),$$
(27)

dok se ekscesna Gibbsova energija računa izrazom:

$$\frac{g^{\text{ex}}}{RT} = \sum_{i=1}^{nk} x_i \left(\frac{\sum_{j=1}^{nk} \tau_{ji} G_{ji} x_j}{\sum_{k=1}^{nk} G_{ki} x_k} \right).$$
(28)

Model NRTL primjenjiv je na širok raspon sustava, ne ovisi o polarnosti komponenata te za razliku od Wilsonova modela može predočiti stanje djelomične mješljivosti pa se koristi i kod ravnoteže kapljevina-kapljevina. Također je moguć prijenos parametara iz binarnih u višekomponentne sustave, no dobiveni rezultati variraju u točnosti.

2.2.2. Model koeficijenta aktivnosti UNIQUAC

Skraćenica UNIQUAC dolazi od engleskog termina *UNIversal QUAsi-Chemical theory*. Temeljena na načelu razdvajanja doprinosa, ekscesna Gibbsova energija i shodno tome logaritmi koeficijenta aktivnosti suma su kombinatornog i rezidualnog doprinosa:

$$g^{\text{ex}} = g^{\text{C}} + g^{\text{R}},$$

$$\ln \gamma_i = \ln \gamma_i^{\text{C}} + \ln \gamma_i^{\text{R}}.$$
(29)

Kombinatorni doprinos je entropijske prirode, sastoji se od Flory-Hugginsova člana koji opisuje miješanje čestica različitog volumena i člana koji opisuje utjecaj razlika u obliku čestica na kombinatornu ekscesnu entropiju:

$$g^{\text{ex,C}} = s^{\text{ex,C}},\tag{30}$$

$$\frac{g^{\text{ex,C}}}{RT} = \sum_{i=1}^{nk} x_i \ln \frac{\phi_i}{x_i} + \frac{z}{2} \sum_{i=1}^{nk} q_i x_i \ln \frac{\theta_i}{\phi_i}.$$
(31)

 x_i je molarni, a ϕ_i volumni udio komponente *i*, dok je *z* koordinacijski broj koji u praksi iznosi 10 i izvodi se iz rešetkastog modela kapljevine. θ_i je površinski udio komponente *i*, omjer volumnog i površinskog udjela predočava oblik čestice te glasi:

$$\frac{\theta_i}{\phi_i} = \frac{q_i}{r_i} \frac{\sum_{j=1}^{nk} x_j r_j}{\sum_{j=1}^{nk} x_j q_j}.$$
(32)

gdje *r* predstavlja površinski, a *q* volumni parametar. Parametri se računaju iz prethodno načinjene tablice relativnih dimenzija strukturnih grupa koje se ovisno o građi zadane komponente zbrajaju.

Rezidualni doprinos opisuje ostatnu neidealnost otopine koja je posljedica međudjelovanja čestica. Kao model NRTL i Wilsonov model, i UNIQUAC slijedi stanični opis kapljevine i uključuje lokalne koncentracije čestica. Karakteristična veličina je Gibbsova interakcijska energija koja uključuje sve entalpijske efekte miješanja i nekombinatornu (interakcijsku) entropiju miješanja; za dvokomponentne otopine izražava se kao:

$$\frac{g^{\text{ex,R}}}{_{RT}} = -q_1 x_1 \ln \ln \left(\theta_1 + \theta_2 \tau_{21}\right) - q_2 x_2 \ln \ln \left(\theta_2 + \theta_1 \tau_{12}\right), \qquad (33)$$

a za višekomponentne glasi:

$$\frac{g^{\text{ex,R}}}{RT} = -\sum_{i=1}^{nk} q_i x_i \left(\sum_{j=1}^{nk} \theta_j \tau_{ji}\right).$$
(34)

U općem obliku, izraz za rezidualni doprinos koeficijentu aktivnosti glasi:

$$\ln\gamma_i^{R} = q_1 \left(1 - \ln\sum_{j=1}^{nk} \theta_j \tau_{ji} - \sum_{j=1}^{nk} \frac{\theta_j \tau_{ij}}{\sum_{k=1}^{nk} \theta_k \tau_{kj}} \right).$$
(35)

Ovdje τ_{ij} predstavljaju parametre međudjelovanja čiji je fizički smisao razlika interakcijskih energija heterogenog, u_{ij} , i homogenog, u_{jj} , međudjelovanja zbog čega je moguće koreliranje eksperimentalnih podataka u sustavu dobivenih mjerenjem pri različitim temperaturama:

$$\tau_{ij} = \exp\left(-\frac{u_{ij} - u_{jj}}{RT}\right) \tag{36}$$

Kao NRTL, i UNIQUAC se može primjenjivati pri djelomičnom i potpunom miješanju komponenata pa je slijedno primjenjiv za opisivanje ravnoteže para-kapljevina i kapljevina-kapljevina. Usto ne ovisi o polarnosti smjese, a ima i ugrađenu temperaturnu ovisnost parametara. Prema NRTL-u ima nekoliko prednosti poput detaljnog opisa kombinatornog doprinosa kojim može bolje prikazivati smjese molekula različitih veličina, te prijenosa parametara iz dvokomponentnog u višekomponentni sustav koji je često uspješniji zbog manjeg broja ugodivih parametara (dva naspram tri kod NRTL-a). Stoga se kod UNIQUAC-a rjeđe pojavljuju lokalni minimumi ili višestruki skupovi parametara s približno jednakom uspješnošću opisuju ekscesnu Gibbsovu energiju sustava.

2.3. Testiranje konzistentnosti interakcijskih parametara

Konzistentnost interakcijskih parametara izračunatih iz eksperimentalnih podataka o ravnoteži kapljevina-kapljevina u trokomponentnim sustavima može se provjeriti razmatranjem topoloških podataka dobivenih iz računske ovisnosti Gibbsove energije miješanja o sastavu. Topološka provjera uključuje dva elementa: binarne podsustave i vezne linije.

2.3.1. Topološka provjera binarnih podsustava

Provjera se izvodi crtanjem ovisnosti molarne Gibbsove energije miješanja o sastavu za svaki (binarni) par komponenti. Pritom se očekuje da autori promatranog rada (odnosno oni koji su interakcijske parametre izračunali) navedu o kojem se tipu sustava radi. Tako kod potpuno mješljivih binarnih podsustava ne smije postojati dvostruka tangenta na g^{M} -krivulju, dok djelomično mješljivi podsustavi smiju imati samo jednu dvostruku tangentu koja će odgovarati izračunatoj ravnotežnoj veznoj liniji.

Pri nekim ravnotežnim sastavima kapljevitih faza može doći do problema ilustriranih Slikom 6. Oba grafa prikazuju ovisnost reducirane molarne Gibbsove energije miješanja o sastavu. Za Sliku 6.a) smatra se da je krivulja ovisnosti dobro definirana jer se dvostruku tangentu može lako povući čime je nesigurnost određenih ravnotežnih sastava vrlo mala. Za Sliku 6.b) krivulja ima razmjerno široko, praktički linearno područje gdje se dvostruka tangenta teško može provući što rezultira velikom nesigurnošću u određenim ravnotežnim sastavima. Područje razmješavanja slabo je definirano i parametri ne predočuju djelomičnu mješljivost u tom rasponu sastava na zadovoljavajući način.⁶

Slika 6. Grafički prikaz dobro i loše definirane krivulje ovisnosti reducirane Gibbsove energije o sastavu⁶

2.3.2. Topološka provjera veznih linija

Izračunate vezne linije potrebno je provjeriti u čitavom dvofaznom području sukladno Gibbsovu kriteriju dvostruke tangentne ravnine. Analiza se provodi presijecanjem trodimenzionalne $g^M/(RT)$ -plohe vertikalnim ravninama koje uključuju eksperimentalne vezne linije radi bolje predodžbe, a potom i prikazivanjem čitave $g^M/(RT)$ -plohe. Za definiranje vertikalnih ravnina presijecanja najpogodnije bi bilo primijeniti vezne linije koje su na osnovi procijenjenih parametara izračunali autori rada, dok se eksperimentalne vezne linije mogu koristiti samo ako su autori potvrdili kompatibilnost eksperimentalnih i računskih (modelnih) podataka.⁶ Slike 7. i 8. prikazuju primjenu metode te razliku između konzistentnog i nekonzistentnog skupa interakcijskih parametara.

Slika 7. Primjer konzistentnih veznih linija s obzirom na trodimenzionalni prikaz eksperimentalnih podataka⁸

Slika 8. Primjer nekonzistentnih veznih linija s obzirom na trodimenzionalni prikaz eksperimentalnih podataka⁸

3. RAČUNSKI DIO

Prednost modela NRTL i UNIQUAC jest mogućnost prijenosa parametara iz dvokomponentnih u višekomponentne sustave. Kod trokomponentnog sustava to je moguće njegovim cijepanjem na tri binarna podsustava. Preko njih je u načelu moguće odrediti parametre modela iz međusobnih topljivosti parova komponenata ako je riječ o djelomično mješljivom podsustavu ili preko mjerenja ravnoteže para-kapljevina ako je podsustav potpuno mješljiv. Međutim, dobiveni binarni parametri najčešće ne daju rezultate u skladu s eksperimentalnim podacima. Stoga se ipak primjenjuje izravno istodobno određivanje šest interakcijskih parametara odabranog modela koeficijenta aktivnosti iz eksperimentalno određenih veznih linija.

3.1. Određivanje parametara modela koeficijenta aktivnosti postupkom prema Sørensenu i Arltu

Prema Sørensenu i Arltu, određivanje parametara ima dva stupnja. Temeljni izraz prvog stupnja proračuna je:

$$\frac{x_i^{\ I}\gamma_i^{\ I} - x_i^{\ II}\gamma_i^{\ II}}{x_i^{\ I}\gamma_i^{\ I} + x_i^{\ II}\gamma_i^{\ II}} = 0.$$
(37)

Brojnik se odnosi na jednakost aktivnosti komponenata u dvije faze, a nazivnik je normalizacijski faktor kojim se postiže usporedivost doprinosa pojedinih komponenti i veznih linija. Zbog nesavršenosti modela i potencijalnih mjernih pogrešaka jednakost se nikada ne može zadovoljiti; stoga se primjenjuje funkcija cilja koja minimizira sumu kvadrata izraza na lijevoj strani prethodne jednadžbe po svim komponentama i veznim linijama:

$$OF_{1} = \sum_{j=1}^{nd} \sum_{i=1}^{nk} \left(\frac{x_{i}^{I} \gamma_{i}^{I} - x_{i}^{II} \gamma_{i}^{II}}{x_{i}^{I} \gamma_{i}^{I} + x_{i}^{II} \gamma_{i}^{II}} \right)_{j}^{2}.$$
(38)

Time se sprječava poništavanje negativnih i pozitivnih odstupanja. Oznaka *nd* označava broj veznih linija, a *nk* broj komponenti (s obzirom na sustav, *nk* = 3). U trokomponentnim sustavima koji se opisuju modelom NRTL jednadžba ima devet varijabli $(\alpha_{12}, \alpha_{13}, \alpha_{23}, \tau_{12}, \tau_{13}, \tau_{21}, \tau_{23}, \tau_{31}, \tau_{32})$, ali se kako je prije navedeno vrijednosti parametara neslučajnosti temeljem prethodnih iskustava fiksiraju ovisno o promatranom sustavu pa

funkcija ima isti oblik kao i za model UNIQUAC. Stoga je izraz funkcija jedino interakcijskih parametara. Obično se provodi još jedna modifikacija funkcije cilja, do izraza:

$$OF_{2} = \sum_{j=1}^{nd} \sum_{i=1}^{nk} \left(\frac{x_{i}^{\mathrm{I}} \gamma_{i}^{\mathrm{I}} - x_{i}^{\mathrm{II}} \gamma_{i}^{\mathrm{II}}}{x_{i}^{\mathrm{I}} \gamma_{i}^{\mathrm{I}} + x_{i}^{\mathrm{II}} \gamma_{i}^{\mathrm{II}}} \right)_{j}^{2} + Q(\tau_{12}^{2} + \tau_{21}^{2} + \tau_{13}^{2} + \tau_{31}^{2} + \tau_{23}^{2} + \tau_{32}^{2}).$$
(39)

Drugi član na desnoj strani jednadžbe predstavlja kaznenu funkciju koja sprječava lokalne minimume za nerealno velike vrijednosti τ_{ij} , primjenom parametra Q koji se iskustveno određuje; u ovom radu $Q = 1 \times 10^{-6}$ za oba modela. Lokalni minimum funkcije lako se nalazi iterativnim postupkom poput gradijentne metode Levenberga i Marquardta kojom se brzo postiže konvergencija. Proračun se može provoditi višekratno, uz različite početne pretpostavke parametara modela; u ovom radu primijenjena su 64 različita skupa početnih parametara. Premda je funkcija cilja termodinamički egzaktna jer postiže "najbolje" slaganje eksperimentalnih i računskih aktivnosti komponenata, to ne znači i najbolji mogući opis ravnotežnih sastava koji su s inženjerskoga gledišta ipak najvažniji. Radi se tek o "grubom" optimumu koji daje tek približan opis eksperimentalnih veznih linija.

U drugom se stupanju parametri iz prvog stupnja uvode u novu funkciju cilja koja se zasniva na odstupanju računskih i eksperimentalnih sastava, tj. molarnih udjela komponenata:

$$OF_{3} = \sum_{j=1}^{nd} \sum_{i=1}^{nk} \sum_{p=1}^{II} \left[(x_{i}^{p})_{exp} - (x_{i}^{p})_{mod} \right]_{j}^{2} + Q(\tau_{12}^{2} + \tau_{21}^{2} + \tau_{13}^{2} + \tau_{31}^{2} + \tau_{23}^{2} + \tau_{32}^{2}).$$
(40)

Parametar *p* poprima vrijednosti I i II koje se odnose na dvije faze u sustavu, a vrijednost iskustvenog parametra je $Q = 1 \times 10^{-10}$ za oba modela.⁹ Kako se modelni sastavi računaju iterativno, prethodno navedena funkcija nije diferencijabilna pa se za dobivanje minimuma primjenjuje simpleksna metoda optimiranja po Nelderu i Meadu.

3.2. Postupak proračuna i sustavi

Za optimiranje interakcijskih parametara prema modelima NRTL i UNIQUAC korišteni su programi napisani u programskom paketu Wolfram Mathematica 10.4.

Pregledom objavljenih znanstvenih članaka identificirani su esteri koji su testirani za ekstrakciju octene kiseline iz vode. Podaci o esterima navedeni su u Tablici 1.

Kod modela NRTL parametri neslučajnosti α_{ij} fiksirani su prema preporuci na vrijednosti 0,2. Geometrijski parametri modela UNIQUAC izračunati su prema tabeliranim parametrima strukturnih grupa iz literature¹⁰ i nalaze se u Tablici 2.

Ester	Molarna masa / gmol ⁻¹	Referenca	Temperatura / K
Etil-acetat	88,105	Gasmelseed ¹¹ , Sohoni ¹² , Jang ¹³ , Kang ¹⁴ , Roque ¹⁵	293,15; 298,15; 303,15; 303,5; 313,15
Butil-acetat	116,158	Ince ¹ , Samarov ¹⁶ , Kang ¹⁴ , Jang ¹³ , Bahrpaima ¹⁷ , Wang ¹⁸ , Grob ¹⁹ , Roque ¹⁵	293,15; 298,15; 303,15; 304,15; 308,15; 313,15; 332,15; 353,15; 366,15; 373,15; 393,15
Propil-acetat	102,131	Xiao ²⁰ , Kang ¹⁴	298,15; 313,15; 369,15
Amil-acetat	130,185	Wang ²¹	304,15; 332,15; 366,15
Cikloheksil-acetat	142,196	Sayar ²²	298,15; 308,15; 318,15
Izopropenil-acetat	100,116	Wang ²³	298,15; 313,15; 323,15; 333,15
Izopropil-acetat	102,131	Hlavaty ²⁴	297,75
Izobutil-acetat	116,158	Chafer ²⁵ , Roque ¹⁵	283,15; 293,15; 313,15; 323,15
Dimetil-sukcinat	146,141	Bahrpaima ¹⁷	298,15
Dietil-fenilmalonat	236,264	Torul ²⁶	294,15; 298,15
Dietil-metilmalonat	174,194	Torul ²⁶	294,15; 298,16
Etil-enantat (heptanoat)	158,238	Demirel ⁴	288,15; 298,15; 308,15
Dimetil-ftalat	194,184	Dramur ²⁷	293,16
Dietil-ftalat	222,24	Dramur ²⁷	293,16
Izoamil-acetat	130,185	Roque ¹⁵	293,15; 313,15
Heptil-acetat	158,238	Roque ¹⁵	293,15; 303,15
Dibutil-ftalat	278,34	Kirbaslar ²⁸	298,15; 308,15; 318,15
Dimetil-adipat	174,194	Ince ²⁹	298,15; 308,15; 318,15
2-etilheksil acetat	172,265	Ince ³	298,15; 308,15; 318,15
Butil-butirat (butanoat)	144,211	Sofiya ³⁰	298
Etil-butirat (butanoat)	116,158	Ramana Rao ³¹	301,15
Dietil-sukcinat	174,194	Kirbaslar ³²	298,15
Dietil-glutarat	188,221	Kirbaslar ³²	298,15
Dietil-adipat	202,248	Kirbaslar ³²	298,15
Sec-butil-acetat	116,158	Hu^2	298,15; 303,15; 308,15; 313,15
Propil-propionat (propanoat)	116,158	Sørensen ³⁴	293,15
Metil-propionat (propanoat)	88,105	Sørensen ³⁴	293,15
Metil-butirat (butanoat)	102,132	Sitarama Murty ³⁵	303,15
Etil-propionat (propanoat)	102,132	Sørensen ³⁴	301,15
Etil-valerat (pentanoat)	130,185	Sørensen ³⁴	293,15
Etil-benzoat	150,174	Sørensen ³⁴	304,15
Dimetil-glutarat	160,168	Ince ³⁶	298,15; 308,15; 318,15

Tablica 1. Popis organskih estera primijenjenih za ekstrakciju octene kiseline

Komponenta		r	q
Voda	H _O ^H	0,9200	1,400
Octena kiselina	о н 0 н	2,2024	2,072
Etil-acetat	°	3,4786	3,116
Butil-acetat		4,8274	4,196
Propil-acetat		4,1530	3,656
Amil-acetat		5,5018	4,736
Cikloheksil-acetat	o o o o	5,7220	4,656
Izopropenil-acetat		3,9215	3,564
Izopropil-acetat		4,1522	3,652
Izobutil-acetat		4,8266	4,192
Dimetil-sukcinat		5,1550	4,536
Dietil-fenilmalonat		8,6236	6,884
Dietil-metilmalonat		6,5030	5,612
Etil-enantat (heptanoat)		6,8506	5,816

Tablica 2. Vrijednosti geometrijskih parametara r i q modela UNIQUAC i strukturni prikazkomponenata istraženih sustava

Komponenta		r	q
Dimetil-ftalat		6,6618	5,296
Dietil-ftalat		8,0106	6,376
Izoamil-acetat	° j	5,5010	4,732
Heptil-acetat		6,8506	5,816
Dibutil-ftalat		10,7082	8,536
Dimetil-adipat		6,5038	5,616
2-etilheksil acetat		7,5242	6,352
Butil-butirat (butanoat)		6,1762	5,276
Etil-butirat (butanoat)		4,8274	4,196
Dietil-sukcinat		6,5038	5,616
Dietil-glutarat		7,1782	6,156
Dietil-adipat		7,8526	6,696
Sec-butil-acetat		4,8266	4,192
Propil-propionat (propanoat)		4,8274	4,196
Metil-propionat (propanoat)		3,4786	3,116
Metil-butirat (butanoat)		4,1530	3,656
Etil-propionat (propanoat)		4,1530	3,656

Komponenta	r	q
Etil-valerat (pentanoat)	5,5018	4,736
Etil-benzoat	5,5992	4,388
Dimetil-glutarat	5,8294	5,076

3.3. Ispitivanje konzistentnosti parametara modela NRTL i UNIQUAC

Za potvrdu konzistentnosti prethodno izračunatih parametara modela NRTL i UNIQUAC korištene su metode validacije obrađene u radu Marcille i suradnika⁷ pomoću programa iz završnoga rada M. Sejdića⁶ načinjenog u programskom paketu MatLab R2018a. Primjeri dobivenih rezultata u programu prikazani su Slikama 9, 10, 11 i 12.

Slika 9. Primjer topologije sustava dobivene iz konzistentnog skupa parametara za model NRTL u sustavu voda (1) – octena kiselina (2) – etil-acetat (3), Sohoni¹². Odnosi mješljivosti binarnih podsustava odgovaraju eksperimentalno opaženima; na dijagramu 1-3 moguće je povući jednu dvostruku tangentu, dok dijagrami 1-2 i 2-3 odgovaraju potpuno mješljivim podsustavima.

Slika 10. Primjer topologije sustava dobivene iz konzistentnog skupa parametara za model UNIQUAC u sustavu voda (1) – octena kiselina (2) – dietil-glutarat (3), Kirbaslar³². Odnosi mješljivosti binarnih podsustava odgovaraju eksperimentalno opaženima; na dijagramu 1-3 moguće je povući jednu dvostruku tangentu, dok dijagrami 1-2 i 2-3 odgovaraju potpuno mješljivim podsustavima.

Slika 11. Primjer nekonzistentnog skupa podataka za model NRTL u sustavu voda (1) – octena kiselina (2) – butil-acetat (3), Jang¹³. Odnosi mješljivosti binarnih sustava ne odgovaraju eksperimentalno opaženima, dijagram 1-3 ukazuje na praktički potpunu nemješljivost komponenata koja ne odgovara eksperimentalnom opažanju. K tome, dijagram 2-3 ukazuje na djelomičnu mješljivost u tome binarnome podsustavu, suprotno eksperimentalnom opažanju.

Slika 12. Primjer nekonzistentnog skupa podataka za model **UNIQUAC** u pseudotrokomponentnom sustavu voda (1) – octena kiselina (2) – butil-acetat (3), Grob¹⁹. Dijagrami 1-2 i 2-3 ukazuju na praktički potpunu nemješljivost komponenata, a komponente su u stvarnosti potpuno mješljive. Dijagram 1-3 ukazuje na potpunu mješljivost komponenata, a podsustav bi trebao biti djelomično mješljiv. U ovom slučaju treba uzeti u obzir da se radi o eksperimentalnom mjerenju pri 120 °C. Pri tako visokim temperaturama reakcije esterifikacije dovoljno su brze da može doći do djelomične hidrolize estera u kiselinu i odgovarajući alkohol. Stoga je sustav zapravo četverokomponentan.

4. REZULTATI

Tablice 3. i 4. sadrže optimalne vrijednosti parametara modela koeficijenta aktivnosti NRTL i UNIQUAC te mjeru slaganja eksperimentalnih i računskih podataka, *A*, komponenata u ravnotežnim fazama:

$$A = \sqrt{\frac{OF_3 - Q(\tau_{12}^2 + \tau_{21}^2 + \tau_{13}^2 + \tau_{31}^2 + \tau_{23}^2 + \tau_{32}^2)}{n_d \cdot n_c \cdot 2}},$$
(41)

koja odgovara srednjem kvadratnom odstupanju eksperimentalnih i računskih molarnih udjela.

Tablica 5. sadrži rezultate testiranja konzistentnosti s obzirom na ester kao dio trokomponentnog sustava.

Ester	Autor	T/K	$ au_{12}$	$ au_{13}$	$ au_{21}$	$ au_{23}$	$ au_{31}$	$ au_{32}$	Α
	Gasmelseed ¹¹	303,5	4,6768	4,4311	1,7860	-1,2325	-2,7363	1,5320	0,0605
	Sohoni ¹²	303,15	-0,4954	3,8644	0,4892	-2,1380	0,5386	2,6567	0,0017
	Jang ¹³	298,15	4,3660	3,4743	-2,8048	-2,1327	0,6368	1,2382	0,0042
ETIL-ACETAT	v 14	298,15	5,3348	4,0494	-2,9092	-1,1958	0,5134	0,9859	0,0021
	Kang ¹⁴	313,15	5,8029	4,0819	-2,8268	-1,0188	0,3309	1,4532	0,0019
	D 15	293,15	4,8841	3,5601	-2,1039	-1,3815	0,3582	2,8924	0,0146
	Roque	303,15	5,2811	4,0879	-2,8557	-2,0406	0,3010	2,8525	0,0028
		298,15	4,5180	4,6890	-1,8525	0,6326	1,1898	0,1411	0,0141
	Ince ¹	303,15	4,4594	5,4895	-2,0415	1,4193	0,7643	-0,7834	0,0133
		308,15	-1,0563	6,2672	0,7776	-0,8098	0,1975	-0,7093	0,0310
	Samarov ¹⁶	308,15	0,4607	8,7024	-0,1958	-1,2072	1,0748	0,7586	0,0064
	v 14	298,15	1,0963	8,0689	-0,8051	-1,1753	1,1961	1,1662	0,0044
	Kang	313,15	0,8684	8,0022	-0,6496	-1,0713	0,8396	1,2163	0,0043
	Jang ¹³	298,15	1,8886	3,7049	-0,6250	-1,5718	15,6170	17,6902	0,0218
	Bahrpaima ¹⁷	298,15	0,0067	8,8301	0,1722	-0,2025	0,9357	-0,2837	0,0037
BUTIL-ACETAT		304,15	-1,2637	6,8762	6,7877	-1,5536	0,8014	2,2246	0,0055
	Wang ¹⁸ **	332,15	-1,0157	6,8598	7,1393	-1,2369	0,5114	1,9890	0,0042
		366,15	-1,3310	7,1216	7,2956	-1,2058	0,5334	1,8031	0,0093
		353,15	-4,2128	4,5276	6,4432	-2,9672	0,1517	-5,5699	0,0492
	Grob ¹⁹ **	373,15	-6,1091	4,3780	16,5949	-8,9268	18,5057	1,3821	0,0583
		393,15	1,8138	4,1205	-1,1702	21,4826	17,1812	-0,0334	0,4429
	D 15	293,15	5,6274	8,9383	-1,8602	-1,6132	1,4772	4,0497	0,0880
	Roque	303,15	0,4920	8,7014	-0,3176	-1,0630	1,0288	1,2654	0,0015
		298,15	-1,3774	6,3979	5,0553	-1,3592	0,9287	2,4618	0,0096
	11 ²	303,15	-1,3480	6,1103	7,2633	-1,1993	0,6584	1,5525	0,0096
SEC-BUILL-ACETAT	Hu	308,15	-1,1037	5,3662	4,8867	-1,6036	0,5849	1,4165	0,0166
		313,15	-1,4376	7,3388	5,5231	-1,1885	0,7990	1,9451	0,0060
	CT (²⁵	283,15	-0,0104	6,0529	0,9318	-1,1742	0,9728	1,7394	0,0065
	Cnarer	323,15	0,2434	8,3209	0,0039	-1,2486	1,2572	1,4196	0,0118
IZUBUTIL-ACETAT	D ac15	293,15	0,4133	8,1267	6,9083	-0,2738	17,7894	2,3385	0,0205
	Roque ¹⁵	313,15	0,7515	5,7951	0,0137	-1,1310	0,7477	2,1698	0,0040

Tablica 3. Izračunate vrijednosti interakcijskih parametara τ za model NRTL i A s obziromna ester u promatranom trokomponentnom sustavu

Ester	Autor	T/K	$ au_{12}$	$ au_{13}$	$ au_{21}$	$ au_{23}$	$ au_{31}$	$ au_{32}$	A
		298,15	3,1991	5,0105	-1,8879	-1,7053	0,6311	2,1527	0,0052
	Xiao ²⁰ **	313,15	3,4331	5,5430	-1,8390	-1,4784	0,6213	2,2712	0,0067
PROPIL-ACETAT		369,65	3,7687	5,6413	-2,3541	-1,7721	0,4337	2,3689	0,0284
	Van a ¹⁴	298,15	3,3548	5,5124	-2,0581	-1,7244	0,7416	2,1430	0,0034
	Kang	313,15	3,2180	5,4555	-2,0187	-1,7823	0,6168	2,3601	0,0046
IZOPROPIL-ACETAT	Hlavaty ²⁵	297,75	0,0758	5,0616	6,0085	-1,4903	18,3329	2,4131	0,0081
		304,15	-0,4552	11,2996	4,6485	-0,9669	1,6403	2,1893	0,0060
AMIL-ACETAT	Wang ²¹ **	332,15	-0,2518	6,2479	9,5999	-1,3818	0,7997	2,6714	0,0069
		366,15	3,6505	4,4224	-1,9164	-1,1890	1,6904	-0,9600	0,0468
	D 15	293,15	0,9223	11,8453	-1,6281	0,9310	2,7107	-1,9546	0,0052
IZOAMIL-ACETAT	Roque	313,15	0,9464	11,8695	-1,6040	0,9230	2,7348	-2,0023	0,0327
		298,15	2,9396	6,9959	-2,2990	2,5045	1,0502	-2,4326	0,0198
CIKLOHEKSIL-ACETAT	Sayar ²²	308,15	3,8887	7,0848	-2,5343	3,5380	1,7132	-2,5359	0,0162
		318,15	4,8107	6,4892	-2,5605	3,6176	2,3410	-2,2465	0,0107
IZOPROPENIL-ACETAT		298,15	10,1772	2,1633	-2,4225	-3,1227	1,8838	6,0151	0,0571
	××× 23	313,15	3,8003	4,8219	-2,6066	-0,1610	0,7995	-0,7203	0,0148
	Wang	323,15	4,4363	5,1732	-2,6267	-1,5369	0,6335	1,8789	0,0072
		333,15	4,5319	4,9179	-2,4560	-1,3094	0,4199	2,0440	0,0077
DIMETIL-SUKCINAT	Bahrpaima ¹⁷	298,15	5,6316	5,8263	-3,4992	0,0366	-0,5980	-1,0974	0,0174
	m 1 ²⁶	294,15	1,3880	5,4088	-1,7940	5,4487	0,6740	-3,3780	0,0186
DIETIL-FENILMALONAT	Torul ²⁰	298,15	0,9727	6,0645	-1,9530	5,4575	0,5810	-3,5764	0,0029
	T 1 ²⁶	294,15	3,8085	5,2925	-1,5068	0,1947	0,3216	1,0021	0,0064
DIETIL-METILMALONAT	Torul ²⁰	298,15	3,7753	5,2336	-1,4234	0,1467	0,2355	1,2512	0,0106
		288,15	-0,0075	6,7688	-0,8367	2,4768	0,7694	-2,7678	0,0135
ETIL-ENANTAT	Demirel ⁴	298,15	0,7336	6,6204	-0,7998	1,7681	1,1880	-1,5729	0,0093
		308,15	0,8192	7,8509	-1,6643	2,9181	1,3183	-2,6182	0,0061
DIMETIL-FTALAT	Dramur ²⁷	293,16	5,2052	7,0582	-1,8998	-1,1372	0,0888	5,2967	0,0609
DIETIL-FTALAT	Dramur ²⁷	293,16	0,6534	7,0510	17,0944	0,2584	18,6124	-0,0447	0,0195
		298,15	-0,6428	7,8249	2,8926	0,6293	1,0793	0,1242	0,0089
DIBUTIL-FTALAT	Kirbaslar ²⁸	308,15	1,7517	11,1030	-1,7264	4,1505	1,7443	-2,2557	0,0084
		318,15	2,1891	11,5559	-1,5665	4,4095	1,9035	-1,9019	0,0057
	D 15	293,15	1,9282	7,2365	-1,6719	1,6241	1,7746	-1,5897	0,0076
HEPTIL-ACETAT	Roque	303,15	0,9223	11,8453	-1,6281	0,9310	2,7107	-1,9546	0,0047
		298,15	6,4448	5,1815	-3,0589	-0,4539	-0,0033	0,8966	0,0026
DIMETIL-GLUTARAT	Ince ³⁶	308,15	5,7677	5,0262	-2,6054	0,0825	-0,2966	0,7816	0,0045
		318,15	1,8581	5,0771	-1,7275	-2,3542	-0,3636	1,6389	0,0138

Ester	Autor	T/K	$ au_{12}$	$ au_{13}$	$ au_{21}$	$ au_{23}$	$ au_{31}$	τ_{32}	Α
		298,15	5,8762	6,1976	-2,7945	-0,5498	-0,0353	1,1645	0,0032
DIMETIL-ADIPAT	Ince ²⁹	308,15	1,4393	6,6368	-1,1697	-2,1268	-0,2118	1,9559	0,0034
		318,15	5,2183	6,2401	-2,6621	-0,9082	-0,1889	1,4528	0,0045
		298,15	2,8966	6,4142	-2,0796	3,6887	1,8089	-2,1457	0,0093
2-ETILHEKSIL ACETAT	Ince ³	308,15	2,8999	7,1481	-1,9539	4,6125	1,2620	-2,0648	0,0035
		318,15	3,6008	7,2882	-2,1842	3,3631	1,5621	-1,7352	0,0083
BUTIL-BUTIRAT	Sofiya ³⁰	298				*			
ETIL-BUTIRAT	Ramana Rao ³¹	301,15	3,9955	7,1116	-1,9774	1,6356	0,8984	-0,7890	0,0038
METIL-BUTIRAT	Sitarama Murty ³⁵	303,15	-1,2125	5,9323	0,8791	-1,0370	22,0740	-0,4556	0,0087
ETIL-VALERAT	Sorensen ³⁴	293,15	2,2517	6,6530	0,3679	1,9102	24,7165	0,8939	0,0258
ETIL-PROPIONAT	Sorensen ³⁴	301,15	3,0900	4,7390	-2,2550	1,6639	0,9239	-2,1933	0,0044
METIL-PROPIONAT	Sorensen ³⁴	293,15	-1,6934	3,9418	0,7149	-2,2072	0,7475	0,6659	0,0173
PROPIL-PROPIONAT	Sorensen ³⁴	293,15	3,8653	5,7865	-2,2631	0,8961	1,5415	-1,0280	0,0080
ETIL-BENZOAT	Sorensen ³⁴	304,15	1,8867	7,4282	-2,1092	3,3311	1,1589	-2,7159	0,0047
DIETIL-SUKCINAT	Kirbaslar ³²	298,15	4,5883	6,3503	-2,4604	1,0723	0,0450	-1,0472	0,0046
DIETIL-GLUTARAT	Kirbaslar ³²	298,15	4,5830	6,2032	-2,2587	1,0279	0,3466	-0,8299	0,0035
DIETIL-ADIPAT	Kirbaslar ³²	298,15	4,4803	6,5931	-2,0328	1,4077	0,3115	-0,7425	0,0060

* Primijenjeni postupak optimiranja nije uspio procijeniti parametre na zadovoljavajući način

** Neki od eksperimenata provedeni su pri visokoj temperaturi pa je moguća deesterifikacija

Ester	Autor	T/K	$ au_{12}$	$ au_{13}$	$ au_{21}$	$ au_{23}$	τ_{31}	$ au_{32}$	Α
	Gasmelseed ¹¹	303,5	0,9317	0,4834	0,1066	0,4030	0,2710	0,3997	0,0438
	Sohoni ¹²	303,15	1,6121	0,7488	0,9467	2,6976	0,2739	0,2499	0,0013
	Jang ¹³	298,15	0,4534	0,7573	2,7714	1,2480	0,2576	1,8510	0,0034
ETIL-ACETAT	14	298,15	0,1735	0,7692	2,3249	0,9393	0,2582	0,7950	0,0030
	Kang ¹⁴	313,15	0,0916	0,7850	2,3550	1,1790	0,2812	0,3511	0,0033
	D 15	293,15	0,0882	0,8166	3,0469	2,4809	0,2085	0,1083	0,0026
	Roque	303,15	0,0969	0,7771	2,8836	2,3766	0,2881	0,0995	0,0044
		298,15	0,2840	0,6209	2,7327	2,0416	0,1930	0,4119	0,0046
	Ince ¹	303,15	0,1814	0,6823	2,6417	1,8786	0,1680	0,3090	0,0042
		308,15	0,2862	0,7577	2,4131	1,6400	0,1432	0,5114	0,0102
	Samarov ¹⁶	308,15	3,1897	0,6711	0,1770	2,4049	0,2118	0,3148	0,0063
	1 4	298,15	4,0651	0,5741	0,2567	2,4188	0,1949	0,3302	0,0036
	Kang ¹⁴	313,15	3,8195	0,5461	0,3129	2,2453	0,2660	0,3335	0,0020
	Jang ¹³	298,15	0,0229	0,0229	2,2339	0,7190	0,1938	1,1996	0,0103
	Bahrpaima ¹⁷	298,15	1,7320	0,7372	1,1207	0,3401	0,2262	3,1334	0,0015
BUTIL-ACETAT		304,15	0,0556	0,3976	3,4406	2,9440	0,3371	0,0687	0,0033
	Wang ¹⁸ **	332,15	4,0254	0,4804	0,2065	2,2067	0,3623	0,4309	0,0038
		366,15	3,6592	0,6676	0,1922	2,1356	0,2903	0,4385	0,0058
		353,15	2,5732	0,0377	0,0038	0,1204	1,1173	2,3176	0,0729
	Grob ¹⁹ **	373,15	0,2271	1,3042	0,1236	0,2263	0,1690	0,2322	0,0962
		393,15	0,3516	0,5101	0,0920	0,0003	0,9071	0,1284	0,0713
	D a mus ¹⁵	293,15				*			
	Koque	303,15	4,2956	0,3568	0,5990	2,5662	0,3076	0,3992	0,0017
		298,15	2,9000	0,7644	0,0720	2,2075	0,1844	0,2258	0,0052
SEC DUTH ACETAT	11.,2	303,15	0,0782	0,4741	2,9954	2,3506	0,2971	0,1252	0,0029
SEC-BUILL-ACETAT	nu	308,15	4,0922	0,5829	0,3182	2,3925	0,2492	0,4084	0,0059
		313,15	0,1260	0,4223	3,3739	2,6680	0,3254	0,1691	0,0048
	Chafar ²⁵	283,15	3,1860	0,6199	0,1246	2,2260	0,1894	0,2825	0,0029
IZOBUTIL ACETAT	Ciidler	323,15	3,9795	0,6303	0,3321	2,4741	0,1834	0,4132	0,0089
IZODU HL-ACETAT	Roque ¹⁵	293,15	0,5494	0,6107	2,3021	0,6438	0,1908	1,8886	0,0036
		313,15	0,9464	0,6786	1,8137	0,2392	0,2300	3,2204	0,0041

Tablica 4. Izračunate vrijednosti interakcijskih parametara τ za model UNIQUAC i A sobzirom na ester u promatranom trokomponentnom sustavu

Ester	Autor	T/K	$ au_{12}$	$ au_{13}$	$ au_{21}$	$ au_{23}$	$ au_{31}$	τ_{32}	Α
		298,15	0,1536	0,5880	3,1491	1,6147	0,2337	0,6821	0,0055
	Xiao ²⁰ **	313,15	2,7909	0,6442	0,7144	2,7365	0,2544	0,4592	0,0057
PROPIL-ACETAT		369,65	0,1712	0,8818	1,9320	0,8437	0,1721	0,5544	0,0102
-	xr 14	298,15	5,5090	0,6623	0,3391	2,6565	0,2231	0,5261	0,0045
	Kang	313,15	0,1655	0,8201	2,0230	1,3275	0,2031	0,2965	0,0044
IZOPROPIL-ACETAT	Hlavaty ²⁵	297,75	3,3683	0,8622	0,0215	2,5402	0,1848	0,2760	0,0059
		304,15	2,5062	0,7540	0,0664	2,2329	0,1695	0,2049	0,0049
AMIL-ACETAT	Wang ²¹ **	332,15	2,6259	0,8253	0,0820	2,0076	0,1927	0,3380	0,0048
		366,15	0,9348	0,9141	1,2209	0,6021	0,1752	1,6092	0,0046
	D ¹⁵	293,15	1,2179	0,6446	1,8637	0,3031	0,1773	3,5847	0,0133
IZOAMIL-ACETAT	Roque	313,15	0,9709	0,7486	1,6577	0,2520	0,1945	2,5311	0,0036
		298,15	0,4133	1,0637	1,3806	1,2349	0,1032	0,3749	0,0085
CIKLOHEKSIL-ACETAT	Sayar ²²	308,15	0,4100	1,0610	1,3684	1,2230	0,1021	0,3730	0,0082
		318,15	0,3917	0,8961	2,6030	2,0920	0,0370	0,3618	0,0054
		298,15	1,9338	0,7827	0,6863	2,4894	0,1517	0,2266	0,0074
IZOPROPENIL-ACETAT	Wang ²³	313,15	1,2733	0,6436	1,5463	2,5990	0,2349	0,3204	0,0111
	w ang	323,15	3,8878	0,8625	0,3837	2,2253	0,2278	0,9967	0,0132
		333,15	1,3911	0,5733	1,4009	2,6452	0,3104	0,2213	0,0057
DIMETIL-SUKCINAT	Bahrpaima ¹⁷	298,15	4,7334	1,1630	1,0873	2,0666	0,2785	2,8059	0,0170
DIETH FENH MALONAT	Torul ²⁶	294,15	4,5102	1,3333	0,7327	0,1907	0,0928	4,6199	0,0064
DIETIE-TENIEMALONAT	Totul	298,15	117,4086	1,2800	0,7727	0,5045	0,1147	84,8940	0,0017
DIETII -METII MALONAT	Torul ²⁶	294,15	0,1055	0,7682	2,8326	1,8940	0,2052	0,2045	0,0045
	Totul	298,15	6,4843	1,0813	1,0487	0,3823	0,1614	9,3853	0,0091
		288,15	2,7039	0,5310	0,0569	1,3571	0,2588	0,4652	0,0089
ETIL-ENANTAT	Demirel ⁴	298,15	2,0083	0,9167	0,9792	0,3350	0,1056	2,2827	0,0076
		308,15	0,0382	0,0631	4,0563	0,1322	0,2617	2,1786	0,0049
DIMETIL-FTALAT	Dramur ²⁷	293,16	1,2137	0,9732	1,7220	2,8780	0,2077	0,2114	0,0049
DIETIL-FTALAT	Dramur ²⁷	293,16	0,9391	1,1569	1,9801	0,9291	0,0515	1,3570	0,0171
		298,15	1,2957	0,3822	1,8133	0,7435	0,2364	1,8593	0,0082
DIBUTIL-FTALAT	Kirbaslar ²⁸	308,15	0,4186	0,8675	2,2295	0,3266	0,1261	1,2594	0,0065
		318,15	0,4598	0,9053	2,0259	0,5574	0,1155	0,9813	0,0046
HEDTH ACETAT	Poque ¹⁵	293,15	0,4681	0,5921	2,2008	0,4762	0,1177	1,4491	0,0079
	Roque	303,15	0,4210	0,6574	2,1401	0,4538	0,1213	1,3194	0,0061
		298,15	0,6461	0,9480	2,2922	0,5224	0,2481	3,1778	0,0018
DIMETIL-GLUTARAT	Ince ³⁶	308,15	0,2503	1,0328	1,5775	0,3165	0,2567	0,8697	0,0026
		318,15	1,6381	1,2481	0,8523	2,3666	0,1827	0,4439	0,0109

Ester	Autor	T/K	$ au_{12}$	$ au_{13}$	$ au_{21}$	$ au_{23}$	$ au_{31}$	τ_{32}	Α
		298,15	0,3203	0,9225	1,8843	0,3532	0,2660	1,4045	0,0027
DIMETIL-ADIPAT	Ince ²⁹	308,15	0,2538	0,9927	1,9899	0,8455	0,2555	0,7662	0,0027
		318,15	1,2456	0,8819	1,9602	0,3722	0,3161	4,4118	0,0035
		298,15	1,0997	0,8726	1,6142	0,0509	0,0804	2,5837	0,0073
2-ETILHEKSIL ACETAT	Ince ³	308,15	1,1785	0,9685	1,1013	0,1364	0,1364	1,8650	0,0035
		318,15	0,4509	0,8403	1,9646	0,8545	0,1056	0,7332	0,0062
BUTIL-BUTIRAT	Sofiya ³⁰	298	5,0852	1,0456	0,4910	0,4317	0,1391	9,0133	0,2675
ETIL-BUTIRAT	Ramana Rao ³¹	301,15	0,1856	0,4614	2,3736	1,3979	0,3061	0,4334	0,0038
METIL-BUTIRAT	Sitarama Murty ³⁵	303,15	0,1350	0,5240	2,9404	1,4608	0,2455	0,5762	0,0059
ETIL-VALERAT	Sorensen ³⁴	293,15	0,2743	0,5579	1,4955	1,4434	0,1703	0,2377	0,0075
ETIL-PROPIONAT	Sorensen ³⁴	301,15	2,1582	0,6721	0,6763	2,4188	0,2118	0,3209	0,0031
METIL-PROPIONAT	Sorensen ³⁴	293,15	7,8892	0,6881	0,3756	2,7901	0,1753	0,6159	0,0127
PROPIL-PROPIONAT	Sorensen ³⁴	293,15	0,3416	0,6953	2,3582	1,0352	0,0993	0,9218	0,0069
ETIL-BENZOAT	Sorensen ³⁴	304,15	3,6429	0,4886	0,1309	1,8705	0,2883	0,3731	0,0024
DIETIL-SUKCINAT	Kirbaslar ³²	298,15	4,5116	0,8620	0,5042	2,4259	0,2666	0,5732	0,0031
DIETIL-GLUTARAT	Kirbaslar ³²	298,15	4,3416	0,7824	0,8380	2,8588	0,2400	0,5786	0,0018
DIETIL-ADIPAT	Kirbaslar ³²	298,15	3,4882	0,6337	0,3515	2,4333	0,2860	0,2594	0,0029

* Primijenjeni postupak optimiranja nije uspio procijeniti parametre na zadovoljavajući način

** Neki od eksperimenata provedeni su pri visokoj temperaturi pa je moguća deesterifikacija

Ester	Autor	T/K	NRTL	UNIQUAC
	Gasmelseed ¹¹	303,5	Konzistentan	Nekonzistentan
	Sohoni ¹²	303,15	Konzistentan	Konzistentan
	Jang ¹³	298,15	Konzistentan	Konzistentan
ETIL-ACETAT	v r 14	298,15	Konzistentan	Konzistentan
	Kang	313,15	Konzistentan	Konzistentan
	D 15	293,15	Konzistentan	Konzistentan
	Roque	303,15	Konzistentan	Konzistentan
		298,15	Konzistentan	Konzistentan
	Ince ¹	303,15	Konzistentan	Konzistentan
		308,15	Konzistentan	Konzistentan
	Samarov ¹⁶	308,15	Konzistentan	Konzistentan
	v 14	298,15	Konzistentan	Konzistentan
	Kang	313,15	Konzistentan	Konzistentan
	Jang ¹³	298,15	Nekonzistentan	Konzistentan
	Bahrpaima ¹⁷	298,15	Konzistentan	Konzistentan
BUIL-ACEIAI	Wang ¹⁸ **	304,15	Konzistentan	Konzistentan
		332,15	Konzistentan	Konzistentan
		366,15	Konzistentan	Konzistentan
		353,15	Konzistentan	Konzistentan
	Grob ¹⁹ **	373,15	Nekonzistentan	Nekonzistentan
		393,15	Nekonzistentan	Nekonzistentan
	D 15	293,15	Konzistentan	*
	Koque	303,15	Konzistentan	Konzistentan
		298,15	Konzistentan	Konzistentan
SEC DUTH ACETAT	11 ,, ²	303,15	Konzistentan	Konzistentan
SEC-BUTIL-ACETAT	пи	308,15	Konzistentan	Konzistentan
		313,15	Konzistentan	Konzistentan
	Chafar ²⁵	283,15	Konzistentan	Konzistentan
	Chaler	323,15	Konzistentan	Konzistentan
IZUDU HL-ACETAT	Pogue ¹⁵	293,15	Nekonzistentan	Konzistentan
	Koque	313,15	Konzistentan	Konzistentan

Tablica 5. Rezultati provedene provjere konzistentnosti parametara za modele NRTL iUNIQUAC s obzirom na ester u promatranom trokomponentnom sustavu

Ester	Autor	T/K	NRTL	UNIQUAC
PROPIL-ACETAT	Xiao ²⁰ **	298,15	Konzistentan	Konzistentan
		313,15	Konzistentan	Konzistentan
		369,65	Konzistentan	Konzistentan
	Kang ¹⁴	298,15	Konzistentan	Konzistentan
		313,15	Konzistentan	Konzistentan
IZOPROPIL-ACETAT	Hlavaty ²⁵	297,75	Nekonzistentan	Konzistentan
	Wang ²¹ **	304,15	Nekonzistentan	Konzistentan
AMIL-ACETAT		332,15	Nekonzistentan	Konzistentan
		366,15	Nekonzistentan	Konzistentan
	Roque ¹⁵	293,15	Konzistentan	Konzistentan
IZOAMIL-ACETAT		313,15	Konzistentan	Konzistentan
		298,15	Konzistentan	Konzistentan
CIKLOHEKSIL-ACETAT	Sayar ²²	308,15	Konzistentan	Konzistentan
		318,15	Konzistentan	Nekonzistentan
		298,15	Konzistentan	Konzistentan
	22	313,15	Konzistentan	Konzistentan
IZOPROPENIL-ACETAT	Wang ²³	323,15	Konzistentan	Konzistentan
		333,15	Konzistentan	Konzistentan
DIMETIL-SUKCINAT	Bahrpaima ¹⁷	298,15	Konzistentan	Nekonzistentan
	Torul ²⁶	294,15	Konzistentan	Konzistentan
DIETIL-FENILMALONAT		298,15	Konzistentan	Konzistentan
	Torul ²⁶	294,15	Konzistentan	Konzistentan
DIETIL-METILMALONAT		298,15	Konzistentan	Konzistentan
	Demirel ⁴	288,15	Konzistentan	Konzistentan
ETIL-ENANTAT		298,15	Konzistentan	Konzistentan
		308,15	Konzistentan	Konzistentan
DIMETIL-FTALAT	Dramur ²⁷	293,16	Konzistentan	Konzistentan
DIETIL-FTALAT	Dramur ²⁷	293,16	Nekonzistentan	Konzistentan
	Kirbaslar ²⁸	298,15	Konzistentan	Konzistentan
DIBUTIL-FTALAT		308,15	Konzistentan	Konzistentan
		318,15	Konzistentan	Konzistentan
HEPTIL-ACETAT	Roque ¹⁵	293,15	Konzistentan	Konzistentan
		303,15	Konzistentan	Konzistentan
	Ince ³⁶	298,15	Konzistentan	Konzistentan
DIMETIL-GLUTARAT		308,15	Konzistentan	Konzistentan
		318,15	Konzistentan	Konzistentan

Ester	Autor	T/K	NRTL	UNIQUAC
DIMETIL-ADIPAT	Ince ²⁹	298,15	Konzistentan	Konzistentan
		308,15	Konzistentan	Konzistentan
		318,15	Konzistentan	Konzistentan
		298,15	Konzistentan	Konzistentan
2-ETILHEKSIL ACETAT	Ince ³	308,15	Konzistentan	Konzistentan
		318,15	Konzistentan	Konzistentan
BUTIL-BUTIRAT	Sofiya ³⁰	298	*	Konzistentan
ETIL-BUTIRAT	Ramana Rao ³¹	301,15	Konzistentan	Konzistentan
METIL-BUTIRAT	Sitarama Murty ³⁵	303,15	Nekonzistentan	Konzistentan
ETIL-VALERAT	Sorensen ³⁴	293,15	Nekonzistentan	Konzistentan
ETIL-PROPIONAT	Sorensen ³⁴	301,15	Konzistentan	Konzistentan
METIL-PROPIONAT	Sorensen ³⁴	293,15	Konzistentan	Konzistentan
PROPIL-PROPIONAT	Sorensen ³⁴	293,15	Konzistentan	Konzistentan
ETIL-BENZOAT	Sorensen ³⁴	304,15	Konzistentan	Konzistentan
DIETIL-SUKCINAT	Kirbaslar ³²	298,15	Konzistentan	Konzistentan
DIETIL-GLUTARAT	Kirbaslar ³²	298,15	Konzistentan	Konzistentan
DIETIL-ADIPAT	Kirbaslar ³²	298,15	Konzistentan	Konzistentan

* Primijenjeni postupak optimiranja nije uspio procijeniti parametre na zadovoljavajući način

** Neki od eksperimenata provedeni su pri visokoj temperaturi pa je moguća deesterifikacija

5. RASPRAVA

Po obradi eksperimentalnih podataka te po provjeri dobivenih parametara za modele NRTL i UNIQUAC preko testa konzistentnosti i izračunu srednjeg odstupanja *A* vidi se dobro slaganje između eksperimenta i računa. Ukupno gledajući, blagu prednost ima model UNIQUAC sa srednjim kvadratnim odstupanjem A = 0,0121 prema NRTL-u sa srednjim kvadratnim odstupanjem A = 0,0188. Udjeli konzistentnih i nekonzistentnih skupova parametara prikazani su u Tablici 6.

Model	Konzistentno / %	Nekonzistentno / %	Sumnjivo / %
NRTL	87	13	0
UNIQUAC	94	6	0

Tablica 6. Usporedba rezultata testa konzistentnosti za modele NRTL i UNIQUAC

NRTL ima veći broj nekonzistentnih skupova parametara, i to za sedam postotnih bodova. Testom se također mogu vrednovati skupovi parametara prema pouzdanosti procjene ravnotežnih sastava faza, no među istraženim slučajevima program nije pronašao nijedan sumnjiv skup parametara.

Promatrajući eksperimentalne molarne udjele u pojedinim sustavima opaža se negativan nagib veznih linija što indicira da je octena kiselina bolje topljiva u esteru nego u vodi. Prema Treybalovoj klasifikaciji svi trokutni dijagrami definirani su tipom I. U nastavku teksta raspravlja se utjecaj strukture estera i temperature na izgled trokutnog dijagrama. Grafički prikazi napravljeni su u programu OriginLab 8.5.

Slika 13. prikazuje ravnotežne krivulje za sustave s različitim esterima octene kiseline pri temperaturi od 298,15 K. Promatrani esteri su etil-¹³, propil-²⁰, butil-¹, cikloheksil-²² te 2etilheksil acetat³. Primjećuje se kako duljina alkoholnog lanca estera utječe na širinu heterogenog područja. S porastom duljine lanca širi se heterogeno područje pa je prema tome 2-etilheksil-acetat najpovoljnije otapalo za ekstrakciju octene kiseline iz vode. No prema Roqueu i suradnicima¹⁵, koeficijenti raspodjele, koji se definiraju kao omjer molarnoga udjela octene kiseline u vodenom i organskom sloju, varirali su ovisno o odjelu octene kiseline. Pri molarnom udjelu octene kiseline od 0,05 najviši koeficijent raspodjele imao je etil-acetat, a u intervalu od 0,05 do 0,15 najviši koeficijent imali su butil- i izobutil-acetat. Tek je pri udjelima iznad 0,18 heptil-acetat, koji ima najviše ugljikovih atoma od promatranih estera u

34

radu, imao najveću vrijednost koeficijenta raspodjele. Pretpostavlja se da se kod duljih lanaca snižava topljivost octene kiseline zbog smanjenog utjecaja vodikovih veza. Sve vrijednosti selektivnosti, tj. omjera koeficijenta raspodjele octene kiseline i vode, veće su od 1, s tim da je najveću selektivnost u rasponu od 3 do 23 iskazao heptil-acetat¹⁵.

Slika 13. Ravnotežne krivulje za sustave s različitim monoesterima octene kiseline pri temperaturi od 298,15 K – ovisnost o duljini lanca alkoholnog ostatka

To također objašnjava zašto razgranatost lanaca, prikazana na Slici 14., nema utjecaja na širinu dvofaznog područja. Na dijagramu su prikazani butil-¹⁴, izobutil-¹⁵ i sec-butilacetat².

Slika 14. Ravnotežne krivulje za sustave s različitim monoesterima octene kiseline pri temperaturi od 298,15 K – ovisnost o razgranatosti lanca alkoholnog ostatka.

Slika 15. prikazuje utjecaj duljine alkoholnog lanca na diestere²⁷; uspoređuju se dimetil i dietil-ftalat pri 293,15 K. Porastom duljine alkoholnog lanca se širi heterogena zona.

Slika 15. Ravnotežne krivulje za sustave s različitim diesterima ftalne kiseline pri temperaturi od 293,15 K – ovisnost o duljini lanca alkoholnog ostatka.

Slika 16. odnosi se na utjecaj duljine kiselinskog lanca diestera²⁶ na širinu heterogenog područja. Ponovno se vidi porast heterogenog područja s porastom duljine lanca.

Slika 16. Ravnotežne krivulje za sustave s dietilnim esterima različitih dvovalentnih kiselina pri temperaturi od 294,15 K – ovisnost o veličini kiselinskog ostatka.

Na Slici 17. prikazane su ravnotežne krivulje trokomponentnih sustava s butil-acetatom u temperaturnom rasponu od 293,15 K do 366,15 K.^{1, 13, 14, 15, 16,18} Temperatura nema izrazit utjecaj na širinu heterogenog područja, ali se ono ipak smanjuje s porastom temperature dok mješljivost vode i butil-acetata raste.

Slika 17. Ravnotežne krivulje za trokomponentni sustav voda (1) – octena kiselina (2) – butil-acetat (3) – temperaturna ovisnost

Na Slici 18. prikazane su ravnotežne krivulje četiri etilna monoestera, točnije etil-acetata¹⁵, -propionata³⁴, -butirata³¹ te -benzoata³⁴ u uskom temperaturnom rasponu od 301,15 K do 304,15 K s ciljem prikaza utjecaja duljine kiselinskog lanca na širinu heterogenog područja. S porastom duljine lanca širi se dvofazno područje i smanjuje međusobna mješljivost vode i estera.

Slika 18. Ravnotežne krivulje za sustave s etilnim esterima različitih monovalentnih kiselina pri temperaturi od 301,15 K – 304,15 K – ovisnost o veličini kiselinskog ostatka.

Na Slici 19. uspoređeni su trokutni dijagrami za sustave s izopropil- i izopropenil-acetatom kao ekstrakcijskim sredstvom pri temperaturama 297,75 K²⁴ i 298,15 K²³ kako bi se razmotrilo ima li nezasićenost alkoholnog ostatka utjecaj na širinu dvofaznoga područja. Rezultati pokazuju da nema znatne razlike u širini dvofaznoga područja, odnosno mješljivosti komponenata.

Slika 19. Ravnotežne krivulje za sustave s dva estera octene kiseline pri temperaturi od 297,15 K – 298,15 K – ovisnost o (ne)zasićenosti alkoholnog ostatka.

6. ZAKLJUČAK

U radu je proveden izračun interakcijskih parametara za modele NRTL i UNIQUAC za 83 trokomponentna sustava tipa voda (1) – octena kiselina (2) – organski ester (3) u temperaturnom rasponu od 283,15 K do 393,15 K. Sudeći po dobivenom srednjem kvadratnom odstupanju eksperimentalnih i računskih molarnih udjela te nakon provedbe topološkog testa konzistentnosti, pokazalo se da oba modela daju zadovoljavajuće rezultate, s tim da UNIQUAC ima malu prednost nad NRTL-om.

Međusobna usporedba eksperimentalnih podataka pokazala je da najveći utjecaj na širinu dvofaznog područja ima broj ugljikovih atoma; porastom broja ugljikovih atoma širi se heterogeno područje i smanjuje međusobna topljivost vode i estera. Nešto manji utjecaj ima temperatura. U prikazanom slučaju širina dvofaznoga područja pada s porastom temperature, što znači da se povećava međusobna mješljivost vode i estera. Čini se također da snižavanje temperature povećava topljivost octene kiseline u esteru. Razgranatost ugljikova lanca i njegova zasićenost ili nezasićenost nemaju znatan utjecaj na širinu dvofaznog područja.

S obzirom na literaturne podatke, vrijednosti koeficijenta raspodjele i selektivnosti variraju ovisno o koncentracijskom području i broju ugljikovih atoma u alkoholnom i kiselinskom lancu stoga nije moguće izvući jasan zaključak o tome koji bi ester bio najpogodniji za ekstrakciju octene kiseline.

7. LITERATURA

Opća literatura:

M. Rogošić, Kemijsko inženjerska termodinamika, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Zavod za fizikalnu kemiju, Zagreb, 2013., str. 206-363.

Posebna literatura:

[1] E. Ince, Ş.İ. Kırbaslar, *Liquid-liquid equilibria of the water-acetic acid-butyl acetate system*, Braz. J. Chem. Eng. 19 (2002) 243-254

[2] S. Hu, Q. Chen, B. Zhang, Y. Liang, X. Gao, *Liquid–liquid equilibrium of the ternary system water + acetic acid + sec-butyl acetate*, Fluid Phase Equilib. 293 (2010) 73-78.

[3] E. Ince, M. Lalikoglu, *Liquid–liquid equilibria of water + acetic acid + 2-ethyl hexyl acetate ternary system*, Fluid Phase Equilib. 379 (2014) 206-211.

[4] C. Demirel, S. Çehreli, *Phase equilibrium of (water + formic or acetic acid + ethyl heptanoate) ternary liquid systems at different temperatures*, Fluid Phase Equilib. 356 (2013) 71-77.

[5] M. Sejdić, Ocjena pouzdanosti publiciranih vrijednosti parametara modela koeficijenta aktivnosti kod opisa ravnoteže kapljevina-kapljevina, završni rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Zagreb, 2020., str. 1, 18-28.

[6] A. Marcilla, J. A. Reyes-Labarta, M. D. Olaya, *Should we trust all the published LLE correlation parameters in phase equilibria? Necessity of their assessment prior to publication*, Fluid Phase Equilib. 433 (2017) 243-252.

[7] H. Renon, J. M. Prausnitz, *Local composition in thermodynamic excess functions for liquid mixtures*, Am. J. Chem. Eng 14 (1968) 135-144.

[8] J. A. Reyes-Labarta, M. M. Olaya, A. Marcilla, *Topological analysis of the GM function in liquid-liquid equilibrium correlation data (Thermodynamic Review)*, softver, Institutional Repository RUA (University of Alicante), http://hdl.handle.net/10045/51725 (pristup 8. rujna 2022.)

[9] N. Ljubić, *Modeliranje ravnoteže kapljevina-kapljevina trokomponentnog sustava voda(1)-propionska kiselina(2)-organski ester(3)*, završni rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Zagreb, 2018., str. 15-17.

[10] T. Magnussen, P. Rasmussen, A. Fredenslund, *UNIFAC parameter table for prediction of liquid-liquid equilibria*, Ind. Eng. Chem. Process Des. Dev. 20 (1981) 331-339.

[11] G. A. Gasmelseed, *Experimental liquid-liquid equilibrium data for the ternary systems:* (chloroform-acetic acid-water) and (water-acetic acid-ethyl acetate) and its reliability, Int. J. Eng. Sci. Innov. Technol. 3 (2014) 28-33.

[12] V. Sohoni, U. R. Warhadpande, *System ethyl acetate–acetic acid–water at 30 °C. Solvent extraction equilibrium data*, Ind. Eng. Chem. 44 (1952) 1428-1429.

[13] Y. S. Jang, D. W. Park, *LLE of solvent-water-acetic acid ternary systems*, J. Korean Ind.Eng. Chem. 11 (2000) 254-260.

[14] C. H. Kang, *Liquid-liquid equilibria of azeotropic ternary mixtures*, Korean Chem. Eng.Res. 33 (1995) 243-250

[15] L. R. Roque, R. R. Pinto, L. H. Oliveira, S. C. Rabelo, *Liquid-liquid equilibrium data for ternary systems of water* + *acetic acid*+ *acetate esters at 293.2 K and 303.2 K and* \approx 95 kPa, Fluid Phase Equilib. 463 (2018) 34-47.

[16] A. A. Samarov, M. Toikka, A. M. Toikka, *Liquid–liquid equilibrium and critical states for the system acetic acid+ n -butanol+ n -butyl acetate+water at 308.15 K*, Fluid Phase Equilib. 385 (2015) 129-133.

[17] K. Bahrpaima, A. R. Bijanzadeh, M. Behzadi, *Effect of magnetic field on the liquid-liquid equilibria of (water + acetic acid + organic solvent) ternary systems*, Phys. Chem. Res. 5 (2017) 125-134.

[18] L. Wang, A. Y. Cheng, X. Xiao, X. Li, *Liquid–liquid equilibria for the ternary systems* acetic acid + water + butyl acetate and acetic acid + water + 2-methyl propyl acetate at 304.15 K, 332.15 K, and 366.15 K, J. Chem. Eng. Data 52 (2007) 1255-1257.

[19] S. Grob, H. Hasse, *Thermodynamics of phase and chemical equilibrium in a strongly nonideal esterification system*, J. Chem. Eng. Data 50 (2005) 92-101.

[20] X. Xiao, L. Wang, G. Ding, X. Li, *Liquid-liquid equilibria for the ternary system water* + *acetic acid* + *propyl acetate*, J. Chem. Eng. Data 51 (2006) 582-583.

[21] L. Wang, A.Y. Cheng, X. Li, *Liquid–liquid equilibria for the acetic acid + water + amyl acetate and acetic acid + water + 2-methyl ethyl acetate ternary systems*, J. Chem. Eng. Data 52 (2007) 2171-2173.

[22] A. A. Sayar, B. Tatlı, U. Dramur, *Liquid-liquid equilibria of the water + acetic acid + cyclohexyl acetate ternary*, J. Chem. Eng. Data 36 (1991) 378-382.

[23] Z. Wang, B. Wu, J. Zhu, K. Chen, Z. Zhang, *Liquid–liquid equilibrium for the ternary system isopropenyl acetate+water+acetic acid at 298.2K, 313.2K, 323.2K and 333.2K*, Fluid Phase Equilib. 311 (2011) 54-58.

[24] K. Hlavaty, J. Linek, *Liquid-liquid equilibria in four ternary acetic acid-organic solventwater systems at 24.6 °C*, Collect. Czech. Chem. Commun. 38 (1973) 374-378.

[25] A. Cháfer, E. Lladosa, J. D. Torre, M. C. Burguet, *Study of liquid–liquid equilibrium of the systems isobutyl acetate + acetic acid + water and isobutyl alcohol + acetic acid + water at different temperatures*, Fluid Phase Equilib. 271 (2008) 76-81.

[26] O. Torul, N. Gultekin, S. Nohut, C. Duran, *Liquid-liquid equilibrium for the ternary* systems composed of diethyl phenylmalonate + acetic acid + water and diethyl methylmalonate + acetic acid + water at 294, 298, and 308 K, J. Chem. Eng. Data 37 (1992) 474-478.

[27] U. Dramur, B. Tatlı, *Liquid-liquid equilibria of water + acetic acid + phthalic esters* (*dimethyl phthalate and diethyl phthalate*) ternaries, J. Chem. Eng. Data 38 (1993) 23-25.

[28] Ş. İ. Kırbaslar, E. Ince, S. A. Yüksel, (*Liquid* + *liquid*) equilibria of the (water + acetic acid + dibutyl phthalate) system, J. Chem. Thermodyn. 37 (2005) 1256-1260.

[29] E. Ince, *Liquid–liquid equilibria of the ternary system water + acetic acid + dimethyl adipate*, Fluid Phase Equilib. 230 (2005) 33-38.

[30] K. Sofiya, B. Karunanithi, *Liquid–liquid equilibrium of water+acetic acid+butyl butanoate at 298 K and 1 atmosphere*, Fluid Phase Equilib. 403 (2015) 114-117.

[31] M. V. Ramana Rao, P. Dakshina Murty, *Ternary liquid equilibria*, J. Chem. Eng. Data. 10 (1965) 248-249.

[32] Ş. İ. Kırbaşlar, S. Şahin, M. Bilgin, *Liquid–liquid equilibria of (water + acetic acid + diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems*, J. Chem. Eng. Data 52 (2007) 1108-1112.

[33] S. Hu, Q. Chen, B. Zhang, Y. Liang, X. Gao, *Liquid–liquid equilibrium of the ternary system water + acetic acid + sec-butyl acetate*, Fluid Phase Equilib. 293 (2010) 73-78.

[34] J. M. Sørensen, W. Arlt, E. A. Macedo, P. Rasmussen, *Dechema Chemistry Data Series, Liquid-Liquid Equilibrium Data Collection Vol 5/2*, Dechema, Frankfurt, 1984, str. 281., 225., 238., 300., 306.

[35] N. Sitarama Murty, V. Subrahmanyam, P. Dakshina Murty, *Ternary liquid equilibria*, J. Chem. Eng. Data. 11 (1966) 335-338.

[36] E. Ince, *Liquid-liquid equilibria of water* + *acetic acid* + *dimethyl glutarate ternary system*, J. Chem. Eng. Data 50 (2005) 1539-1542.

8. POPIS OZNAKA

a_i	aktivnost <i>i</i> -te komponente u otopini, mol m ⁻³
с	u gornjem indeksu, oznaka za kombinatorni doprinos
ex	u gornjem indeksu, oznaka za ekscesnu veličinu
F	u gornjem indeksu, oznaka početne smjese
G	Gibbsova energija, J
g	molarna Gibbsova energija, J mol ⁻¹
G_{ij}	pomoćna varijabla modela NRTL
Η	entalpija, J
id	u gornjem indeksu, oznaka za idealnu veličinu
Kγ	omjer koeficijenata aktivnosti, koeficijent raspodjele
li	pomoćna varijabla
m	u gornjem indeksu, oznaka za veličinu miješanja
n _i	množina tvari <i>i</i> -te komponente u otopini, mol
nk	broj komponenata
p	tlak, Pa
Q	izmjenjena toplina, J
q_i	volumni parametar <i>i</i> -te komponente
R	opća plinska konstanta, 8,314 J K ⁻¹ mol ⁻¹
R	u gornjem indeksu, oznaka za rezidualni doprinos
r _i	površinski parametar komponenata
S	entropija, J K ⁻¹
S	molarna entropija, J mol ⁻¹ K ⁻¹
Т	termodinamička temperatura, K
u _{ij}	interakcijski parametar modela UNIQUAC, J mol ⁻¹

47

- x_i molarni udio *i*-te komponente u kapljevitoj fazi
- z koordinacijski broj
- z_i molarni udio komponente *i* u sustavu
- α_{ij} parametar modela NRTL
- γ_i koeficijent aktivnosti *i*-te komponente u otopini
- Θ_i površinski udio komponente *i*
- μ_i kemijski potencijal *i*-te komponente u otopini, J mol⁻¹
- μ_i° standardni kemijski potencijal čiste komponente, J mol⁻¹
- τ_{ij} interakcijski parametar modela NRTL, J mol⁻¹
- τ_{ij} interakcijski parametar modela UNIQUAC
- Φ_i volumni udio komponente *i*
 - ^{I,II} u gornjem indeksu, prva, odnosno druga kapljevita faza u ravnoteži
 - [°] u gornjem indeksu, oznaka za čistu komponentu

ŽIVOTOPIS

Ines Ljubičić Srednjoškolsko obrazovanje završava 2017. godine u Medicinskoj školi Šibenik gdje stječe zanimanje farmaceutskog tehničara. Trenutno je studentica treće godine preddiplomskog studija Kemijskog inženjerstva na Fakultetu kemijskog inženjerstva i tehnologije u Zagrebu.