Ćorić, Mihaela

Undergraduate thesis / Završni rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:846291

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-25

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ

Mihaela Ćorić ZAVRŠNI RAD

Zagreb, rujan 2023.

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE POVJERENSTVO ZA ZAVRŠNE ISPITE

Kandidatkinja Mihaela Ćorić

Predala je izrađen završni rad dana: <u>18. rujna 2023.</u>

Povjerenstvo u sastavu:

prof. dr. sc. Marijana Kraljić Roković, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije

doc. dr. sc. Marin Kovačić, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije

dr. sc. Dijana Jadreško, viši znanstveni suradnik, Institut Ruđer Bošković, Zagreb

prof. dr. sc. Helena Otmačić Ćurković, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije (zamjena)

povoljno je ocijenilo završni rad i odobrilo obranu završnog rada pred povjerenstvom u istom sastavu.

Završni ispit održat će se dana: <u>21. rujna 2023.</u>

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE ZAVRŠNI RAD

Mihaela Ćorić

Utjecaj žrtvujućeg agensa na stabilnost SnS2 fotoanode

ZAVRŠNI RAD

Mentor: izv.prof. dr.dc. Marijana Kraljić Roković

Komentor: dr.sc. Dijana Jadreško

Članovi ispitnog povjerenstva:

- 1. prof.dr.dc. Marijana Kraljić Roković
 - 2. doc.dr.sc. Marin Kovačić
 - 3. dr.sc Dijana Jadreško

Zagreb, rujan 2023.

Zahvala

Zahvaljujem se svojoj mentorici izv.prof. dr.sc. Marijani Kraljić Roković za mentorstvo, strpljenje i neizmjernu podršku u pisanju ovog završnog rada.

Također se želim zahvaliti i asistentici Gabrijeli Radić, mag.appl.chem za detaljnu pomoć i uloženo vrijeme u izvršavanju eksperimentalnog dijela ovog rada.

Zahvaljujem se i svojoj obitelji i prijateljima koji su bili moj oslonac tijekom cijelog školovanja.

Ovaj rad izrađen je na Fakultetu kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, na Zavodu za elektrokemiju, akademske godine 2022./2023. u sklopu projekata "Nano-katalizatori aktivirani Sunčevim zračenjem u tehnologijama zaštite okoliša (HRZZ-IP-2018-01-1982)" financiranog od strane Hrvatske zaklade za znanost i projekta "Pročišćavanje vode i dobivanje energije korištenjem novih kompozitnih materijala uz Sunčevo zračenje (ESIF, KK.01.1.1.04.0001)".

Sažetak

Cilj ovog rada bio je provesti fotoelektrokemijski proces dobivanja vodika te ispitati ponašanje SnS₂ elektrode u vodenoj otopini 0.1 mol/dm³ NaCl uz dodatak čiste 1 i 3 mmol/dm³ kofeinske kiseline (CA) ili kofeinske kiseline u kombinaciji s 1 mmol/dm³ askorbinskom kiselinom (AA). Mjerenja su provedena za osvijetljene i neosvijetljene elektrode, a izvor svjetla bila je LED lampa. Provedena su i elektrokemijska ispitivanja na elektrodi od staklastog ugljika (GC elektroda) kako bi se utvrdila stabilnost CA i AA tijekom osvjetljenja te kako bi se ispitala njihova antioksidativna svojstva prema O₂.⁻ radikalu. Metode korištene u ovom radu za ispitivanje elektroda su ciklička voltametrija, linearna polarizacija, elektrokemijska impedancijska spektroskopija i kronoamperometrija.

Rezultati dobiveni metodom linearne polarizacije i kronoamperometrije ukazuju da su struje za SnS_2 elektrodu uz dodatak žrtvujućeg sredstva puno veće nego bez prisustva žrtvujućeg sredstva što potvrđuje dobru aktivnost CA i AA. Također, uz dodatak žrtvujućeg sredstva uočava se i porast stabilnosti elektrode. Ispitivanja provedena na GC elektrodi ukazuju da nije došlo do fotolize CA i AA prilikom izlaganja elektrode svjetlu te da AA ima veću djelotvornost kao žrtvujuće sredstvo, zbog niže vrijednosti potencijala strujnog vrha. Porastom koncentracije CA i dodatkom AA antioksidativna aktivnost prema O_2 ⁻⁻ radikalu raste. Impedancijska mjerenja pokazuju da su za osvijetljenu SnS₂ elektrodu dobiveni puno manji otpori prijelazu naboja nego za neosvijetljenu što također potvrđuje dobru fotoaktivnost ove elektrode. Najveća stabilnost elektrode kao i najbolja fotoaktivnost dobivena je u otopini 1 mM CA i 1 mM AA što je potvrđeno metodom linearne polarizacije i elektrokemijske impedancijske spektroskopije.

Ključne riječi: antioksidativna aktivnost, askorbinska kiselina, elektrokemijske metode, fotoelektrokemijski proces, fotokorozija, kofeinska kiselina.

Abstract

The aim of this work was to carry out a photoelectrochemical process of hydrogen production and to examine the behavior of the SnS_2 electrode in an aqueous solution of 1 and 3 mmol/dm³ caffeic acid (CA) in 0.1 mol/dm³ NaCl in the presence or absence of 1 mmol/dm³ ascorbic acid (AA). Measurements were performed for illuminated and non-illuminated electrodes, and the light source was an LED lamp. Electrochemical experiments were also carried out on a glassy carbon electrode (GC electrode) in order to determine the stability of CA and AA during illumination and to test the antioxidant properties of CA and AA against the O_2 ⁻⁻ radical. The methods used in this work for testing electrodes are cyclic voltammetry, linear polarization, electrochemical impedance spectroscopy and chronoamperometry.

The results obtained using linear polarization and chronoamperometry methods indicate that the currents for the SnS_2 electrode with the addition of sacrificial agent are much higher than without the presence of sacrificial agent, confirming the good activity of CA and AA. Also, the addition of sacrificial agents results in an increase in electrode stability. Investigations conducted on the GC electrode suggest that there was no photolysis of CA and AA when exposed to light, and AA is more effective as a sacrificial agent due to its lower potential value of the current peak. The increase in CA concentration and the addition of AA lead to an increase in antioxidant activity towards O_2 - radicals. Impedance measurements show that illuminated SnS_2 electrodes have much lower charge transfer resistances than non-illuminated ones, further confirming the good photoactivity of this electrode. The highest electrode stability and best photoactivity were achieved in a solution containing 1 mM CA and 1 mM AA, as confirmed by linear polarization and electrochemical impedance spectroscopy.

Keywords: antioxidant activity, ascorbic acid, electrochemical methods, photoelectrochemical process, photocorrosion, caffeic acid.

Sadržaj

1. UVOD
2. TEORIJSKI DIO
2.1. Fotoelektrokemijski proces
2.2. Materijali
2.2.1. Poluvodiči
2.2.2. SnS ₂
2.2.3. Staklasti ugljik (GC)
2.3. Žrtvujuća sredstva
2.3.1. Kofeinska kiselina
2.3.2. Askorbinska kiselina
2.4. Elektrokemijske metode
2.4.1. Ciklička voltametrija (CV)
2.4.2. Linearna polarizacija (LSV)
2.4.3. Elektrokemijska impedancijska spektroskopija (EIS)
2.4.4. Kronoamperometrija (CA)12
3. EKSPERIMENTALNI DIO 13
3.1. Kemikalije i otopine
3.1. Kemikalije i otopine
3.1. Kemikalije i otopine133.2. Aparatura za provedbu fotokatalitičkih ispitivanja133.3. Mjerni uvjeti za provedbu fotokatalitičkih ispitivanja14
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI16
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI163.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI17
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI163.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI174. REZULTATI18
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI163.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI174. REZULTATI184.1. CIKLIČKA VOLTAMETRIJA18
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI163.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI174. REZULTATI184.1. CIKLIČKA VOLTAMETRIJA184.2. LINEARNA POLARIZACIJA22
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI163.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI164. REZULTATI164.1. CIKLIČKA VOLTAMETRIJA164.2. LINEARNA POLARIZACIJA224.3. ELEKTROKEMIJSKA IMPEDANCIJSKA SPEKTROSKOPIJA27
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI163.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI174. REZULTATI184.1. CIKLIČKA VOLTAMETRIJA184.2. LINEARNA POLARIZACIJA224.3. ELEKTROKEMIJSKA IMPEDANCIJSKA SPEKTROSKOPIJA234.4. KRONOAMPEROMETRIJA33
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA133.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI163.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI174. REZULTATI184.1. CIKLIČKA VOLTAMETRIJA184.2. LINEARNA POLARIZACIJA224.3. ELEKTROKEMIJSKA IMPEDANCIJSKA SPEKTROSKOPIJA234.4. KRONOAMPEROMETRIJA334.5. ODREĐIVANJE ANTIOKSIDATIVNIH SVOJSTAVA33
3.1. KEMIKALIJE I OTOPINE133.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA143.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI163.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI174. REZULTATI184.1. CIKLIČKA VOLTAMETRIJA184.2. LINEARNA POLARIZACIJA224.3. ELEKTROKEMIJSKA IMPEDANCIJSKA SPEKTROSKOPIJA224.4. KRONOAMPEROMETRIJA325. RASPRAVA32
3.1. KEMIKALIJE I OTOPINE 13 3.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA 13 3.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA 14 3.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI 16 3.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI 16 3.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI 17 4. REZULTATI 16 4. REZULTATI 16 4.1. CIKLIČKA VOLTAMETRIJA 12 4.2. LINEARNA POLARIZACIJA 12 4.3. ELEKTROKEMIJSKA IMPEDANCIJSKA SPEKTROSKOPIJA 22 4.4. KRONOAMPEROMETRIJA 32 5. RASPRAVA 33 6. ZAKLJUČAK 42
3.1. KEMIKALIJE I OTOPINE 13 3.2. APARATURA ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA 13 3.3. MJERNI UVJETI ZA PROVEDBU FOTOKATALITIČKIH ISPITIVANJA 14 3.4. APARATURA ZA ISPITIVANJE ANTIOKSIDATIVNE AKTIVNOSTI 16 3.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI 16 3.5. MJERNI UVJETI ZA PROVEDBU ANTIOKSIDATIVNE AKTIVNOSTI 17 4. REZULTATI 14 4.1. CIKLIČKA VOLTAMETRIJA 12 4.2. LINEARNA POLARIZACIJA 12 4.3. ELEKTROKEMIJSKA IMPEDANCIJSKA SPEKTROSKOPIJA 22 4.4. KRONOAMPEROMETRIJA 32 5. RASPRAVA 33 5. RASPRAVA 34 6. ZAKLJUČAK 44

1. Uvod

Danas poseban značaj imaju istraživanja čiji je cilj razvoj novih i održivih načina proizvodnje energije. Tradicionalni izvori energije, poput fosilnih goriva, ne samo da su ograničeni i skupi, već i uzrokuju ozbiljne ekološke probleme. Uz naglasak na zaštitu okoliša, smanjenju emisije CO₂ kao i očuvanju prirodnih resursa, fotoelektrokemijska proizvodnja vodika pokazuje veliki potencijal u zadovoljavanju svjetske potražnje za energijom. Vodik je ekološki čist medij za pohranu energije, te njegova proizvodnja iz obnovljivih izvora energije i vode ne rezultira emisijom štetnih tvari, što ga čini ekološki prihvatljivim izborom. Jedan od načina proizvodnje vodika je fotoelektrokemijskim putem. U fotoelektrokemijskom procesu, osvijetljeni fotoni fotogeneriraju parove elektron/šupljina unutar poluvodiča, čija se rekombinacija sprječava dodavanjem žrtvujućih sredstava, što rezultat većim fotostrujama i većom količinom vodika dobivenog iz vode. [1]

Cilj istraživanja u ovom radu bio je provesti fotoelektrokemijski proces proizvodnje vodika, te ispitati SnS_2 elektrodu elektrokemijskim putem prije i nakon provođenja fotoelektrokemijskog procesa. SnS_2 elektroda, zbog reakcije fotogeneriranih šupljina sa samom elektrodom, nije stabilna. Stoga se u ovom radu ispitivalo kako dodatak žrtvujućih sredstava, kofeinske i askorbinske kiseline, utječe na stabilizaciju elektrode i njenu fotoaktivnost. Kako bi se dodatno okarakterizirala žrtvujuća sredstva provedeno je ispitivanje antioksidativne aktivnosti kofeinske i askorbinske kiseline, prema O_2^- radikalu.

2. Teorijski dio

2.1. Fotoelektrokemijski proces

Fotoelektrokemijski (PEC) proces posebna je vrsta elektrokemijske reakcije koja, osim primjene napona, uključuje interakciju svjetlosti i poluvodičkog materijala. Obećavajući je pristup za iskorištavanje sunčeve energije i njeno pretvaranje u električnu ili kemijsku energiju te proizvodnju vodika razlaganjem vode. U PEC sustavima, spoj poluvodič/elektrolit integrira pretvorbu sunčeve u električnu energiju s fotoelektrokemijskim razlaganjem vode. PEC sustavi koriste dvije elektrode, radnu i protuelektrodu. n- ili p-tip poluvodiča koristi se kao radna elektroda, a platina kao protuelektroda. Većina PEC sustava koristi i referentne elektrode za ispitivanje polureakcija u ćeliji. [1]

U procesu se poluvodič osvjetljava svjetlom čija je energija veća ili jednaka energiji zabranjene zone. Apsorpcijom fotona dolazi do prijelaza elektrona iz valentne u vodljivu vrpcu čime se stvara par elektron/šupljina (e^{-}/h^{+}) na radnoj elektrodi, kao što je prikazano u izrazu (1)

$$poluvodič + h\upsilon \rightarrow e_{CB}^{-} + h_{VB}^{+}$$
(1)

gdje je hu energija fotona, e⁻ elektroni, h⁺ šupljine, CB vodljiva vrpca, a VB valentna vrpca. [2]

Osiromašeni sloj formiran na kontaktu poluvodič/elektrolit dovodi do savijanja energetskih vrpci kao što je prikazano na Slici 2.1., što olakšava razdvajanje fotogeneriranih elektrona i šupljina. Elektroni se prenose do katode i reagiraju s protonima stvarajući vodik $(2H^+ + 2e^- \rightarrow H_2)$, dok se šupljine nakupljaju na površini fotoanode i reagiraju s molekulama vode stvarajući kisik (H₂O +2h⁺ \rightarrow 2H⁺ + $\frac{1}{2}$ O₂). [3]

Slika 2.1. Prikaz fotoelektrokemijskog procesa [4]

2.2. Materijali

2.2.1. Poluvodiči

Poluvodič je tvar, obično čvrsti kemijski element ili spoj koji ima specifična električna svojstva i provodi električnu struju pri određenim uvjetima. Svaka tvar koja može provoditi struju naziva se vodičem, dok ona koja ne može poznata je kao izolator. Poluvodiči imaju svojstva između vodiča i izolatora. Mogu biti čisti elementi poput silicija i germanija, ili spojevi kao što su galijev arsenid ili kadmijev selenid. Povišenjem temperature, elektroni dobivaju dovoljno energije za prijelaz iz valentne u vodljivu vrpcu čime se povećava električna provodnost poluvodiča.

Tijekom procesa zvanog dopiranje, male količine nečistoća dodaju se čistim poluvodičima kako bi došlo do promjene vodljivosti materijala. Dakle, specifična svojstva poluvodiča ovise o dopandima ili nečistoćama koje su im dodane. Ako se čistom poluvodiču (npr. Si) doda element 13. skupine (npr. B) dolazi do stvaranja tri kovalentne veze i jedne šupljine zbog manjka elektrona u valentnoj ljuski, te nastaje p-tip poluvodiča. Ako se doda element 15. skupine (npr. As) dolazi do stvaranja četiri kovalentne veze i jednog viška elektrona, te nastaje n-tip poluvodiča. Dakle, kod p-tipa poluvodiča nosioci naboja su šupljine, a kod n-tipa poluvodiča to su elektroni. [5]

Slika 2.2. Dopiranje za n-tip i p-tip poluvodiča [5]

2.2.2. SnS₂

 SnS_2 je n-tip poluvodiča sa slojevitom strukturom. Može apsorbirati vidljivu svjetlost zahvaljujući širini zabranjene zone (2.2 do 2.4 eV). Zbog svoje fotovodljivosti ima optička, električna i senzorska svojstva. Obzirom na nisku cijenu, netoksičnost, jednostavnu sintezu te dobru kemijsku stabilnost u kiselim i neutralnim vodenim otopinama, dobar je izbor kao katalizator. Također se može koristiti za fotoelektrokemijsko razlaganje vode te u fotonaponskim ćelijama i optoelektroničkim uređajima. [6,7]

Nedovoljna fotokatalitička učinkovitost SnS_2 koja nastaje kao rezultat brze rekombinacije njegovih fotogeneriranih šupljina i elektrona, glavna je prepreka za primjenu. Za povećanje fotokatalitičke učinkovitosti postoji nekoliko modifikacijskih pristupa, uključujući dopiranje kationom metala te kompoziciju drugim odgovarajućim poluvodičem ili konjugiranim polimerom. [8]

Fotokorozija čini SnS₂ nestabilnim katalizatorom, a razlog tomu je nakupljanje viška fotogeneriranih šupljina na površini sulfida. Šupljine dovode do oksidacije sulfidnih iona u sumpor i/ili sulfat, što će rezultirati oksidacijom fotokatalizatora i ograničavanjem njegovih radnih svojstava. Fotokorozija nije isključivo povezana s oksidacijom poluvodiča s fotogeneriranim šupljinama, već je također značajnije povezana s kisikom prisutnim u vodi tijekom fotoelektrokemijskog procesa. Kisik može oksidirati sulfide iz SnS₂, ali se može također spojiti s fotogeneriranim elektronima stvarajući radikal O₂⁻ što bi također ubrzalo fotokoroziju. [9] Jedan način sprječavanja fotokorozije te smanjenja rekombinacije šupljina i elektrona jest dodavanje žrtvujućih sredstava.

2.2.3. Staklasti ugljik (GC)

Staklasti je ugljik postao zanimljiv i široko primjenjiv materijal za elektrode. Pokazuje prilično nizak stupanj oksidacije i visoku kemijsku inertnost, što zajedno sa vrlo malim veličinama pora i malom propusnošću za plin i tekućinu, čini stakleni ugljik prikladnom inertnom elektrodom. Na fizikalno-kemijska svojstva staklenog ugljika veliki utjecaj imaju početni polimer i temperatura korišteni u procesu karbonizacije [10]

Staklasti ugljik nastaje pažljivo kontroliranim zagrijavanjem fenol-formaldehidne smole u inertnoj atmosferi. Na temperaturama od 300 do 500 °C počinje proces karbonizacije u kojem se uklanjaju kisik i dušik. Ovaj se postupak mora odvijati polako kako bi se osigurala difuzija plinovitih plinova na površinu. Između 500 i 1200 °C vodik se eliminira ostavljajući staklasti ugljik. [11]

Različiti tretmani za pripremu i aktiviranje površine elektrode od staklastog ugljika za elektrokemijska mjerenja predloženi su u literaturi. Svježa i dobro definirana površina elektrode može se pripremiti mehaničkom obradom, koja uključuje abraziju brusnim papirom i poliranje Al₂O₃ te ispiranje etanolom i redestiliranom vodom. Druge metode, kao što je laserska obrada, ultrazvučna obrada, aktivacija pomoću ugljikovog luka ili elektrokemijski, također se mogu koristiti za stvaranje ponovljive i aktivne površine. [10]

Zbog svoje visoke otpornosti na koroziju i inertnosti u raznim uvjetima, staklasti se ugljik koristi u izrazito korozivnim okruženjima, npr. u loncima za razgradnju ruda te u analitičkoj kemiji. Također se naširoko koristi u elektrokemiji kao materijal za elektrode, osobito za voltametrijska mjerenja. Otporan je na jake kiseline i baze te inertan u širokom rasponu električnih potencijala. [12]

2.3. Žrtvujuća sredstva

Žrtvujuća sredstva kemijski su spojevi, najčešće organski, koji usporavaju rekombinaciju fotogeneriranih elektrona i šupljina kao i fotokoroziju. Dodaju se u otopinu kako bi reagirali s fotogeneriranim šupljinama u valentnoj vrpci poluvodiča te na taj način povećali djelotvornost razdvajanja elektrona i šupljina. Žrtvujući agensi lakše reagiraju s šupljinama nego sulfidni ioni iz SnS₂, jer je njihov oksidacijski potencijal niži od onog za oksidaciju sumpora. U fotoelektrokemijskom procesu proizvodnje vodika, žrtvujuća se sredstva oksidiraju te samim time povećavaju djelotvornost procesa i količinu proizvedenog vodika. [13, 14] Najčešće korištena žrtvujuća sredstva su sulfiti, metanol i oksalna kiselina.

2.3.1. Kofeinska kiselina

Kofeinska kiselina (3, 4 – dihidroksicimetna kiselina) jedna je od metabolita hidroksicinamata i fenilpropanoida koji su šire rasprostranjeni u biljnim tkivima. CA prisutna je u mnogim izvorima hrane, kao i u nekoliko lijekova na bazi propolisa. Osim što djeluje kao kancerogeni inhibitor, poznato je da posjeduje antioksidativno i antibakterijsko djelovanje 'in vitro'. [15]

U ovom radu koristi se kao žrtvujuće sredstvo u sprječavanju rekombinacije fotogeneriranih elektrona i šupljina.

Slika 2.3. Struktura kofeinske kiseline [16]

2.3.2. Askorbinska kiselina

Askorbinska kiselina, također poznata i kao Vitamin C, ima sva svojstva savršenog antioksidansa, štiteći stanice većine aerobnih organizama od oštećenja uzrokovanih reaktivnim molekulama te izloženošću zagađivačima i toksinima. Sprječava oksidaciju drugih molekula doniranjem elektrona slobodnim radikalima čime se smanjuje njihova reaktivnost. [17]

Askorbinska se kiselina može koristiti kao žrtvujuće sredstvo reagirajući sa šupljinama s ciljem sprječavanja rekombinacije fotogeneriranih parova elektron/šupljina. Zbog svog niskog oksidacijskog potencijala smatra se dobrim žrtvujućim sredstvom. Fotogenerirane šupljine na površini elektrode mogu oksidirati askorbinsku kiselinu izravno ili neizravno pomoću HO⁻ radikala koji se generiraju u blizini površine elektrode. U elektrokemijskog reakciji, askorbinska se kiselina pretvara u dehidroaskorbinsku kiselinu izmjenjujući dva protona i dva elektrona. [18]

2.4. Elektrokemijske metode

2.4.1. Ciklička voltametrija (CV)

Ciklička voltametrija pripada skupini elektroanalitičkih metoda gdje je signal pobude linearno promjenjivi potencijal, a signal odziva struja koja se mjeri kao funkcija narinutog potencijala. Temeljni koncept cikličke voltametrije uključuje linearnu promjenu potencijala radne elektrode u vremenu, od početnog potencijala do konačnog i natrag (slika 2.5.a). Ovakva linearna trokutasta pobuda rezultira elektrokemijskom reakcijom na elektrodi, a ona se bilježi u obliku krivulje koja predstavlja odnos struje i potencijala. Grafički prikaz signala odziva naziva se voltamogram. (slika 2.5.b)

Slika 2.5. Signal a) pobude i b) odziva u cikličkoj voltametriji

Prema brzini prijenosa naboja, postoje tri procesa koji se odvijaju na elektrodi za vrijeme cikličke voltametrije, a to su: reverzibilni, ireverzibilni i kvazireverzibilni proces. Voltamogram za reverzibilni proces prikazan je na Slici 5.2.b. Pozitiviranjem potencijala elektrode raste brzina elektrodne reakcije oksidacije. Postizanjem dovoljno pozitivne vrijednosti potencijala dolazi do trenutačne oksidacije svih čestica pristiglih na površinu elektrode procesom difuzije iz otopine te struja odziva poprima maksimalnu vrijednost. Zatim dobava difuzijom opada, smanjuje se struja odziva i postiže konačni potencijal, E_{kon} koji je određen signalom pobude. Potencijal se onda negativira i započinje elektrodni proces redukcije oksidiranog oblika. Opada struja oksidacije i raste struja redukcije do određenog potencijala gdje postiže maksimalnu vrijednost. Otopina se uz površinu elektrode iscrpljuje te se struja redukcije smanjuje sve do početnog potencijala, E_{poč}. Mjerena struja odziva razlika je anodne i katodne struje procesa na radnoj elektrodi. Obzirom da s brzina promjene potencijala može mijenjati u širokom opsegu, ovom se tehnikom mogu ispitivati spore i vrlo brze elektrodne reakcije. [19]

2.4.2. Linearna polarizacija (LSV)

Linearna voltametrija elektrokemijska je metoda kojom se mjeri struja na radnoj elektrodi dok se potencijal između radne i referentne elektrode mjeri linearno u vremenu. Oksidacija ili redukcija tvari bilježi se kao maksimalna vrijednost struje na potencijalu pri kojem se tvar počinje oksidirati ili reducirati. Grafički prikaz struje o potencijalu naziva se voltamogram. [20]

Slika 2.6. Signal a) pobude i b) odziva u linearnoj voltametriji

Brzina reakcije redukcije raste negativiranjem potencijala radne elektrode. Pri dovoljno negativnom potencijalu, odvija se trenutačna redukcija svih čestica koje su difuzijom stigle iz otopine na površinu elektrode te struja odziva poprima maksimalnu vrijednost. Smanjenjem koncentracije čestica u otopini, opada brzina difuzije, a samim time i struja odziva. [19]

Iz potencijala na kojem se nalazi strujni maksimum moguće je odrediti prirodu tvari kao i njen redoks potencijal. Iz širine i visine maksimuma moguće je odrediti koncentraciju tvari i kinetiku reakcije. [20]

2.4.3. Elektrokemijska impedancijska spektroskopija (EIS)

Elektrokemijska impedancijska spektroskopija tehnika je kod koje se kao signal pobude koristi izmjenična komponenta potencijala male amplitude (5-10 mV), a kao odziv prati se izmjenična komponenta struje. Ispitivanje se provodi u širokom rasponu frekvencija (0.01 Hz do 100 000 Hz).

Slika 2.7. Prikaz signala pobude (potencijal) i signala odziva (jakost struje)

U teoriji istosmjerne struje (dc) kod koje je frekvencija jednaka nuli, otpor je definiran Ohmovim zakonom:

$$E = I x R \tag{2}$$

gdje E predstavlja potencijal, I jakost struje, a R otpor. U ovom krugu, jedina smetnja toku elektrona je otpornik.

U teoriji izmjenične struje (ac) vrijedi relacija:

$$E = I x Z \tag{3}$$

gdje Z predstavlja Faradaysku impedanciju koja se mjeri u Ω te je ekvivalent otporu, R. Tok elektrona u krugu ometaju još i kondenzator i zavojnica.

Potencijal je izmjeničan pa se može opisati sinusoidalnom funkcijom, prema izrazu:

$$E(t) = E_m \sin(\omega t) \tag{4}$$

gdje je E_m amplituda potencijala, ω je kutna frekvencija, a t vrijeme.

Struja se može opisati izrazom:

$$I(t) = I_m \sin(\omega t + \phi) = I_m(\cos\phi \sin(\omega t) + \sin\phi \cos(\omega t))$$
(5)

gdje je I_m amplituda struje, a ϕ fazni pomak koji predstavlja pomak signala u vremenu u odnosu na referentni signal tj. signal potencijala.

Strujni val može se opisati vektorski te se ukupna struja definira kao zbroj realne i imaginarne komponente struje:

$$I = I_{re} + jI_{im} \tag{6}$$

gdje *j* predstavlja kompleksni broj, $j = \sqrt{-1}$.

Apsolutna vrijednost impedancije, odnosno duljina vektora impedancije Z dobije se iz izraza:

$$|Z| = \sqrt{Z_{re}^{2} + Z_{im}^{2}}$$
(7)

Najčešći prikazi rezultata dobivenih elektrokemijskom impedancijskom spektroskopijom su Nyquistov i Bodeov dijagram. Nyquistov prikaz daje ovisnost realne i imaginarne komponente impedancije za razne frekvencije, a Bodeov prikaz daje ovisnost $(\log |Z|)$ i faznog kuta (ϕ) o frekvenciji ($\log \omega$).

Za razliku od drugih metoda, tijekom EIS mjerenja ne dolazi do značajnijih promjena u sustavu pa se može reći da ova metoda nije destruktivna. EIS se može koristiti kod proučavanja elektrokemijskog dvosloja i kinetike prijelaza naboja te tako osigurava dublji uvid u mehanizme reakcija i svojstva materijala. EIS ima različita područja primjene kao što su zaštita od korozije, baterije i superkondenzatori, elektrodepozicija metala i poluvodiči. [21]

2.4.4. Kronoamperometrija (CA)

Kronoamperometrija je elektrokemijska tehnika koja se koristi za proučavanje ponašanja elektrokemijskog sustava tijekom vremena. Uključuje primjenu konstantnog potencijala na radnu elektrodu te mjerenje struje koja prolazi kroz ćeliju u ovisnosti o vremenu. Stvara se velik strujni odziv koji eksponencijalno pada s vremenom. U početku je koncentracija elektroaktivne tvari na elektrodi i unutar otopine stalna, a polarizacijom se elektroaktivna tvar reducira te se stvara koncentracijski gradijent.

Kronoamperometrija slijedi Cottrellovu jednadžbu prema izrazu (8),

$$I(t) = nFAC\sqrt{\left(\frac{D}{\pi t}\right)} = \frac{k}{\sqrt{t}}$$
(8)

gdje je n broj elektrona, F Faradayeva konstanta, A površina elektrode, C koncentracija elektroaktivne tvari, D koeficijent difuzije, t vrijeme, a I je struja. Cottrellova jednadžba izvedena je iz drugog Fickovog zakona, što pomaže u određivanju vrijednosti koeficijenta difuzije elektroaktivnih tvari dostupnih na površini radne elektrode. [22, 23]

Slika 2.8. Prikaz signala a) pobude i b) odziva

Proučavanjem signala odziva kao funkcije vremena pri konstantnom potencijalu, kronoamperometrijskim mjerenjima moguće je odrediti mehanizam i kinetiku reakcije te ponašanje elektrode. [23]

3. Eksperimentalni dio

3.1. Kemikalije i otopine

Korištene kemikalije:

- NaCl, Sigma-Aldrich
- Kofeinska kiselina (CA), Sigma-Aldrich
- Askorbinska kiselina, Vitamin C (AA), Poljo-Evelin, Zagreb
- Tetraetilamonijev perklorat, Et4NClO4 (TEAP), Sigma-Aldrich
- Dimetil-sulfoksid (DMSO), p.a., Kemika, Zagreb

Otopinu 0.1 M NaCl pripremili smo otapanjem 5.844 g NaCl u 1 L redestilirane vode. Za dobivanje željenih koncentracija CA i AA, otapali smo različite mase u otopini natrijevog klorida. Sve su otopine pripremljene upotrebom kemikalija analitičke čistoće i redestilirane vode.

Za elektrokemijsko određivanje aktivnosti kiselina CA i AA (te njihovih smjesa) prema oksidaciji superoksidnog aniona (O_2^{-}) , koncentrirane otopine CA (c = 0.035 mol dm⁻³) i AA (c = 0.03 mol dm⁻³) pripremljene su otapanjem krutine odgovarajuće mase u 0.1 mol dm⁻³ otopini TEAP u bezvodnom DMSO. Prije upotrebe, DMSO je osušen koristeći 3 Å molekulska sita, dok je TEAP osušen u vakumskom eksikatoru na sobnoj temperaturi.

3.2. Aparatura za provedbu fotokatalitičkih ispitivanja

Sastavni dijelovi aparature:

- Osobno računalo
- Potenciostat SP-150 BioLogic Science Instruments
- Izvor zračenja LED lampa
- Multimetar
- Troelektrodni sustav
- Programi za analizu i obradu podataka: EC-lab i Origin

Troelektrodni sustav sastoji se od:

- Radne elektrode GC elektroda i SnS₂ elektroda (SnS₂ nanesen na FTO stakalce)
- Protuelektrode Pt elektroda
- Referentne elektrode zasićena kalomel elektroda

GC elektrodu potrebno je polirati pastom Al₂O₃ nekoliko minuta te isprati etanolom i redestiliranom vodom prije svakog korištenja.

Slika 3.1. a) Potenciostat SP-150 BioLogic i b) prikaz troelektrodnog sustava

3.3. Mjerni uvjeti za provedbu fotokatalitičkih ispitivanja

Ciklička voltametrija (CV)

Metodom cikličke voltametrije provedena su mjerenja na GC elektrodi pri sljedećim uvjetima:

- početni potencijal: $E_{poč} = -0.5 V$
- konačni potencijal: E_{kon} = 1.5 V
- brzina promjene potencijala: $v = 20 \text{ mV s}^{-1}$

Linearna polarizacija (LSV)

Metodom linearne polarizacije mjerena su provedena pri sljedećim uvjetima:

- početni potencijal: E_{poč} = -0.5 V
- konačni potencijal: E_{kon} = 1.5 V
- brzina promjene potencijala: $v = 20 \text{ mV s}^{-1}$

Elektrokemijska impedancijska spektroskopija (EIS)

Metodom elektrokemijske impedancijske spektroskopije mjerenja su provedena pri sljedećim uvjetima:

- raspon frekvencija: 100 kHz do 10 mHz
- potencijal: *E*_{OCP}
- izmjenična komponenta potencijala $\pm 5 \text{ mV}$

Kronoamperometrija (CA)

Metodom kronoamperometrije mjerenja su provedena pri sljedećim uvjetima:

• E = 250 mV tijekom 120 minuta uz miješanje otopine magnetskom miješalicom

3.4. Aparatura za ispitivanje antioksidativne aktivnosti

Sastavni dijelovi aparature (slika 3.2.):

- Osobno računalo
- Potenciostat/galvanostat "PGSTAT 101" (Eco-Chemie, Utrecht, Netherland) _
- Troelektrodni sustav _
- Programi za analizu i obradu podataka: Nova 1.11 i SigmaPlot 12.5 _

Troelektrodni sustav sastoji se od:

- Radne elektrode GC elektroda (d = 3 mm), (BioLogic, Claix, France) _
- Protuelektrode Pt žica
- Referentne elektrode Ag/Ag⁺ (0.1 mol dm⁻³ AgNO₃ u DMSO) sa elektrolitskim mostom _ ispunjenim 0.1 mol dm⁻³ otopinom TEAP u DMSO.

Slika 3.2. Shematski prikaz mjerne aparature za ispitivanje antioksidativne aktivnosti. CE pomoćna elektroda; WE - radna elektroda; RE - referentna elektroda

3.5. Mjerni uvjeti za provedbu antioksidativne aktivnosti

Ciklička voltametrijska mjerenja antioksidacijskih svojstva AA i CA prema superoksidnom radikalu (O_2^{-}) , provedena su koristeći GC kao radnu elektrodu, pri slijedećim uvjetima:

- početni potencijal: $E_{\text{poč}} = -0.1 \text{ V}$
- inverzni potencijal: $E_i = -1.5 V$
- konačni potencijal: $E_{\text{kon}} = 1.0 \text{ V}$
- brzina promjene potencijala: $v = 100 \text{ mV s}^{-1}$

Prije početka svakog eksperimenta/mjerenja, kroz otopinu osnovnog elektrolita (0.1 mol dm⁻³ TEAP/DMSO) propuštan je plinoviti dušik vrlo visoke čistoće (> 99.99 %), u trajanju od 10 min, kako bi se iz otopine uklonio sav otopljeni kisik iz zraka. Nakon toga, kroz otopinu u elektrolitičkoj ćeliji propuštan je plinoviti O_2 (99.8 % čistoće) u trajanju od 100 s, do zasićenja. Za vrijeme trajanja voltametrijskog mjerenja, plinoviti O_2 je propuštan iznad otopine kako bi koncentracija otopljenog kisika ostala nepromijenjena.

Mjerni potencijali izraženi su u odnosu na potencijal referentne elektrode. Sva elektrokemijska mjerenja rađena su na sobnoj temperaturi.

4. Rezultati

4.1. Ciklička voltametrija

Slika 4.1. Rezultati cikličke voltametrije za staklastu ugljikovu elektrodu u 1 mM otopini kofeinske kiseline u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa u prvom mjerenju

Na slici 4.1. prikazan je ciklički voltamogram za elektrodu od staklastog ugljika. Otopina kofeinske kiseline koncentracije 1 mmol dm⁻³ ispitana je metodom cikličke voltametrije radi utvrđivanja fotolize kofeinske kiseline. Mjerenje je provedeno u području potencijala -0.5 V do +1.5 V. Nakon provođenja fotoelektrokemijskog procesa, javlja se jedan strujni maksimum u polazu pri potencijalu 0.5 V te jedan u povratu pri potencijalu 0.1 V, a struje su nešto veće u odnosu na odziv zabilježen u otopini prije provođenja fotoelektrokemijskog procesa. Strujni maksimum u povratu slabije je izražen kada je polarizacija provedena u otopini prije fotoelektrokemijskog procesa.

Slika 4.2. Rezultati cikličke voltametrije za staklastu ugljikovu elektrodu u 3 mM otopini kofeinske kiseline u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa u prvom mjerenju

Na slici 4.2. prikazan je ciklički voltamogram za elektrodu od staklastog ugljika. Otopina kofeinske kiseline koncentracije 3 mmol dm⁻³ ispitana je metodom cikličke voltametrije radi utvrđivanja fotolize kofeinske kiseline. Mjerenje je provedeno u području potencijala -0.5 V do +1.5 V. Odzivi zabilježeni prije i nakon provođenja fotoelektrokemijskog procesa približno su jednaki. Prije i nakon provođenja fotoelektrokemijskog procesa, u polazu se javlja strujni maksimum pri potencijalu 0.5 V, a nakon fotoelektrokemijskog procesa zabilježen je jedan strujni maksimum u povratu pri potencijalu 0.05 V.

Slika 4.3. Rezultati cikličke voltametrije za staklastu ugljikovu elektrodu u otopini 1 mM kofeinske kiseline i 1 mM vitamina C u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa u prvom mjerenju

Na slici 4.3. prikazan je ciklički voltamogram za elektrodu od staklastog ugljika. Otopina kofeinske kiseline koncentracije 1 mmol dm⁻³ i vitamina C koncentracije 1 mmol dm⁻³ ispitana je metodom cikličke voltametrije radi utvrđivanja fotolize kofeinske kiseline. Mjerenje je provedeno u području potencijala -0.5 V do +1.5 V. Odzivi zabilježeni u otopini prije i nakon provođenja fotoelektrokemijskog procesa približno su jednaki. U oba slučaja javlja se jedan strujni maksimum u polazu pri potencijalu 0.5 V i jedan strujni maksimum u povratu pri potencijalu 0.25 V.

Slika 4.4. Rezultati cikličke voltametrije za staklastu ugljikovu elektrodu u otopini 3 mM kofeinske kiseline i 1 mM vitamina C u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa u prvom mjerenju

Na slici 4.4. prikazan je ciklički voltamogram za elektrodu od staklastog ugljika. Otopina kofeinske kiseline koncentracije 3 mmol dm⁻³ i vitamina C koncentracije 1 mmol dm⁻³ ispitana je metodom cikličke voltametrije radi utvrđivanja fotolize kofeinske kiseline. Mjerenje je provedeno u području potencijala -0.5 V do +1.5 V. Odzivi zabilježeni prije i nakon provođenja fotoelektrokemijskog procesa približno su jednaki. U oba slučaja zabilježen je jedan strujni maksimum u polazu pri potencijalu 0.5 V, te je vidljivo kako je strujni maksimum zabilježen u otopini nakon provođenja fotoelektrokemijskog procesa blago pomaknut prema pozitivnijim potencijalima.

4.2. Linearna polarizacija

Slika 4.5. Rezultati linearne polarizacije za neosvijetljenu i osvijetljenu SnS₂ elektrodu u 1 mM otopini kofeinske kiseline u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa, dobiveni prilikom a) prvog b) drugog i c) trećeg mjerenja

Na slici 4.5. prikazani su voltamogrami za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom tri mjerenja unutar otopine kofeinske kiseline koncentracije 1 mmol dm⁻³. Mjerenja su provedena u području potencijala -0.5 V do +1.5 V. U prvom mjerenju formira se strujni maksimum kod elektrode koja je ispitana prije provođenja fotoelektrokemijskog procesa, pri potencijalu -0.3 V. Kod ostalih mjerenja ovaj maksimum je slabije izražen. Kod sva tri mjerenja zabilježene su fotostruje u području potencijala -0.2 V do 0.3 V što se može zaključiti na temelju činjenice da struje osvijetljene elektrode poprimaju veće vrijednosti u odnosu na struje neosvijetljenih elektroda. Najveće fotostruje zabilježene su u prvom mjerenju gdje je dobiven i najveći pad fotostruje nakon provedbe kronoamperometrijskog procesa. U prvom mjerenju nastaje dodatni strujni maksimum pri potencijalu 0.75 V, a kod ostalih mjerenja ovaj maksimum se javlja pri potencijalu 0.6 V. U sva tri mjerenja u cijelom području potencijala zabilježena je veća vrijednost struje osvijetljene elektrode prije provođenja fotoelektrokemijskog procesa nego kod osvijetljene elektrode nakon provođenja procesa. Također, u sva tri mjerenja izražen je strujni maksimum pri potencijalu 1.25 V.

Slika 4.6. Rezultati linearne polarizacije za neosvijetljenu i osvijetljenu SnS₂ elektrodu u 3 mM otopini kofeinske kiseline u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa, dobiveni prilikom a) prvog b) drugog i c) trećeg mjerenja

Na slici 4.6. prikazani su voltamogrami za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom tri mjerenja u otopini kofeinske kiseline koncentracije 3 mmol dm⁻³. Mjerenja su provedena u području potencijala -0.5 V do +1.5 V. U području potencijala -0.2 V do 0.3 V zabilježene su fotostruje kod sva tri mjerenja. Najveće fotostruje zabilježene su u prvom mjerenju gdje je dobiven i najveći pad fotostruje nakon provedbe kronoamperometrijskog procesa. Za elektrodu ispitanu prije fotoelektrokemijskom procesa u prvom mjerenju formira se strujni maksimum pri potencijalu 0.75 V, dok se kod ostalih mjerenja taj maksimum ne uočava ili je slabo izražen. Kod sva tri mjerenja u cijelom području potencijala zabilježena je veća vrijednost struje kod osvijetljene elektrode prije provođenja fotoelektrokemijskog procesa od osvijetljene elektrode nakon provođenja procesa. Dodatan strujni maksimum zabilježen je pri potencijalu 1.25 V za sva tri mjerenja.

Slika 4.7. Rezultati linearne polarizacije za neosvijetljenu i osvijetljenu SnS₂ elektrodu u otopini
1 mM kofeinske kiseline i 1 mM vitamina C u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa, dobiveni prilikom a) prvog b) drugog i c) trećeg mjerenja

Na slici 4.7. prikazani su voltamogrami za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom tri mjerenja unutar otopine kofeinske kiseline koncentracije 1 mmol dm³ i vitamina C koncentracije 1 mmol dm⁻³. Mjerenja su provedena u području potencijala -0.5 V i +1.5 V. Kod sva tri mjerenja zabilježene su fotostruje u području potencijala -0.2 V do 0.3 V. Za neosvijetljenu elektrodu vrijednost struje postiže iznos 0 μ A, dok osvijetljena elektroda poprima više vrijednosti te se jasno uočavaju najveće fotostruje kod prvog mjerenja gdje dolazi i do najznačajnijeg pada fotostruje. Pri potencijalu 0.7 V zabilježene su prije provođenja fotoelektrokemijskog procesa kod sva tri mjerenja. Također, kod sva tri mjerenja formira se još jedan strujni maksimum u području potencijala od 1.2 V do 1.3 V.

Slika 4.8. Rezultati linearne polarizacije za neosvijetljenu i osvijetljenu SnS₂ elektrodu u otopini
3 mM kofeinske kiseline i 1 mM vitamina C u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa, dobiveni prilikom a) prvog b) drugog i c) trećeg mjerenja

Na slici 13. prikazan je voltamogram za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom tri mjerenja unutar otopine kofeinske kiseline koncentracije 3 mmol dm³ i vitamina C koncentracije 1 mmol dm⁻³. Mjerenja su provedena u području potencijala -0.5 V i +1.5 V. U području potencijala -0.2 V do 0.3 V zabilježene su fotostruje kod sva tri mjerenja. Vrijednost struje neosvijetljene elektrode iznosi 0 µA, dok osvijetljena elektroda poprima više vrijednosti. Najveće fotostruje zabilježene su pri prvom mjerenju gdje je ujedno dobiven i najznačajniji pad fotostruje nakon kronoamperometrijskog procesa. U prvom mjerenju prije provođenja fotoelektrokemijskog procesa strujni maksimum pri potencijalu 0.75 V izražen je strujni maksimum, dok se kod ostalih mjerenja navedeni maksimum ne uočava ili se slabo uočava. Kod sva tri mjerenja uočavaju se strujni maksimumi pri potencijalu 1.3 V.

4.3. Elektrokemijska impedancijska spektroskopija

Slika 4.9. Rezultati elektrokemijske impedancijske spektroskopije, za neosvijetljenu i osvijetljenu SnS₂ elektrodu u 1 mM otopini kofeinske kiseline u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa, dobiveni prilikom a) prvog, b) drugog i c) trećeg mjerenja

Na slici 4.9. nalazi se Nyquistov prikaz ovisnosti imaginarne o realnoj komponenti impedancije za neosvijetljenu i osvijetljenu SnS2 elektrodu tijekom tri mjerenja unutar otopine kofeinske kiseline koncentracije 1 mmol dm⁻³. Kod sva tri mjerenja vidljivo je kako se mijenja i realna i imaginarna komponenta impedancije te da su vrijednosti impedancije veće za neosvijetljenu elektrodu, odnosno osvijetljene elektrode imaju znatno manji otpor prijelazu naboja. U sva tri vidljivo kako neosvijetljena elektroda ispitana provođenja mjerenja je nakon fotoelektrokemijskog procesa ima manji otpor od neosvijetljene elektrode ispitane prije provođenja procesa. U prvom i trećem mjerenju vrijednosti impedancije osvijetljene elektrode ispitane prije i nakon provođenja fotoelektrokemijskog procesa približno su jednake. U drugom mjerenju zabilježen je manji otpor osvijetljene elektrode prije provođenja fotoelektrokemijskog procesa u odnosu na otpor osvijetljene elektrode nakon provođenja procesa.

Slika 4.10. Rezultati elektrokemijske impedancijske spektroskopije, za neosvijetljenu i osvijetljenu SnS₂ elektrodu u 3 mM otopini kofeinske kiseline u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa, dobiveni prilikom a) prvog, b) drugog i c) trećeg mjerenja

Na slici 4.10. nalazi se Nyquistov prikaz ovisnosti imaginarne o realnoj komponenti impedancije za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom tri mjerenja unutar otopine kofeinske kiseline koncentracije 3 mmol dm⁻³. Mijenja se realna i imaginarna komponenta impedancije pri čemu su vrijednosti impedancije za osvijetljenu elektrodu znatno manje, odnosno manji je otpor prijelazu naboja. Neosvijetljena elektroda ispitana nakon provođenja fotoelektrokemijskog procesa ima manji otpor u odnosu na neosvijetljenu elektrodu ispitanu prije provođenja procesa. U prvom i trećem mjerenju vidljivo je da osvijetljena elektroda ispitana prije provođenja fotoelektrokemijskog procesa ima manji otpor u odnosu na neosvijetljena elektroda ispitana prije provođenja procesa.

Slika 4.11. Rezultati elektrokemijske impedancijske spektroskopije, za neosvijetljenu i osvijetljenu SnS₂ elektrodu u otopini 1 mM kofeinske kiseline i 1 mM vitamina C u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa, dobiveni prilikom a) prvog, b) drugog i c) trećeg mjerenja

Na slici 4.11. nalazi se Nyquistov prikaz ovisnosti imaginarne o realnoj komponenti impedancije za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom tri mjerenja unutar otopine kofeinske kiseline koncentracije 1 mmol dm⁻³ i vitamina C koncentracije 1 mmol dm⁻³. Kod sva tri mjerenja vidljiva je promjena i realne i imaginarne komponente impedancije te kako su vrijednosti impedancije osvijetljene elektrode znatno manje u odnosu na neosvijetljenu elektrodu. U sva tri mjerenja neosvijetljena elektroda ispitana nakon provođenja fotoelektrokemijskog procesa ima manji otpor od neosvijetljene elektrode prije provođenja fotoelektrokemijskog procesa približno su jednake u prvom i trećem mjerenju, dok je u drugom mjerenju vrijednost impedancije osvijetljene elektrode ispitane nakon provođenja fotoelektrokemijskog procesa neznatno manja.

Slika 4.12. Rezultati elektrokemijske impedancijske spektroskopije, za neosvijetljenu i osvijetljenu SnS₂ elektrodu u otopini 3 mM kofeinske kiseline i 1 mM vitamina C u 0.1 M NaCl prije i nakon fotoelektrokemijskog procesa, dobiveni prilikom a) prvog, b) drugog i c) trećeg mjerenja

Na slici 4.12. nalazi se Nyquistov prikaz ovisnosti imaginarne o realnoj komponenti impedancije za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom tri mjerenja unutar otopine kofeinske kiseline koncentracije 3 mmol dm⁻³ i vitamina C koncentracije 1 mmol dm⁻³. Mijenja se realna i imaginarna komponenta impedancije te osvijetljena elektroda ima znatno manji otpor prijelazu naboja u odnosu na neosvijetljenu elektrodu. Neosvijetljena elektroda ispitana nakon provođenja fotoelektrokemijskog procesa ima manji otpor od neosvijetljene elektrode ispitane prije provođenja procesa u sva tri mjerenja. U prvom i trećem mjerenju vrijednosti impedancije osvijetljene elektrode ispitane prije i nakon provođenja fotoelektrokemijskog procesa približno su jednake, a u drugom mjerenju osvijetljena elektroda nakon provođenja procesa ima manju vrijednost impedancije.

4.4. Kronoamperometrija

Slika 4.13. Rezultati dobiveni fotoelektrokemijskim procesom za SnS₂ elektrodu u 1 mM otopini kofeinske kiseline u 0.1 M NaCl prilikom tri uzastopna mjerenja

Na slici 4.13. prikazani su odzivi dobiveni fotoelektrokemijskim procesom za neosvijetljenu i osvijetljenu SnS_2 elektrodu tijekom tri mjerenja unutar otopine kofeinske kiseline koncentracije 1 mmol dm⁻³. Polarizacija radne elektrode provedena je pri stalnom potencijalu od 0.250 V. Vidljivo je kako je struja najveća pri prvom mjerenju. U sva tri mjerenja struja s vremenom pada, te je taj pad najizraženiji u prvom mjerenju, dok je u drugom i trećem mjerenju pad poprilično sličan. Prikazan je i pad struje prilikom uklanjanja izvora svjetla, pri čemu struja poprima vrijednost 0 μ A u sva tri mjerenja, te porast struje pri ponovnom osvjetljenju pri čemu se struja vraća na početne vrijednosti.

Slika 4.14. Rezultati dobiveni fotoelektrokemijskim procesom za SnS₂ elektrodu u 3 mM otopini kofeinske kiseline u 0.1 M NaCl prilikom tri uzastopna mjerenja

Na slici 4.14. prikazani su odzivi dobiveni fotoelektrokemijskim procesom za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom 3 mjerenja unutar otopine kofeinske kiseline koncentracije 3 mmol dm⁻³. Polarizacija radne elektrode provedena je pri stalnom potencijalu od 0.250 V. U prvom mjerenju zabilježena je najveća struja i najizraženiji pad s vremenom. U drugom i trećem mjerenju vrijednost struje približno je jednaka i gotovo stalna. Prilikom uklanjanja izvora svjetla, zabilježen je pad struje na 0 μ A u sva tri mjerenja, a ponovnim osvjetljenjem struja se vraća na početne vrijednosti.

Slika 4.15. Rezultati dobiveni fotoelektrokemijskim procesom za SnS₂ elektrodu u otopini 1 mM kofeinske kiseline i 1 mM vitamina C u 0.1 M NaCl prilikom tri mjerenja

Na slici 4.15. prikazani su odzivi dobiveni fotoelektrokemijskim procesom za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom 3 mjerenja unutar otopine kofeinske kiseline koncentracije 1 mmol dm⁻³ i vitamina C koncentracije 1 mmol dm⁻³. Polarizacija radne elektrode provedena je pri stalnom potencijalu od 0.250 V. Pri prvom mjerenju zabilježena je najveća vrijednost struje. U sva tri mjerenja struja pada s vremenom, a taj je pad najizraženiji u prvom mjerenju. Prilikom uklanjanja izvora svjetla struja pada na 10 μ A te se ponovnim osvjetljenjem vraća na početne vrijednosti.

Slika 4.16. Rezultati dobiveni fotoelektrokemijskim procesom za SnS₂ elektrodu u otopini 3 mM kofeinske kiseline i 1 mM vitamina C u 0.1 M NaCl prilikom tri mjerenja

Na slici 4.16. prikazani su odzivi dobiveni fotoelektrokemijskim procesom za neosvijetljenu i osvijetljenu SnS₂ elektrodu tijekom 3 mjerenja unutar otopine kofeinske kiseline koncentracije 3 mmol dm⁻³ i vitamina C koncentracije 1 mmol dm⁻³. Polarizacija radne elektrode provedena je pri stalnom potencijalu od 0.250 V. U prvom mjerenju zabilježena je najveća vrijednost struje te najizraženiji pad struje. U drugom i trećem mjerenju struja neznatno pada i vrijednosti su približno jednake. Prilikom uklanjanja izvora svjetla struja pada na 10 µA te se ponovnim osvjetljenjem vraća na početne vrijednosti.

4.5. Određivanje antioksidativnih svojstava

Slika 4.17. Ciklički voltamogrami O_2/O_2 .⁻ redoks para u (0.1 M Et₄NClO₄) otopini DMSO zasićenoj kisikom, bez dodatka (crvena krivulja) i uz dodatak različitih koncentracija kofeinske kiseline. Brzina promjene potencijala , v = 100 mV s⁻¹.

Slika 4.18. Ciklički voltamogrami O_2/O_2 .⁻ redoks para u (0.1 M Et₄NClO₄) otopini DMSO zasićenoj kisikom, bez dodatka (crvena krivulja) i uz dodatak a) 1 mM CA b) 1 mM CA + 1 mM AA, c) 3 mM CA, d) 3 mM CA + 1 mM AA. Brzina promjene potencijala, v = 100 mV s⁻¹.

Slika 4.19. Ciklički voltamogrami otopina (crna krivulja) a) 1mM CA, b) 1 mM CA + 1 mM AA, c) 3 mM CA i d) 3 mM CA + 1 mM AA u (točkasta krivulja) 0.1 M Et₄NClO₄ otopini DMSO, bez prisutnosti kisika. Brzina promjene potencijala, v = 100 mV s⁻¹. *E*p,a (CA) = 0.45 V

5. Rasprava

Posljednjih desetljeća u tijeku su istraživanja o sustavima čiste i obnovljive energije kako bi se zadovoljila svjetska potražnja za energijom bez iscrpljivanja postojećih izvora i narušavanja ravnoteže u okolišu. Obnovljivi izvori energije smatraju se obećavajućim u usporedbi sa fosilnim gorivima jer njihova krajnja upotreba emitira vrlo malo ili nimalo onečišćujućih tvari. Međutim, obnovljivi izvori energije imaju isprekidanu i fluktuirajuću prirodu, pa im je potreban medij za pohranu. Vodik, kao obilan i čist medij za pohranu energije, ima potencijal zadovoljiti svjetsku potražnju za energijom. Kada se proizvodi iz obnovljivih izvora energije i vode, proizvodnja i krajnja upotreba vodika ne emitira nikakve onečišćivače. Sunčeva energija može se koristiti za proizvodnju vodika na čist i učinkovit način obzirom da se smatra neiscrpnim i ne zagađujućim izvorom. U fotokatalitičkom procesu dobivanja vodika, osvijetljeni fotoni s jednakom ili višom energijom od zabranjene zone poluvodiča stvaraju fotogenerirane parove elektron/šupljina unutar poluvodiča. Dodavanjem žrtvujućeg sredstva koje reagira sa šupljinama, sprječava se rekombinacija parova elektron/šupljina te tako pospješuje redukcija H⁺ iona iz vode pomoću fotogeneriranih elektrona. Obzirom da se organske tvari i sulfidi prisutni u otpadnim vodama mogu koristiti kao žrtvujuća sredstva proizlazi da tretiranje onečišćene vode fotokataličkim procesom omogućava istodobnu proizvodnju vodika i pročišćavanje vode. [1, 24]

Slika 5.1. Elektrokemijska oksidacija a) CA i b) AA

Slika 5.2. Prikaz procesa fotoelektrokemijskog dobivanja vodika

Cilj ovog rada bio je provesti fotoelektrokemijski proces dobivanja vodika te okarakterizirati SnS₂ elektrodu elektrokemijskim putem prije i nakon fotoelektrokemijskog procesa. SnS₂ elektroda nije stabilna jer dolazi do reakcije šupljina sa samom elektrodom što uzrokuje fotokoroziju (jednadžba 9 i 10). Stoga se u ovom radu pokušalo utvrditi kako dodavanje žrtvujućih sredstava, u ovom slučaju CA i AA, stabilizira SnS₂ elektrodu. Princip djelovanja žrtvujućeg sredstva njegova je oksidacija pa je tako na slici 5.1. prikazana oksidacija AA i CA. Oksidacijom žrtvujućeg sredstva sprječava se fotokorozija odnosno oksidacija sumpora iz SnS₂. Osim što sprječava fotokoroziju, od žrtvujućeg sredstva se očekuje povećanje djelotvornosti razdvajanja šupljina i elektrona tako da je njegovo prisustvo značajno s dva različita aspekta. Djelotvornije razdvajanje elektrona i šupljina rezultira povećanjem fotostruje. CA i AA smatraju se dobrim žrtvujućim sredstvima zato što im je Fermijev nivo iznad HOMO orbitale SnS₂, kao što je prikazano na slici 5.2.

$$SnS_2 \xrightarrow{h\vartheta} h^+ + e^- \tag{9}$$

$$SnS_2 + 2h^+ \to Sn^{2+} + S \tag{10}$$

Metodom cikličke voltametrije provedena su ispitivanja na GC elektrodi (slike 4.1 - 4.4.) prije i nakon fotoelektrokemijskog procesa kako bi se utvrdilo dolazi li do fotolize CA i AA prilikom izlaganja svjetlu. Iz dobivenih rezultata može se zaključiti kako nije došlo do raspada CA i AA pod utjecajem svjetla. Ako se usporede odzivi na GC za AA i CA (slika 5.3.) može se uočiti da se oksidacijski strujni vrh AA nalazi kod 0.25 V dok oksidacijski strujni vrh za CA nalazi kod 0.4 V. Obzirom da se AA oksidira kod nižeg potencijala to ukazuje na jača antioksidativna svojstva AA u odnosu na CA, odnosno da AA ima veću djelotvornost kao žrtvujuće sredstvo.

Slika 5.3. Usporedba odziva staklaste ugljikove elektrode u otopinama 0.1 M NaCl koje su sadržavale AA i CA.

Metodom linearne polarizacije SnS₂ elektroda je ispitana u širokom području potencijala (slike 4.5. - 4.8.). Najveća razlika u strujama osvijetljene i neosvijetljene elektrode zabilježena je u području potencijala od -0.2 V do 0.3 V te u području potencijala od 0.6 V do 1.5 V. Razlika u struji osvijetljene i neosvijetljene elektrode predstavlja fotostruju ($I_{foto} = I_{osvijetljena} - I_{neosvijetljena}$). Stoga se na temelju dobivenih rezultata može se zaključiti da su u navedenim područjima potencijala zabilježene fotostruje. Omjer vrijednosti fotostruje i struje neosvijetljene elektrode najveći je u području potencijala -0.2 V do 0.3 V, odnosno u ovom području je fotostruja dominantna te je ovo područje pogodno za provođenje fotoelektrokemijskih procesa. Stoga je u ovom radu proveden fotokatalitički proces dobivanja vodika pri potencijalu 0.25 V [25]. Struje

su znatno veće u području potencijala od 0.6 V do 1.5 V, međutim u ovom području potencijala udio fotostruje u ukupnoj struji je malen pa se za sam proces ne može reći da je fotoproces. U navedenom procesu dominiraju struje elektrokemijske oksidacije CA i AA. Osim toga veći potencijali rezultiraju većom potrošnjom energije što je dodatan razlog da je za provođenje procesa odabran potencijal 0.25 V.

Tijekom provođenja fotokatalitičkog procesa dobivanja vodika, fotostruje se smanjuju što je posljedica reakcije sumpora iz SnS₂ elektrode sa fotogeneriranim šupljinama pri čemu se narušavaju svojstva elektrode. Kod linearne polarizacije pri potencijalu 0.25 V, kod 1 mM CA fotostruja se smanjila za 53%, kod 3 mM CA za 68%, kod 1 mM CA + 1 mM AA za 44%, a kod 3 mM CA + 1 mM AA fotostruja se smanjila za 48%. Iz toga se može zaključiti da je najbolja kombinacija 1 mM CA + 1 mM AA. Ako se ovi rezultati usporede sa stabilnošću SnS₂ elektrode u čistom NaCl (slika 5.4.) vidljivo je da je SnS₂ puno stabilniji u prisustvu žrtvujućeg sredstva. Naime, u otopini NaCl bez žrtvujućeg sredstva tijekom tri prva ciklusa linearne polarizacije dolazi do značajnog pada struje od vrijednosti 70 μ A do vrijednosti 5 μ A što znači da se struja smanjila čak za 92.9% iako je vrijeme izlaganja svjetlu bilo znatno kraće od fotokatalitičkog procesa gdje je elektroda izložena svjetlu 90 minuta.

Slika 5.4. Linearni voltamogrami za osvijetljenu SnS₂ elektrodu koja je ispitana uzastopno tri puta u otopini 0.1 M NaCl

Slika 5.5. Linearna polarizacija za osvijetljenu SnS₂ elektrodu u različitim otopinama

Sa slike 5.5. uočava se kako NaCl ima najnižu vrijednosti struja gotovo u cijelom području potencijala, dok dodatkom CA struje rastu. Uspoređujući rezultate dobivene u ovom radu s rezultatima u kojima je korištena čista AA [26] može se zaključiti da strujni vrhovi formirani pri 0.6 V - 0.75 V te 1.25 V odgovaraju elektrokemijskoj oksidaciji CA (slika 5.5.). Također vidljivo je da 3 mM čista CA ima veće struje od 1 mM u cijelom području potencijala. Dodatak 1 mM AA u 3 mM CA uzorkuje veće struje iznad 0.5 V u odnosu na 1 mM CA + 1 mM AA, dok su im fotostruje kod nižih potencijala približno jednake. Isto tako vidljivo je da čista AA ima znatno manje struje iznad 0.5 V u odnosu na CA, a dodatak CA u otopinu 1 mM AA smanjuje fotostruje.

Rezultati elektrokemijske impedancijske spektroskopije (slike 4.9 - 4.12.) pokazuju da su za osvijetljenu SnS_2 elektrodu dobiveni puno manji otpori prijelazu naboja što ukazuje na dobru fotoaktivnost elektrode u prisutnosti CA i AA. Ovi su rezultati također pokazali da tijekom fotokatalitičkog procesa dolazi do porasta otpora što ukazuje na smanjenje fotoaktivnosti elektrode. Najmanja promjena otpora tijekom tri mjerenja kao i najveća fotoaktivnost zabilježena je za otopinu 1 mM CA + 1 mM AA (Tablica 5.1.). Rezultati dobiveni metodom elektrokemijske impedancijske spektroskopije u suglasnosti su sa rezultatima zabilježenim metodom linearne polarizacije. Uz dodatak AA dolazi do značajnog smanjenja vrijednosti Z i povećanja stabilnosti elektrode. U ovom radu nije provedeno modeliranje iz kojeg bi se mogle izvući vrijednosti Rct već je samo očitana maksimalna vrijednost komponente realne impedancije Z.

Tablica 5.1. Prikaz vrijednosti Z' / Ω , zabilježene kod elektroda ispitanih u različitim otopinama nakon tri uzastopna ciklusa fotoelektrokemijskog procesa dobivanja vodika metodom kronoamperometrije.

otopina	$Z^{*}/k\Omega$		
	1. mjerenje	2. mjerenje	3. mjerenje
1mM CA	4.5	5.0	6.0
3 mM CA	3.0	8.0	9.0
1mM CA + 1mM AA	1.6	1.8	1.8
1mM CA + 3mM AA	2.0	2.5	3.0

Proveden je proces fotoelektrokemijskog dobivanja vodika pri konstantnom potencijalu 0.25 V, pri čemu su zabilježene struje. Iz prethodnih istraživanja poznato je kako su struje proporcionalne količini izlučenog vodika stoga u ovom radu nije sakupljan vodik [26], već je njegova količina procijenjena na temelju struje. Na grafovima 4.13., 4.14., 4.15. i 4.16. uočava se smanjenje struje tijekom provedbe fotoelektrokemijskog procesa jer dolazi do raspada SnS₂ elektrode što rezultira lošijom fotoaktivnošću. Zbog reagiranja fotogeneriranih šupljina s elektrodom dolazi do ireverzibilne oksidacije površine elektrode, a samim time i njenog raspada. Struje koje su zabilježene za elektrodu ispitanu u otopini NaCl bez dodatka žrtvujućeg sredstva puno su manje što potvrđuje dobru djelotvornost žrtvujućeg sredstva (slika 5.6.).

Slika 5.6. Usporedba rezultata dobivenih fotoelektrokemijskim procesom za SnS₂ elektrodu u otopinama različitih žrtvujućih sredstava i u otopini NaCl bez žrtvujućeg sredstva

Iz slika 4.13. - 4.16. može se uočiti kako se dodatkom AA povećava struja u odnosu na čistu CA. Struja raste više od duplo kad se u 1 mM otopinu CA doda 1 mM AA pa se može zaključiti da je AA snažnije žrtvujuće sredstvo u odnosu na CA. To je i očekivano obzirom na niži potencijal oksidacije AA. Slika 5.6. pokazuje kako su struje veće za SnS₂ elektrodu u otopini CA i AA u omjeru 1:1, nego u omjeru 3:1. Isto tako iz kronoamperometrijskih odziva se vidi da su kod omjera 1:1 struje veće nego kod čiste AA. Ako se usporedi reakcija dvije koncentracije čiste CA veće struje se dobivaju uz veću koncentraciju (3 mM CA). Ovo navodi na zaključak da u smjesi trostruko veća količina CA usporava reakciju AA. Razlog tome je najvjerojatnije taloženje nusprodukata oksidacije CA na površinu elektrode. Niža koncentracija CA u smjesi s 1 mM AA pokazuje veće struje nego što je to zabilježeno za čistu 1 mM AA. Stoga se iz kronoamperometrijskih mjerenja može zaključiti da otopina 1 mM CA + 1 mM AA najpogodnija za fotoelektrokemijsku proizvodnju vodika.

Žrtvujuća sredstva su ispitana u reakciji s radikalima kisika kako bi se utvrdilo njihovo antioksidativno djelovanje te kako bi se taj rezultat usporedio s rezultatima djelotvornosti žrtvujućeg sredstva. Ispitivanje je provedeno na elektrodi od staklastog ugljika u otopini 0.1 M Et4NClO4 u DMSO zasićenoj kisikom. U navedenoj otopini se elektrokemijskim putem generiraju kisikovi radikali te se javlja strujni vrh redoks para O₂/O₂- u području potencijala od -1.2 V do -1 V (slike 4.17. - 4.21.). Za proučavanje aktivnosti CA, AA i njihovih smjesa prema O2.- radikalu, otopina DMSO zasićena kisikom titrirana je alikvotima standardne otopine CA i AA uz snimanje cikličkog voltamograma u području potencijala od -1.5 V do 1.0 V, nakon svakog dodatka. Antioksidacijsko djelovanje ispitivanih kiselina u reakciji sa O2⁻ uključuje procese prijenosa protona (H^+) i elektrona s molekule kiseline na superoksidni radikal, pri čemu nastaju manje reaktivne kisikove vrste. Navedene reakcije dovode do promjene u visini katodne (redukcijske) i anodne (oksidacijske) struje kisika te su mjera antioksidacijskog djelovanja ispitivanog analita. Točnije, aktivnost djelovanja određenog spoja prema "neutralizaciji" nastalog superoksidnog radikala određuje se na temelju smanjenja anodnog strujnog vrha. Pri tome je potvrđeno da AA ima jače djelovanje od CA što je u skladu s rezultatima koji su pokazali da se veće fotostruje dobivaju za AA u odnosu CA. Dodatkom CA u AA raste aktivnost djelovanja otopine. U smjesi je veće djelovanje zabilježeno za otopinu 3 mM CA+1 mM AA u odnosu na otopinu 1 mM CA+1 mM AA. Fotokatalitička ispitivanja su pokazala veću fotoaktivnost u otopini 1 mM CA+1 mM AA. Različito ponašanje je najvjerojatnije posljedica taloženja nusprodukata oksidacije u otopini 3 mM CA+1 mM AA na površinu SnS₂ što smanjuje fotokatalitičko djelovanje odnosno usporava oksidaciju AA koja ima značajan doprinos fotostrujama. Da doista dolazi do nastajanja nusprodukata oksidacije potvrđuje niz strujnih vrhova koji su zabilježeni u slučaju reakcije CA s kisikovim radikalom (slike 4.17. - 4.18.). Pretpostavlja se da ovi strujni vrhovi odgovaraju redoks reakciji nusprodukata CA. U slučaju kad je provedeno ispitivanje u otopini bez kisikovih radikala javlja se samo jedan karakteristični strujni vrh (slika 4.19).

6. Zaključak

- CA i AA pojedinačno i u smjesi pokazuju ulogu žrtvujućeg sredstva i aktivnost prema slobodnim radikalima.
- Prisustvo žrtvujućeg sredstva u otopini NaCl tijekom fotoelektrokemijskog procesa usporilo je fotokoroziju SnS₂.
- Najbolje fotokatalitičko djelovanje dobiveno je u otopini 1 mM CA + 1 mM AA pa je stoga ova otopina najpogodnija za proizvodnju vodika.
- Dodatak AA značajno povećava fotoaktivnost elektrode.
- U otopini 3 mM CA + 1 mM AA fotoaktivnost je manja u odnosu na otopinu 1 mM CA + 1 mM AA što nije u skladu s antioksidacijskom aktivnošću i što je najvjerojatnije posljedica blokade površine SnS₂ nusproduktima nastalim oksidacijom CA.
- Bolja antioksidativna aktivnost prema O2⁻⁻ radikalu postignuta je koristeći smjesu CA i AA u usporedbi samo sa otopinom CA, a najbolja aktivnost zabilježena je za otopinu 3 mM CA + 1 mM AA.

7. Popis simbola i kratica

A - površina elektrode, m²

C-kapacitet, F

C_{dl} - kapacitet elektrokemijskog dvosloja, F

- D difuzijski koeficijent, cm²/s
- e-električni naboj elektrona, eV

E-potencijal, V

E_{poč} – početni potencijal, V

Ekon – konačni potencijal, V

f – frekvencija, Hz

I-struja, A

 k_B – Boltzmannova konstanta, eV/K

 N_D – gustoća nosioca naboja, Cm⁻¹

Q – naboj, C

E – otpor, Ω

 R_{ct} – otpor prijelazu naboja, Ω

 R_{el} – otpor elektrolita, Ω

T-temperatura, K

t - vrijeme, s

Z – impedancija, Ω

|Z| - apsolutna impedancija, Ω

 $\omega-$ kutna frekvencija, Hz

 ε – dielektrična konstanta, Fm⁻¹

 ε_0 – dielektrična konstanta vakuuma, Fm⁻¹

v – brzina promjene potencijala, V/s

- AA askorbinska kiselina (vitamin C)
- CA kofeinska kiselina
- CB vodljiva vrpca
- CV ciklička voltametrija
- EIS elektrokemijska impedancijska spektroskopija
- FTO stakalce prevučeno kositrovim (IV) oksidom dopiranim fluorom
- LED svijetleća dioda
- OCP potencijal otvorenog kruga
- PEC elektrokemijski oksidacijski proces
- VB valentna vrpca

8. Literatura

[1] C. Acar, I. Dincer, A review and evaluation of photoelectrode coating materials and methods for photoelectrochemical hydrogen production, International Journal of Hydrogen Energy, 41 (2016) 7950-7959.

[2] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31 (2017) 1–35.

[3] Y. Li, J. Zhong Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials, Laser Photonics Rev, 4 (2010) 517–528.

[4] R. Van de Krol, M. Grätzel, (Eds.), Photoelectrochemical Hydrogen Production, Electronic Materials: Science & Technology, Springer, Berlin, 2012.

[5] URL: <u>https://www.wevolver.com/article/understanding-n-type-vs-p-type-semiconductors</u> (pristup 23.08.2023.)

[6] W. Hu, T. T. Hien, D. Kim, H. S. Chang, Enhancement in Photoelectrochemical Performance of Optimized Amorphous SnS2 Thin Film Fabricated through Atomic Layer Deposition. Nanomaterials, 9 (2019) 1083.

[7] R. Lucena, F. Fresno, J. C. Conesa, Hydrothermally synthesized nanocrystalline tin disulphide as visible light-active photocatalyst: Spectral response and stability, Applied Catalysis A: General, 415-416 (2012) 111–117.

[8] J. Chen, B. Wang, J. Wang, Y. Zhang, Development of a new high-performance visible-light photocatalyst by modifying tin disulfide with cyclized polyacrylonitrile, Materials Letters, 330 (2023) 133353

[9] X. Ning, G. Lu, Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting,, Nanoscale, 12 (2020) 1213-1223.

[10] A. Dekanski, J. Stevanović, R. Stevanović, B. Ž. Nikolić, V. M. Jovanović, Glassy carbon electrodes, Carbon, 39 (2021) 1195–1205.

[11] G. N. Kamau, Surface preparation of glassy carbon electrodes, Analytica Chimica Acta, 207 (1998) 1–16.

[12] O. J. A. Schueller, S. T. Brittain, C. Marzolin, G. M. Whitesides, Fabrication and Characterization of Glassy Carbon MEMS, Chemistry of Materials, 9 (1997) 1399–1406.

[13] C. Hessel, N. Perini, E. Sitta, The role of scavengers in the CdS film corrosion, J Solid State Electrochem 27 (2023) 705–714.

[14] T. Puangpetch, S. Chavadej, T. Sreethawong, Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: Effects of molecular structure and chemical properties of hole scavengers. Energy Conversion and Management, 52 (2011) 2256–2261.

[15] C. Magnani, V. L. B. Isaac, M. A. Correa, H. R. N. Salgado, Caffeic acid: a review of its potential use in medications and cosmetics, Anal. Methods, 6 (2014) 3203–3210.

[16] URL: <u>https://molekula.com/catalog/331-39-5/77345158-34-dihydroxycinnamic-acid-caffeic-acid</u> (pristup 25.08.2023.)

[17] I. Škugor Rončević, D. Skroza, I. Vrca, A. M. Kondža, N. Vladislavić, Development and Optimization of Electrochemical Method for Determination of Vitamin C, Chemosensors, 10 (2022) 283.

[18] D. Balaić, G. Antonije Oreški, G. Radić, H. Kušić, K. Perović and M. Kraljić Roković, Photoelectrocatalytic Hydrogen Production Supported by Ascorbic Acid, Kem. Ind., 72 (2023) 179–186.

[19] I.Piljac, Senzori fizikalnih veličina i elektroanalitičke metode, Media Print, Zagreb, 2010.

[20] URL: <u>https://academic-accelerator.com/encyclopedia/linear-sweep-voltammetry</u> (pristup 26.08.2023.)

[21] Ž. Petrović, Kemijsko tehnološke vježbe, Elektrokemijska impendacijska spektroskopija, Fakultet kemijskog inženjerstva i tehnologije, Sveučilište u Zagrebu, (2023) 1-7.

[22] Y. S. Choudhary, L. Jothi, G. Nageswaran, Electrochemical Characterization, Spectroscopic Methods for Nanomaterials Characterization, Elsevier, Amsterdam, 2017., 19–54.

[23] B. Rezaei, N. Irannejad, Electrochemical detection techniques in biosensor applications, Electrochemical Biosensors, Elsevier, Amsterdam, 2019., 11–43.

[24] N. Denisov, J. Yoo, P. Schmuki, Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes, Electrochimica Acta, 319 (2019) 61-71.

[25] D. Jurić Kaćunić, Optimizacija procesa fotoelektrokemijskog dobivanja vodika u prisutnosti askorbinske kiseline (Diplomski rad), Zagreb: Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije (2023)

[26] M. Lovrić, T. Krnić, Optimiranje procesa fotoelektrokemijskog dobivanja vodika, Vježbe iz inženjerstva materijala, Fakultet kemijskog inženjerstva i tehnologije, Sveučilište u zagrebu (2023)

Životopis

Mihaela Ćorić

Od 2007. do 2015.

pohađala je Drugu osnovnu školu Široki Brijeg. Završetkom osnovne škole upisala je Gimnaziju fra Dominika Mandića u Širokom Brijegu. Srednju školu završava 2019. godine kada upisuje preddiplomski studij Kemija i inženjerstvo materijala na Fakultetu kemijskog inženjerstva i tehnologije u Zagrebu. Stručnu praksu je odradila u kolovozu 2023. godine u laboratoriju za provjeru kvalitete u TT kabeli d.o.o. Široki Brijeg.