Projektiranje procesa adsorpcije s promjenom tlaka za izdvajanje CO2

Vuić, Juraj

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:328002

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI DIPLOMSKI STUDIJ

Juraj Vuić

DIPLOMSKI RAD

Zagreb, rujan 2024.

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE POVJERENSTVO ZA DIPLOMSKE ISPITE

Kandidat _____**Juraj Vuić**______

Predao je izrađen diplomski rad dana: <u>3. rujna 2024.</u>

Povjerenstvo u sastavu:

Izv. prof. dr. sc. Igor Dejanović, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije

Dr. sc. Goran Lukač, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije

Dr. sc. Srečko Herceg, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije

Dr. sc. Ivan Karlo Cingesar, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije (zamjena)

povoljno je ocijenilo diplomski rad i odobrilo obranu diplomskog rada pred povjerenstvom u istom sastavu.

Diplomski ispit održat će se dana: <u>6. rujna 2024.</u>

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI DIPLOMSKI STUDIJ

Juraj Vuić

PROJEKTIRANJE PROCESA ADSORPCIJE S PROMJENOM TLAKA ZA IZDVAJANJE CO₂

DIPLOMSKI RAD

Mentor: izv. prof. dr. sc. Igor Dejanović, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije

Članovi ispitnog povjerenstva:

izv. prof. dr. sc. Igor Dejanović, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije

dr. sc. Goran Lukač, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije dr. sc. Srečko Herceg, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije

Zagreb, rujan 2024.

Zahvaljujem mentoru, izv. Prof. dr. sc. Igoru Dejanoviću na odabiru teme, uloženom radu i savjetima koji su pomogli u izradi ovog rada.

Zahvaljujem asistentu, dr. sc. Goranu Lukaču na uloženom trudu i vremenu pri izvedbi eksperimentalnog dijela ovog rada i pomoći oko boljeg shvaćanja teme i principa rada procesa.

Zahvaljujem obitelji i prijateljima koji su bili podrška tijekom cijelog školovanja.

SAŽETAK

U ovom radu provodi se istraživanje i simulacija procesa adsorpcije promjenom tlaka (eng. *Pressure Swing Adsorption, PSA*) za uklanjanje ugljikova (IV) oksida iz dimnih plinova energetskih postrojenja. PSA je separacijska tehnologija koja se temelji na različitim afinitetima pojedinih komponenata u plinskoj fazi prema čvrstom adsorbensu, uz korištenje cikličke promjene tlaka kako bi se omogućila regeneracija adsorbensa. Atraktivnost ove tehnologije nalazi se u njenom jednostavnom postavljanju i provedbi uz prihvatljivu energetsku učinkovitost te mogućnost selektivnog odvajanja CO₂.

U radu je provedena simulacija PSA procesa koristeći dvije kolone koje rade paralelno s vremenskom razlikom u koracima procesa kako bi se postigla kontinuiranost uklanjanja CO2. Cilj istraživanja bio je postizanje čistoće CO₂ na izlazu procesa veće od 99,0 mol %, uz što veći iscrpak CO₂ iz dimnih plinova koristeći NOTT-300 adsorbens. Rezultati simulacije pokazuju mogućnost optimizacije PSA procesa u smislu osiguranja čistoće i učinkovitosti uklanjanja CO₂, što ovaj proces čini pogodnim za primjenu u industriji s ciljem smanjenja emisija stakleničkih plinova.

Ključne riječi: CO₂, adsorpcija s promjenom tlaka, NOTT-300, dimni plin, dinamička simulacija

ABSTRACT

This paper presents research and simulation of the Pressure Swing Adsorption (PSA) process for the removal of carbon dioxide (CO_2) from the flue gases of energy generation plants. PSA is a separation technology based on the different affinities of individual components in the gas phase towards a solid adsorbent, utilizing cyclic pressure changes to enable the regeneration of the adsorbent. The attractiveness of this technology lies in its relatively simple setup and implementation, combined with acceptable energy efficiency and the ability to selectively separate CO_2 .

In the study, a simulation of the PSA process was conducted using two columns operating in parallel with a time offset in process steps to achieve continuous CO_2 removal. The goal of the research was to achieve a CO_2 purity of over 99,0 mol % at the process outlet while maximizing the CO_2 recovery from the flue gases. The simulation results demonstrate the potential for optimizing the PSA process in terms achieving the required purity and recovery of CO_2 removal process, making it suitable for industrial applications aimed at reducing greenhouse gas emissions.

Key words: CO₂, pressure swing adsorption, NOTT-300, flue gas, dynamic simulation

SADRŽAJ

1.	UVOD	1
2.	TEORIJSKI DIO	2
	2.1. Izvori ugljikova (IV) oksida	2
	2.2. Tehnologije izdvajanja i skladištenja ugljikova (IV) oksida	4
	2.2.1. Izdvajanje prije izgaranja	7
	2.2.2. Izdvajanje nakon izgaranja	. 10
	2.2.3. Izgaranje kisikom	. 11
	2.2.4. Izravno izdvajanje iz zraka	. 12
	2.3. Adsorpcija	. 12
	2.3.1. Adsorpcijske izoterme	. 13
	2.3.2. Tehnologije adsorpcije plinova	. 16
	2.3.2.1. Adsorpcija promjenom temperature	. 16
	2.3.2.2. Adsorpcija promjenom tlaka	. 16
	2.3.2.3. Vakuum adsorpcija	. 18
	2.4. Aspen Adsorption	. 20
3.	METODIKA RADA	. 22
	3.1. Postavke i pojednostavljenja simulacije	. 22
	3.2. Odabir adsorbensa	. 24
	3.2.1. Karakteristike adsorbensa	. 25
	3.2.2. Adsorpcijske izoterme	. 27
	3.2.3. Određivanje veličine kolone	. 31
	3.3. Postavke simulacije i ciklusa adsorpcije	. 34
4.	REZULTATI I RASPRAVA	. 38
	4.1. Simulacija procesa adsorpcije	. 38
	4.2. Numerički rezultati	. 49
5.	ZAKLJUČAK	. 51

6. POPIS SIMBOLA	
LITERATURA	55

1. UVOD

Rastuća globalna potražnja za energijom, koja je trenutno vrlo vezana uz korištenje fosilnih goriva, znatno je povećala koncentraciju stakleničkih plinova u atmosferi. Među tim plinovima nalazi se i ugljikov (IV) dioksid, CO₂, koji se smatra glavnim krivcem za klimatske promjene. Kako bi se ublažili negativni efekti klimatskih promjena te smanjile emisije, tokom posljednjih desetljeća počele su se razvijati nove studije i tehnologije za njegovo izdvajanje i skladištenje.

Izdvajanje i skladištenje ugljikova (IV) dioksida (engl. *Carbon capture and storage*, *CCS*) održiva je tehnologija s mogućnosti implementiranja u već postojeće industrije za proizvodnju energije. Sastoji se od dva koraka, pri čemu je prvi korak izdvajanje CO₂ iz smjese dimnih plinova, a u drugom koraku se izdvojeni CO₂ transportira na sigurno mjesto, najčešće geološko skladištenje. [1]

Razvoj tehnologija za izdvajanje i skladištenje CO_2 doprinio je smanjenju troškova tehnologije CCS i poboljšanju tehnika za praćenje uskladištenog CO_2 . Treba međutim naglasiti da CCS tehnologija uvijek zahtjeva dodatnu energiju u usporedbi sa projektima bez CCS-a, te se njezina upotreba izbjegava u slučaju da ne nudi dodatne ekonomske koristi, a nije propisana zakonodavstvom. [2]

Jedna od potencijalno ključnih tehnologija za izdvajanje CO₂ je adsorpcija sa promjenom tlaka (engl. *Pressure swing adsorption*, *PSA*). To je ciklički adsorpcijski proces koji omogućava kontinuiranu separaciju plinovitih struja. PSA se izvodi periodičkim izmjenama tlaka radi optimizacije uklanjanja kontaminirajućeg plina te se smatra održivim procesom za izdvajanje ugljikova (IV) dioksida iz dimnih plinova koji sadrže oko 10% ili više CO₂. Kako bi se postigla određena učinkovitost, proces se može sastojati od nekoliko koraka, kolona i vremena ciklusa, dok je pravilni izbor adsorbensa ključan za optimalan rad PSA. Naime, adsorbens mora biti selektivan prema ugljikovom (IV) dioksidu te se provodi mnogo istraživanja s ciljem pronalaženja novih i boljih adsorbensa upravo kako bi se poboljšala selektivnost prema CO₂. [1]

2. TEORIJSKI DIO

2.1. Izvori ugljikova (IV) oksida

Potražnja za energijom raste iz godine u godinu, dok njen iznos uvelike ovisi o fosilnim gorivima što je uzrokovalo povećanje koncentracije stakleničkih plinova u atmosferi. Najveći udio u stakleničkim plinovima imaju ugljikov (IV) oksid (76 %), metan (16 %), dušikovi oksidi (6 %) i fluorovi spojevi (oko 2 %). [1]

U 2022. godini globalne emisije CO₂ od sagorijevanja fosilnih goriva i proizvodnje cementa dosegle su vrijednost od ~36,1 Gt CO₂. Za razliku od prijašnje tri godine, povećanje emisija iznosi 2,0%, 7,9% i 1,5% za godine 2019., 2020. i 2021. Prema podacima Carbon Monitora, rast od 1,5% iz 2021. na 2022. godinu u skladu je s predviđanjima temeljenim na potrošnji energije, uključujući projicirani rast od 1,0±0,9% prema Global Carbon Projectu (GCP) i <1,0% prema Međunarodnoj energetskoj agenciji (IEA). Ovakve promjene emisija ukazuju na oporavak od naglog pada emisija povezanih s COVID-19 u 2020. godini te, prema tim podacima, globalne emisije CO₂ mogle bi se vratiti na trend kontinuiranog rasta što govori da vrhunac emisija još nije dosegnut. [3]

Na Slici 1. prikazane su dnevne emisije CO_2 od 1970. godine te prema Carbon Monitor podacima od 2019. do 2022. U industrijski sektor ubrojene su emisije CO_2 iz sagorijevanja fosilnih goriva i procesa proizvodnje cementa koje su podijeljene na kategorije u bojama te promjene korištenja zemljišta (engl. *Land use change, LUC*). U sektor međunarodni bunkeri ubrajaju se emisije iz međunarodnog zračnog i pomorskog prometa. [4]

Slika 1. Emisije CO₂ od 1970. godine podijeljene po sektorima

Sa Slike 1. vidljivo je kako je većina emisija ugljikova (IV) oksida usko vezana za energetsku industriju, gdje se gorivo sagorijeva u cilju dobivanja energije. Ograničavanjem emisija ovih procesa moglo bi se uvelike utjecati na usporavanje procesa klimatskih promjena. Stoga, danas se znanstvenici sve više koncentriraju u pronalasku tehnoloških rješenja za smanjenje emisija ugljikova (IV) oksida iz energetskih postrojenja.

2.2. Tehnologije izdvajanja i skladištenja ugljikova (IV) oksida

Čak i nakon potencijalnih poboljšanja učinkovitosti i optimizacije procesa, konvencionalne termoelektrane na fosilna goriva nisu u stanju postići ekološke ciljeve. Unatoč značajnim ulaganjima i padu cijena obnovljivih izvora energije, fosilna goriva i dalje igraju važnu ulogu u svjetskoj proizvodnji električne energije. Iako upotreba fosilnih goriva kao izvor energije opada, i dalje se smatra primarnim izvorom energije, posebno u zemljama u razvoju. Stoga, sve više se ulaže u tehnologije s ciljem smanjenja emisija stakleničkih plinova kako bi se i dalje mogla koristiti ogromna količina energije dobivena iz fosilnih goriva.

U posljednjih desetak godina, tehnologije izdvajanja i skladištenja CO₂ pokazale su izuzetan potencijal u smanjenju emisija stakleničkih plinova uz istovremeno korištenje fosilnih goriva za proizvodnju električne energije. CCS tehnologije mogu se podijeliti u tri glavna tipa: izdvajanje prije izgaranja (engl. *pre-combustion*), izdvajanje nakon izgaranja (engl. *post-combustion*) i izgaranje s kisikom (engl. *oxy-fuel combustion capture*). Nedavno se počela koristiti i tehnologija izravnog izdvajanja iz zraka pri čemu se iz okolnog zraka uklanja CO₂ te se pročišćeni zrak vraća u okolinu. Ovakav proces nije usko vezan za postrojenja proizvodnje energije kao što su ostale tehnologije. U tehnologijama izdvajanja prije i nakon izgaranja, CO₂ se izdvaja prije odnosno nakon procesa izgaranja. Metoda izgaranja s kisikom omogućuje izdvajanje CO₂ tijekom izgaranja koristeći oko 95 mol % čistog kisika i reciklirani dimni plin (*RFG*) umjesto zraka. [5]

Razne tehnologije izdvajanja CO₂ se koriste ovisno o mogućnosti integracije takvog procesa u već postojeće postrojenje te o samom sastavu dimnih plinova i koncentraciji CO₂ u smjesi plinova. Tako se izdvajanje CO₂ iz dimnih plinova nakon izgaranja koristi za naknadno opremanje postojećih elektrana jer zahtjeva malo ili nimalo modifikacija postojeće opreme, pri čemu dimni plinovi mogu sadržavati različite komponente, a CO₂ se izdvaja najčešće apsorpcijom u kapljevinu ili adsorpcijom na čvrstu tvar s visokim afinitetom prema CO₂.

Kod izdvajanja CO_2 prije izgaranja, proces zahtijeva drugačiji dizajn elektrana, poput elektrana s kombiniranim ciklusom integriranog rasplinjavanja ugljena (*IGCC*), te najčešće nije privlačna opcija za naknadno opremanje postojećih elektrana. Ovaj proces se koristi za pretvaranje fosilnog goriva u gorivo bez ugljika, kao što je vodik, prije izgaranja. Takav proces dovodi do struje čistog CO_2 i zahtjeva manje energije za izdvajanje. Izgaranje goriva s kisikom koristi se u postrojenjima koje zahtijevaju minimalne emisije pri čemu se koristi čisti kisik umjesto okolnog zraka za izgaranje goriva što dovodi do visoko koncentriranih tokova CO₂ iz kojih se zatim puno lakše i učinkovitije može izdvojiti CO₂ visoke čistoće koji se dalje može koristiti u industrijskim procesima kao što su kemijska ili prehrambena industrija. [6]

Na Slici 2. shematski su prikazani procesi izdvajanja CO₂, ovisno o korištenoj tehnologiji: izdvajanjem nakon izgaranja, izdvajanjem prije izgaranja, izgaranjem kisikom te izravno izdvajanje iz zraka.

Nakon izdvajanja ugljikova dioksida iz dimnih plinova, potrebno ga je transportirati do mjesta skladištenja. Zbog velikih količina CO₂, za industrijske procese izdvajanja i skladištenja CO₂ najprikladniji način transporta je cjevovod. U svrhu smanjenja volumena, plinoviti CO₂ prije transporta se ukapljuje, što se najčešće izvodi tlačenjem na tlak iznad 7,4 MPa pri temperaturi iznad 31°C. Ovisno o količini prisutnih nečistoća nakon izdvajanja, potrebna temperatura i tlak za ukapljivanje mogu biti i veći pa se tako može povećavati i do 15 MPa kako bi se minimizirao utjecaj nečistoća. [6]

Na mjestu skladištenja, ukapljeni CO₂ se ubrizgava duboko ispod površine za trajno skladištenje. Skladišne formacije obično se sastoje od poroznih stijena poput pješčenjaka, slanih vodonosnika ili iscrpljenih naftnih i plinskih polja. Iako je trajno skladištenje krajnji cilj tehnologije izdvajanja i skladištenja CO₂, on se može koristiti i kao sirovina u industrijskim procesima, primjerice u petrokemiji za proizvodnju uree, ili za povećanje iscrpka nafte. [6]

Slika 2. Procesi izdvajanja i skladištenja CO₂

2.2.1. Izdvajanje prije izgaranja

Izdvajanje prije izgaranja je proces koji podrazumijeva reakciju goriva s kisikom i/ili parom, pri čemu se dobiva sintezni plin (engl. *syngas*) koji se uglavnom sastoji od ugljikova (II) oksida (CO) i vodika (H₂). U slijedećem koraku CO reagira s parom u katalitičkom reaktoru kako bi se dobio CO₂ i dodatni vodik. CO₂ se zatim odvaja, obično fizičkim ili kemijskim putem, čime se dobiva gorivo bogato vodikom korisno u mnogim primjenama kao što su kotlovi, plinske turbine, motori i gorive ćelije. [7]

Danas postoje tri najčešće korištene metode za dobivanje sinteznog plina u procesu izdvajanja prije izgaranja. Te metode su dobivanje sinteznog plina iz prirodnog plina (parni reforming metana, engl. *steam methane reforming*, SMR), dobivanje sinteznog plina iz ugljena (gasifikacija ugljena, engl. *coal gasification*) te reakcija izmjene vodenog plina (engl. *water gas shift reaction*).

Parni reforming metana – reakcija prirodnog plina u prisutstvu katalizatora, pri čemu su dobiveni produkti CO₂ i H₂.

Gasifikacija ugljena – reakcija ugljena s malom količinom kisika i vodene pare na visokoj temperaturi, pri čemu su dobiveni produkti CO₂ i H₂.

Jednadžbe (1) i (2) prikazuju dvije glavne reakcije za dobivanje sinteznog plina, parni reforming i parcijalna oksidacija:

$$C_{x}H_{y}+xH_{2}O \leftrightarrow xCO + (\frac{x+y}{2})H_{2}$$
(1)

$$C_{x}H_{y} + \frac{x}{2}O_{2} \leftrightarrow xCO + (\frac{y}{2})H_{2}$$
(2)

Reakcija izmjene vodenog plina – reakcija konverzije CO₂ i vode u CO i H₂, provodi se u dva koraka – visokotemperaturnom i niskotemperaturnom, pri čemu se koristi više katalizatora u svrhu optimizacije reakcije. Jednadžba (3) prikazuje reakciju izmjene vodenog plina:

$$CO+H_2O \leftrightarrow CO_2+H_2$$
 (3)

Nakon konverzije prirodnog plina ili ugljena u sintezni plin, provodi se separacija CO_2 fizikalnom ili kemijskom apsorpcijom. Odvojeni CO_2 vodi se na kompresiju i skladištenje. Shema procesa izdvajanja CO_2 prije izgaranja prikazana je na Slici 3. [7]

Slika 3. Shema procesa izdvajanja CO₂ prije izgaranja

<u>Apsorpcija</u>

Apsorpcija je proces u kojem materijal u kapljevitoj fazi (apsorbens) uzima tj. zadržava drugi materijal u plinskoj fazi (apsorbat) unutar ili na površini svoje strukture. Ovisno o načinu vezanja apsorbata na apsorbens, proces apsorpcije biti fizikalni ili kemijski. [7]. Slika 4. prikazuje shemu tipičnog procesa apsorpcije.

Slika 4. Pojednostavljena shema tipičnog procesa apsorpcije

Fizikalna apsorpcija CO₂

Fizikalna apsorpcija se temelji na Henryjevom zakonu, prema kojem se plin otapa u kapljevini proporcionalno njegovom parcijalnom tlaku para iznad kapljevine. Tako se CO₂ apsorbira pri visokom tlaku i niskoj temperaturi, a desorbira pri niskom tlaku i povišenim temperaturama. Ova tehnologija se koristi u mnogim industrijama koje uključuju prirodni plin, sintezni plin i proizvodnju vodika s visokim sadržajem CO₂.

Pogon za apsorpciju CO_2 se sastoji od kolone koja je opremljena pliticama ili nasipnim/strukturiranim punilima koja se koristi za apsorpciju (engl. *absorber column*) te regeneracijske kolone (engl. *stripper column*) u kojoj se otapalo zagrijava i isparava, čime se izdvaja otopljeni plin te se tako regenerirano otapalo vraća u apsorber. U apsorberu s donje strane ulazi neočišćeni plin koji prolazi prema vrhu kolone, dok sa vrha protječe kapljevina koja se slijeva preko plitica ili punila kako bih se povećala kontaktna površina plina i kapljevine.

Zbog veće topljivosti CO_2 u kapljevini dolazi do apsorpcije te čisti plin s malom koncentracijom CO_2 izlazi sa vrha kolone, dok se kapljevina s otopljenim CO_2 odvodi sa dna apsorbera te regenerira zagrijavanjem u regeneracijskoj koloni. Samom regeneracijom apsorbenta, CO_2 se odvaja te komprimira za daljnji transport i skladištenje.

Danas postoji mnogo različitih komercijalnih procesa fizikalne apsorpcije kao što su *Selexol* proces, *Rectisol* proces, *Purisol* proces, *Morphysorb* proces i *Fluor* proces. Sami procesi se razlikuju u odabiru apsorbenta za provedbu procesa, pa tako se za *Selexol* proces koristi dimetileter ili propilen glikol, za *Rectisol* proces metanol, za *Purisol* proces N-metilpirolidon, za *Morphysorb* proces morfolin te za *Fluor* proces propilen karbonat.

Selexol proces može se primijeniti za uklanjanje CO₂ i H₂S pri niskoj temperaturi i regeneraciju apsorbenta smanjenjem tlaka ili stripiranjem. Prednosti ovog procesa su nizak tlak pare, niska toksičnost i manje korozivno otapalo. *Rectisol* proces je povoljan kada se radi s ispušnim plinom koji sadrži sumpor. Prednosti uključuju manje korozivno i stabilnije otapalo. Prednost *Purisol* procesa je niska potrošnja energije. *Morphysorb* proces je relativno nov proces koji odlikuju manji operativni troškovi. *Fluor* proces je prikladniji za plinove koji sadrže CO₂ pri parcijalnim tlakovima višim od 60 psig. [8]

Kemijska apsorpcija CO₂

Proces kemijske apsorpcije je po dizajnu procesa isti kao i kod fizikalne apsorpcije. Sastoji se od apsorbera i stripera u kojem se apsorbent termički regenerira. U kemijskom procesu apsorpcije, plin koji sadrži CO_2 se uvodi u dno kolone i kontaktira protustrujno s apsorbentom koji sadrži niske koncentracije CO_2 . Nakon apsorpcije CO_2 u apsorbent, kapljevita struja izlazi iz apsorbera u striper gdje se termički regenerira. Čisti apsorbent vraća se u apsorber za ponovnu upotrebu, dok se čisti CO_2 nakon odvajanja komprimira za daljnji transport i skladištenje.

Radni tlak u procesu kemijske apsorpcije je najčešće oko 1 barA, dok se temperature mijenjaju u rasponu od 40-60 °C odnosno 120-140 °C.

Kemijska apsorpcija ima dosta nedostataka, uključujući niski kapacitet za CO₂, visoku stopu korozije procesne opreme, razgradnja amina (apsorbenta) zbog SO₂, NO₂ i O₂ spojeva u dimnim plinovima, visoku potrošnju energije za regeneraciju apsorbenta te velike dimenzije same opreme za proces. Daljnjim poboljšanjima apsorbenata i radnih postupaka moguće je minimizirati nedostatke procesa, za što je potrebno provesti još istraživanja.

Alkanolamini su široko korišteni kao apsorbenti za hvatanje CO₂. Njihova struktura sadrži primarne, sekundarne i tercijarne amine koji sadrže barem jednu OH i aminsku skupinu, kao što su monetanolamin (MEA), dietanolamin (DEA) i N-metildietanolamin (MDEA). [8]

2.2.2. Izdvajanje nakon izgaranja

Izdvajanje CO₂ nakon izgaranja se odnosi na separaciju CO₂ iz dimnih plinova nakon izgaranja fosilnog goriva. Drugim riječima, CO₂ se uklanja iz dimnih plinova termoelektrana ili drugih velikih izvora emisije. Kao i kod izdvajanja prije izgaranja, često se primjenjuje fizikalna i kemijska apsorpcija.

Procesi izdvajanja nakon izgaranja imaju prednost nad procesima izdvajanja prije izgaranja zbog toga što se lako mogu integrirati u već postojeća postrojenja te je zato i najbolji izbor postrojenjima koji nemaju već ugrađen jedan od CCS procesa [9]. Međutim, dolazi do vrlo visokih povećanja u potrošnji energije za regeneraciju otapala i kompresiju CO₂. Npr. termoelektrane na ugljen mogu uhvatiti do 800 t CO₂/dan, uz povećanje troškova električne energije za 65%. Iz toga razloga, apsorpcijski procesi se mogu zamijeniti adsorpcijom, pri kojoj je energija za regeneraciju adsorbensa uglavnom manja. Druga prednost adsorpcije u slučaju procesa izdvajanja CO₂ nakon izgaranja je stabilnost i učinkovitost adsorbensa pri širim intervalima temperatura i tlakova. [10]

Shematski prikaz izdvajanja nakon izgaranja prikazan je na Slici 5.

Slika 5. Shema procesa izdvajanja CO₂ nakon izgaranja

2.2.3. Izgaranje kisikom

Tehnologija hvatanja CO_2 izgaranjem kisikom je nedavno razvijena tehnologija koja koristi kisik visoke čistoće umjesto zraka za sagorijevanje goriva. Da bi se primijenila ova tehnologija, potreban je uređaj za odvajanje zraka pri čemu se iz struje zraka uklanja dušik kako bi se proizveo kisik čistoće od 90 do 95%. Čisti kisik se zatim uvodi u komoru za izgaranje, pri čemu su produkti reakcije uglavnom CO_2 i male količine vodene pare, kao što je prikazano u jednadžbi (4) :

$$C_{x}H_{y} + \left(x + \frac{y}{2}\right)O_{2} \rightarrow xCO_{2} + \frac{y}{2}H_{2}O$$

$$\tag{4}$$

Daljnji proces izdvajanja CO₂ iz dimnih plinova je vrlo jednostavan jer je koncentracija dušika u toj struji puno manja nego u ostalim procesima.

Najčešće tehnike korištene za odvajanje CO₂ izgaranjem kisikom su kriogena destilacija, adsorpcija promjenom temperature, adsorpcija promjenom tlaka i korištenje membrana. [10] Shematski prikaz izdvajanja CO₂ izgaranjem kisikom prikazan je na Slici 6.

Slika 6. Shema procesa izdvajanja CO2 izgaranjem kisikom

2.2.4. Izravno izdvajanje iz zraka

Tehnologija izravnog izdvajanja CO_2 iz zraka (engl. *Direct Air Capture, DAC*) je alternativna tehnologija za smanjenje utjecaja na klimu, pri čemu se CO_2 selektivno izdvaja iz okolnog zraka najčešće koristeći kemijski adsorbens. Uklonjena koncentrirana struja CO_2 se zatim komprimira i transportira, dok se u isto vrijeme adsorbens regenerira te se zrak s niskom koncentracijom CO_2 vraća u okolinu. [10]

2.3. Adsorpcija

Adsorpcija je sposobnost svih čvrstih tvari da u kontaktu s plinom ili otopinom privlače i zadržavaju molekule plina na svoju površinu. Krutine koje se koriste za adsorpciju se nazivaju adsorbensi, dok plinovi ili otopine koje se adsorbiraju se nazivaju adsorbati. Isto kao i apsorpcija, adsorpcija se može podijeliti na fizičku i kemijsku, pri čemu se fizička adsorpcija temelji na Van der Waalsovim silama privlačenja između čvrstog adsorbensa i molekula adsorbata, dok se u kemijskoj adsorpciji molekule adsorbata vežu na površinu putem kemijskih veza koje su specifične za svaki adsorbens i adsorbent. Zbog stvaranja kemijskih veza, kemijska adsorpcija je uglavnom sporiji proces, te se odvija pri višim temperaturama od fizičke adsorpcije. [11]

2.3.1. Adsorpcijske izoterme

Adsorpcija se opisuje odnosom između količine adsorbata vezanog na adsorbens i tlaka, ako se radi o plinu ili koncentracije, ako je plin otopljen u otopini. Ovakav odnos ne ovisi o vremenu, te se opisuje jednadžbom (5) gdje q (mg/g) predstavlja masu adsorbirane tvari po jedinici mase adsorbensa, dok c (mg/L) označuje koncentraciju adsorbata:

$$q = f(c) \tag{5}$$

Zadani odnos se koristi ukoliko se radi o procesu s konstantnom temperaturom te se zato naziva izotermom. Za opis adsorpcije postoji više modela izotermi, kao što su Langmuirova izoterma, Freundlichova izoterma, BET izoterma te kombinacija Langmuirove i Freundlichove izoterme. [12]

Langmuirova izoterma

Langmuirova izoterma opisuje se jednadžbom (6):

$$q = \frac{b^* q_m^* C}{1 + b^* C} \tag{6}$$

pri čemu q_m predstavlja maksimalnu količinu adsorbata u adsorbensu, a *b* je ravnotežna konstanta povezana s entalpijom procesa. Ova jednadžba se može jednostavno izvesti ako se uzme u obzir da su brzine adsorpcije i desorpcije molekula na površinu jednake, tj. uspostavljeno je ravnotežno stanje.

Pri korištenju Langmuirove izoterme uzimaju se u obzir četiri pretpostavke:

- Adsorbat se ne može vezati proizvoljno na površinu, već samo na specifična mjesta koja zadovoljavaju odgovarajuće uvjete, tj. mjesta koja mogu uspostaviti vezu s adsorbensom (putem van der Waalsovih sila ili kemijskih veza).
- 2. Adsorpcija se odvija u samo jednom sloju, što znači kada je određeno mjesto zauzeto molekulom adsorbata, ne postoji mogućnost vezanja nove molekule na to isto mjesto.
- 3. Mjesta su energetski ekvivalenta, što znači da je na cijelom području adsorbensa jednaka mogućnost vezanja adsorbata na adsorbens.
- 4. Adsorbirane molekule ne utječu na daljnji tijek adsorpcije ili desorpcije jer nema međudjelovanja s drugim molekulama adsorbata.

Karakteristika ovakve izoterme je da, iako oblik krivulje ovisi o parametrima jednadžbe, zasićenje adsorbensa se postiže u vrlo kratkom vremenu. [12]

Freundlichova izoterma

Freundlichova izoterma opisuje se jednadžbom (7):

$$q = a^* C^{1/n} \tag{7}$$

Pri čemu *a* predstavlja masu adsorbiranu s jedinstvenom koncentracijom, dok *n* predstavlja empirijsku konstantu koja je obično veća od 1. Zadani model se temelji na teorijskoj osnovi isto kao i Langmuirov model. Pretpostavke koje razlikuju ovaj model od Langmuirovog modela su:

- Adsorpcija nije ograničena na monomolekularni sloj, što znači da se na određeno mjesto na adsorbensu može vezati više slojeva molekula.
- Energija potrebna za adsorpciju nije konstantna na cijelom području adsorbensa, već varira zbog toga što jačina veza nije homogena te ovisi o broju molekula koje su već adsorbirane na površinu.

Karakteristika Freundlichove izoterme je da ne dolazi do zasićenja adsorbensa, već se adsorbat kontinuirano veže na adsorbens. Ovakav model najčešće ne odgovara dobro eksperimentalnim podacima ukoliko je koncentracija adsorbata u sustavu visoka. [12]

Langmuir-Freundlichova izoterma

Vrijednosti parametara za Langmuirovu i Freundlichovu izotermu obično se procjenjuju interpolacijom empirijskih opažanja te se mijenjaju kao odgovor na varijacije temperature, što dovodi do smanjenja udjela adsorbirane tvari kada temperatura raste i obrnuto. Zadana empirijska opažanja sugeriraju da je Freundlichov model izoterme prikladniji za opisivanje adsorpcije iz otopine, dok Langmuirov model izoterme bolje odgovara podacima o adsorpciji plinova.

Također, postoje slučajevi kada niti jedan od ova dva modela ne opisuju zadani proces dobro, pa se u tom slučaju može koristiti kombinacija modela, tj. Langmuir-Freundlichova izoterma.

Langmuir-Freundlichova izoterma može se opisati jednadžbom (8):

$$q = \frac{A^*B^*P_i^{C}*e^{\frac{D}{T}}}{1+E^*P_i^{C}*e^{\frac{F}{T}}}$$
(8)

Pri čemu q predstavlja količinu adsorbata u adsorbensu, P_i predstavlja parcijalni tlak adsorbata, T predstavlja temperaturu pri kojoj se provodi proces. Parametri A, B, C, D, E i F se procjenjuju u cilju slaganja modela s empirijskim opažanjima. [12]

Brunauer-Emmett-Teller (BET) izoterma

BET izoterma opisuje se jednadžbom (9):

$$\theta = \frac{c^* z}{(1-z)\{1-(1-c)z\}}$$
(9)

Pri čemu θ predstavlja udio mjesta na adsorbensu koja su adsorbirala molekule adsorbata, z predstavlja omjer između tlaka adsorbata i njegovog tlaka zasićenja pri istoj temperaturi, a c predstavlja konstantu koja ovisi o entalpiji desorpcije i isparavanja. Kao i kod Freundlichove izoterme, BET izoterma implicira beskonačnu adsorpciju, te u ovom slučaju nagib krivulje raste s povećanjem tlaka adsorbata. [12]

Grafički prikaz Langmuirove, Freundlichove i BET izoterme prikazan je na Slici 7.

Slika 7. Graf ovisnosti količine adsorbata izraženih u masenim udjelima q ili udjelima mjesta zauzetih za BET izotermu, θ , ovisno o njegovoj koncentraciji C ili tlaku plinovitog adsorbata u odnosu na tlak zasićenja, z. Langmuirova izoterma (puna linija), Freundlichova izoterma (isprekidane crte), BET izoterma (točke) [12]

2.3.2. Tehnologije adsorpcije plinova

Adsorpcija plina događa se kada molekule plina stupaju u kontakt sa adsorbensom te se zadržavaju u njegovoj strukturi Van der Waalsovim silama ili kemijskim vezama. Budući da je ravnotežno stanje procesa adsorpcije funkcija uvjeta procesa (temperature, tlaka i sastava), promjenom jednog od tih parametara može se postići desorpcija adsorbiranih komponenti, tj. regeneracija adsorbensa. Ukoliko u procesu dolazi do promjene tlaka uz konstantnu temperaturu, tada se radi o adsorpciji promjenom tlaka (engl. *Pressure Swing Adsorption, PSA*) ili o vakuum adsorpciji (engl. *Vacuum Swing Adsorption, VSA*). Kada se proces provodi s promjenom temperature uz konstantan tlak, tada se radi o adsorpciji promjenom temperature (engl. *Temperature Swing Adsorption, TSA*). Ove tehnologije se sastoje od dva glavna koraka procesa: adsorpcija određene komponente plina u adsorbens te regeneracija adsorbensa pri čemu se zadana komponenta ispušta iz adsorbensa. Ukoliko se želi provesti kontinuirani proces adsorpcije, najčešće se koristi proces sa dvije ili više adsorpcijskih kolona, pri čemu se u isto vrijeme nalaze u različitim fazama procesa adsorpcije, odnosno desorpcije.

2.3.2.1. Adsorpcija promjenom temperature

Adsorpcija promjenom temperature (TSA) je prva od tehnologija adsorpcije primijenjena u industriji. Općenito, kapacitet adsorpcije plinova na adsorbens je veći pri niskim temperaturama, dok je manji pri visokim temperaturama. Stoga, proces adsorpcije se provodi pri niskim temperaturama, a zatim se primjenjuje grijanje za regeneraciju adsorbensa, pri čemu se iz adsorbensa ispušta relativno čista komponenta koju se želi odvojiti. Nakon toga, adsorbens se hladi i priprema za sljedeći ciklus adsorpcije.

U TSA tehnologiji, adsorpcija se provodi pri temperaturama oko 40 °C, dok se proces desorpcije odvija pri približno 120 °C. U usporedbi sa procesima apsorpcije, TSA je energetski zahtjevniji proces, te kako bi se prevladao ovaj nedostatak, predlaže se korištenje otpadne topline iz elektrana i industrijskim postrojenja za grijanje i regeneraciju adsorbensa. Drugi nedostatak ove tehnologije je sporo zagrijavanje i hlađenje, što ograničava vrijeme ciklusa. [13]

2.3.2.2. Adsorpcija promjenom tlaka

Adsorpcija promjenom tlaka (PSA) primjenjuje se za odvajanje plinskih smjesa, poput izdvajanja ugljikova (IV) oksida u proizvodnji amonijaka i pročišćavanju vodika ili izdvajanja ugljikova (IV) oksida iz dimnih plinova. PSA tehnologija je vrlo atraktivna zbog jednostavnosti rada procesa, visoke učinkovitosti pri sobnim temperaturama, visoke stope regeneracije te

niske energetske intenzivnosti. U procesu adsorpcije promjenom tlaka plinovi se adsorbiraju u adsorbens pri višim tlakovima, dok se pri niskim tlakovima desorbiraju iz adsorbensa.

Ciklus PSA tehnologije uključuje četiri koraka:

- 1. Tlačenje kolone ulaznom strujom plina;
- 2. Adsorpcija plina pri povišenim tlakom;
- 3. Ispuštanje tlaka iz kolone pri čemu se desorbiraju slabo vezane komponente;
- 4. Desorpcija jače vezane komponente pri sniženim tlakom;

U uobičajenom procesu adsorpcije s dvije kolone, prvi korak tlačenja kolone se provodi u koloni 1, dok se u koloni 2 provodi treći korak ispuštanja tlaka, te se izmjenjuju koraci ciklusa uz pomak u fazi od 2 koraka između kolona. Slika 8. pokazuje radne korake u PSA, dok Slika 9. pokazuje shematski prikaz uobičajenog postrojenja sa PSA tehnologijom.

Slika 8. Radni koraci adsorpcije promjenom tlaka

Slika 9. Shema procesa adsorpcije promjenom tlaka [14]

Mehanizam adsorpcije s promjenom tlaka temelji se na selektivnosti termodinamičke ravnoteže ili kinetičkoj selektivnosti. Termodinamička ravnotežna selektivnost ovisi o različitim koncentracijama plina u ravnotežnom stanju molekularne smjese za procese razdvajanja. Kod adsorpcije s promjenom tlaka uz ravnotežnu selektivnost, snažno adsorbirane plinske komponente ostaju u sloju adsorbensa, dok se slabo adsorbirane vrste ispuštaju u strujama plina visokog tlaka. S druge strane, kinetička selektivnost temelji se na različitim brzinama difuzije molekula plina u neravnotežnom sustavu. Plinovi koji brže difundiraju lakše ulaze u pore adsorbensa u odnosu na sporije difundirajuće plinove. Stoga brzina difuzije određuje mehanizam selektivnosti.

Kao glavni nedostatak PSA tehnologije može se smatrati njezina neekonomičnost u slučaju male koncentracije željene komponente u ulaznoj smjesi plinova, što zahtjeva oštrije radne uvjete i potrebu odvijanja procesa u više koraka. Dodatno, ovisno o korištenom adsorbensu, zahtjeva potpuno suhu ulaznu sirovinu, što predstavlja dodatne energetske zahtjeve. [14]

2.3.2.3. Vakuum adsorpcija

Vakuum adsorpcija (VSA) je modifikacija adsorpcije promjenom tlaka, pri kojoj se u koraku desorpcije tlak spušta na jako nisku vrijednost kako bi se poboljšala efikasnost regeneracije uz manju potrošnju energije u procesu. Ciklus VSA je vrlo sličan PSA ciklusu, a razlika je u tome da ne postoji korak tlačenja kolone, već se izvodi u tri koraka:

- 1. Adsorpcija plina u koloni
- 2. Uklanjanje adsorbiranih komponenti snižavanjem tlaka na vrlo niske vrijednosti
- 3. Tlačenje kolone na atmosferski tlak pomoću otpadnog plina

Koraci VSA ciklusa prikazani su na Slici 10.

Slika 10. Radni koraci za vakuum adsorpciju

U VSA procesu, također se koriste dvije kolone u kojima se provode adsorpcija i desorpcija, a dodatak je vakuum pumpa koja omogućuje sniženje tlaka u kolonama na vrlo niske vrijednosti (Slika 11.)

Slika 11. Shema procesa vakuum adsorpcije [15]

Prednost ovakve izvedbe procesa je to što ne postoji potreba za korištenjem uređaja za podizanje tlaka iznad atmosferskog, što dovodi do sniženja troškova rada procesa. Unatoč tome, VSA je specifičan proces koji jako ovisi o samoj prirodi plinovite komponente i njenom afinitetu prema adsorbensima te nije primjenjiva u svim slučajevima. [14]

2.4. Aspen Adsorption

Aspen Adsorption je specijalizirani simulacijski softver razvijen od tvrtke AspenTech dizajniran za modeliranje i optimizaciju procesa adsorpcije u industriji. Ovaj softver omogućuje preciznu simulaciju dinamičkog ponašanja adsorpcijskih sustava, što uključuje procese kao što su razdvajanje plinova, uklanjanje nečistoća te obrada otpadnih tokova. Korisnicima omogućuje razvoj modela koji reproduciraju stvarne procese u industriji, analizu i optimizaciju procesa u svrhu poboljšanja učinkovitosti, smanjenja troškova i minimizaciju ekološkog otiska.

Jedna od ključnih prednosti Aspen Adsorption softvera je njegova integracija s Aspen Properties bazom podataka, koja pruža široku bazu informacija o termodinamičkim i fizikalnokemijskim svojstvima tvari. Ova baza podataka osigurava točnost ulaznih podataka za simulaciju, omogućujući precizno modeliranje adsorpcijskih procesa pod različitim uvjetima.

Aspen Adsorption se koristi u raznim industrijama, kao što su petrokemijska, farmaceutska i prehrambena industrija, te za tretman otpadnih voda u području zaštite okoliša. Sposobnost simulacije složenih adsorpcijskih procesa čini ga ključnim alatom za razvoj novih tehnologija i optimizaciju postojećih procesa, osiguravajući time inovacije i održivost u industrijskim procesima (Slika 12.).

Slika 12. Primjer sučelja u Aspen Adsorption

3. METODIKA RADA

3.1. Postavke i pojednostavljenja simulacije

Kako bi se proces adsorpcije CO_2 mogao opisati simulacijom, potrebni su matematički modeli kojima se predviđa ishod varijabli struja prolaskom kroz procesne jedinice. U te modele su uključeni utjecaji termodinamičkih uvjeta, prijenos tvari i energije tijekom procesa, te sam proces adsorpcije CO_2 u adsorbens.

Za konstrukciju simulacije korišteni su sljedeći modeli i pretpostavke:

- 1. Za opis termodinamičkih svojstava korišten je Peng-Robinson termodinamički model;
- 2. Za opis kinetike korišten je linearni model ukupnog otpora (engl. lumped resistance);
- Odnos pada tlaka i rezultirajućeg protoka fluida u koloni opisan je Ergunovom jednadžbom;
- 4. Za opis adsorpcije plinova na adsorbens korištene su Langmuir-Freundlich izoterme.

Zbog ograničenih podataka o adsorbensu dostupnih u literaturi te u svrhu ubrzavanja i olakšavanja simulacijskog rada, korištena su sljedeća pojednostavljenja i pretpostavke:

- Proces adsorpcije i desorpcije je je izoterman, odnosno nema oslobađanja ili dovođenja toplinske energije;
- 2. U procesu se ne odvija kemijska reakcija;
- 3. Prijenos tvari u procesu se odvija samo konvekcijom, bez difuzije;
- 4. Koeficijent prijenosa tvari u koloni je konstantan kroz cijeli sloj punila;
- 5. Plin, prilikom ulaska u kolonu, odmah zauzima cijeli poprečni presjek kolone, tj. nema gradijenta količine tvari u radijalnom smjeru;
- 6. Procesna oprema korištena za prijenos fluida (npr. vakuum pumpa, kompresor) simulirana je postavljanjem odgovarajućih tlakova na granične tokove simulacije.

Ulazni sastav plina odabran je na temelju literaturnih podataka za prosječni sastav dimnih plinova iz elektrana na ugljen [16]:

- 12-14 vol% CO₂,
- 8-10 vol% H₂O,
- 3-5 vol% O₂ i
- 72-77% N₂.

Ukoliko se iz prosječne vrijednosti sastava dimnih plinova ukloni voda dobiva se sastav suhe struje plina koji je u ovom radu korišten kao ulazni sastav za proces adsorpcije te je prikazan u tablici 1. Za izračun ulazne smjese korišten je simulacijski softver Chemcad pri čemu je u struju unesen zadani sastav uz određeni protok, a zatim je sva količina vode u struji uklonjena kako bi se dobili udjeli preostalih komponenti u struji bez vode.

	Sastav ulazne smjese sa vodom, mol%	Sastav suhe ulazne smjese, mol%
Ugljikov (IV) oksid	13,00	14,28
Kisik	4,00	4,39
Dušik	74,00	81,33
Voda	9,00	0,00

Tablica 1. Sastav ulazne smjese sa i bez vode

U tablici 2. prikazana su svojstva smjese na ulazu u proces.

Tablica 2	2. Svojstva	ulazne	smjese
	J		5

Svojstva ulazne smjese			
Protok, F / kmol h ⁻¹	10,0		
Temperatura, T / K	303,0		
Tlak, p / bar(A)	12,0		

3.2. Odabir adsorbensa

Za fizikalnu i kemijsku adsorpciju CO₂ koriste se različite vrste adsorbensa, kao što su zeoliti, aktivni ugljen, kalijev karbonat, litijev cirkonat i razni drugi minerali. Potencijalni adsorbensi moraju ispunjavati slijedeće uvjete:

- 1. Visoka selektivnost i kapacitet adsorpcije za CO₂;
- 2. Odgovarajuća kinetika adsorpcije/desorpcije;
- 3. Stabilan kapacitet cikličke adsorpcije;
- 4. Mehanička izdržljivost;
- 5. Niske energetske potrebe za regeneraciju čistog CO₂.

Trenutno, najviše korištena vrsta adsorbensa su zeoliti. U prirodi, zeoliti nastaju reakcijom vulkanskih stijena, pepela i vode, pri čemu se formiraju pravilno raspoređeni tetraedarski aluminosilikati TO₄ (T = Si ili Al) porozne strukture. Među različitim vrstama zeolita, ističu se 13X i 5A, koji imaju visok kapacitet hvatanja CO₂, zbog njihove izrazito pravilne porozne strukture i velike specifične površine. Kinetika adsorpcije CO₂ na zeolitima postiže ravnotežu unutar nekoliko minuta, pri čemu je adsorpcija značajno brža u početnom razdoblju, te se adsorbens brzo zasiti. Negativna strana zeolita u kontekstu njihove primjene za izdvajanje CO₂ je potreba postizanja dubokog vakuuma da bi se postigla zadovoljavajuća desorpcija, tj. regeneracija punila.

Drugi organsko-anorganski materijali, koji su nedavno privukli značajnu pozornost, čine metalo-organske strukture (engl. *Metalorganic Frameworks, MOFs*). Oni su privlačni zbog svoje visoke toplinske stabilnosti, mogućnosti kemijske modifikacije te visoke uređenosti porozne strukture. Kinetika adsorpcije ovih materijala znatno se razlikuje od zeolita. Ravnoteža adsorpcije CO₂ se postiže kasnije, dok je brzina adsorpcije jednolika kroz proces i promjena količine adsorbirane komponente je linearnija s porastom tlaka. [14]

Razmatranjem veličina pora adsorbensa te izgleda izotermi za plinove CO₂, O₂ i N₂, odabran je adsorbens NOTT-300 koji se prema eksperimentalnim podacima pokazao kao potencijalno dobar odabir za zadani sustav. NOTT-300 adsorbens svrstava se u kategoriju metalo-organskih struktura. Pokazuje dobru stabilnost u širokom intervalu temperatura (100-483 K) te kemijsku stabilnost prema zraku, vlazi i klasičnim organskim otapalima.

NOTT-300-solvat ($[Al_2(OH)_2(C_{16}O_8H_6)](H_2O)_6$) ima otvorenu strukturu koja se sastoji od lanaca $[AlO_4(OH)_2]$ jedinica povezanih međusobno organskom matricom formirajući

poroznu trodimenzionalnu okvirnu strukturu s jednodimenzionalnim kanalom. Ovi kanali su popunjeni molekulama vode koje nisu vezane za Al(III) te ih je lako ukloniti isparavanjem, dobivajući suhi i aktivirani NOTT-300 adsorbens. Slika 13. prikazuje strukturu NOTT-300 adsorbensa iz različitih perspektiva gledanja. [17]

Slika 13. a) Koordinacijsko okruženje za ligand i Al (III) centralni atom b) Pogled na lanac oktaedarskih [AlO₄(OH)₂] molekula spojenih kutnim vezama c) Pogled na trodimenzionalnu strukturu okvira s formiranim kanalom d) Pogled na trodimenzionalnu strukturu sa više kanala [15]

3.2.1. Karakteristike adsorbensa

Veličina pora adsorbensa te vrsta interakcije sa plinom igra važnu ulogu u procesu adsorpcije. NOTT-300 adsorbens sadrži kanale tj. pore kvadratnog oblika poprečnog presjeka 6.5×6.5 Å. Unutar pora se nalaze hidroksilne skupine iz jedinica [AlO₄(OH)₂] koje imaju mogućnost vezanja za CO₂ plin. Interakcija nastaje vezanjem O(δ -) iz CO₂ i H(δ +) iz Al---OH vodikovom vezom, pri čemu dodatno nastaju i slabe vodikove veze između O(δ -) iz CO₂ i H(δ +) iz ---CH skupina matrice (Slika 14.).

Slika 14. a) Pogled na strukturu NOTT-300 adsorbensa sa vezanim CO₂ molekulama dobivenu pomoću PXRD analizom b) Detaljan prikaz uloga OH i CH skupina u vezanju CO₂ molekula u šupljini, dobiven DFT simulacijom [15]

Na Slici 15. prikazan je mehanizam vezanja CO₂ molekula na hidroksilne skupine adsorbensa, pri čemu se prva molekula CO₂ veže na -OH skupinu krajnjim načinom, dok druga molekula CO₂ potom stupa u interakciju s prvom molekulom CO₂ putem bočnog načina vezanja. [15]

Slika 15. Mehanizam vezanja CO2 na adsorbens

U tablici 3. prikazane su fizikalna svojstva NOTT-300 adsorbensa korištena za simuliranje procesa adsorpcije. [17]

Tablica 3.	Fizikalna	svojstva	NOTT	-300	[17]
------------	-----------	----------	------	------	------

Fizikalna svojstva NOTT-300			
Gustoća punila (krutine), $ ho_s$	$1.8 \text{ g} / \text{cm}^3$		
Specifični volumen pora, V _p	0.375 cm ³ / g		
Promjer otvora pora, d	6.5 Å		

3.2.2. Adsorpcijske izoterme

Za konstrukciju adsorpcijskih izotermi opisanih modelom za NOTT-300 potrebni su podaci o adsorpciji plinova CO₂, N₂ i O₂. Izoterme za CO₂ pri niskom tlaku na ambijentalnim temperaturama (273-303 K) pokazuju vrlo visoke kapacitete adsorpcije, s maksimalnom izmjerenom vrijednošću od 7.0 mmol/g pri 273K i tlaku od 1.0 bara. Adsorpcija CO₂ pri 0,15 bara, koji odgovara parcijalnom tlaku CO₂ u dimnim plinovima, iznosi 2,64 mmol/g.

Za simulaciju su korišteni podaci adsorpcije plinova za NOTT-300 pri 303 K kako bi se smanjila potreba za kontrolom temperature tj. dodatnim hlađenjem ulazne struje procesa. Na slikama 16. 17. i 18. prikazani su podaci adsorpcije N₂, O₂ i CO₂ za NOTT-300 adsorbens pri 303 K.

Slika 16. Adsorpcija dušika na NOTT-300 adsorbens

Slika 17. Adsorpcija kisika na NOTT-300 adsorbens

Slika 18. Adsorpcija ugljikova (IV) oksida na NOTT-300 adsorbens

Analizom grafova adsorpcije plinova na adsorbens može se uočiti kako maksimalne vrijednosti adsorpcije za N₂ i O₂ plinove iznosi 0,150 odnosno 0,204 mmol/g, dok za CO₂ iznosi 4,284 mmol/g iz čega proizlazi da je omjer selektivnosti veći od 20. Za lakši prikaz razlike u

adsorpciji, na Slici 19. prikazani su podaci adsorpcije svih prisutnih plinova na NOTT-300 adsorbens.

Slika 19. Adsorpcija CO₂, N₂ i O₂ na NOTT-300 adsorbens

Kako bi se ovi eksperimentalni podaci mogli iskoristiti za simulaciju procesa adsorpcije, potrebno je odrediti adsorpcijske izoterme za svaku od komponenti. Za ovaj slučaj, Langmuir-Freundlich model pokazao se kao najprikladniji (s najmanjim odstupanjem) te je korišten za opis podataka adsorpcije plinova na NOTT-300. Zadani model koristi karakteristike Langmuirovog modela, koji pretpostavlja jednoliku adsorpcijsku energiju, i Freundlich modela, koji opisuje heterogene površine s različitim područjima adsorpcije. Za opis modela potrebno je odrediti parametre jednadžbe (10). To je učinjeno numeričkom metodom, koristeći "Solver" alat unutar MS Excel-a.

$$q = \frac{A^*B^*P_1^C * e^{\frac{D}{T}}}{1 + E^*P_1^C * e^{\frac{F}{T}}}$$
(10)

U tablici 4. prikazane su dobivene vrijednosti parametara Langmuir-Freundlichove izoterme.

Parametri modela Langmuir-Freundlich izoterma						
CO ₂						
A	B	С	D	E	F	
0,007579962	1,0	1,17001	0,81935	0,784867	3,82292	
N ₂	N ₂					
A	B	С	D	E	F	
0,000317241	1,0	1,26456	0,813335	1,90037	3,87554	
02						
A	B	C	D	E	F	
0,00104558	1,0	1,99084	-0,09562	4,86837	3,93631	

Tablica 4. Parametri modela Langmuir-Freundlich izoterma (T=303 K)

Slika 20. prikazuje modele La-Fr izotermi u usporedbi s eksperimentalnim podacima, za plinove CO_2 , N_2 i O_2 . Vidljivo je izvrsno slaganje modela izotermi s eksperimentalnim podacima. Budući da je očekivani parcijalni tlak CO_2 koji se očekuje u procesu oko 1,5 bar, na Slici 21 prikazani su rezultati za CO_2 dobiveni La-Fr izotermom i za područje tlakova izvan eksperimentalno ispitanog.

Slika 20. Usporedba eksperimentalnih podataka i La-Fr izotermi

3.2.3. Određivanje veličine kolone

Određivanje veličine kolone je važan dio simuliranja procesa. Ukoliko se uzmu u obzir karakteristike adsorbensa može se izračunati nasipna gustoća punila jednadžbom (11):

$$\rho_{p} = \frac{1}{\frac{1}{\rho_{s}} + V_{p}} \tag{11}$$

pri čemu su gustoća punila (ρ_s) i specifični volumen pora (V_p) zadani u Tablici 3.

Izračun:

$$\rho_{\rm p} = \frac{1}{\frac{1}{1.8 \text{ g/cm}^3} + 0.375 \text{ cm}^3 / \text{g}}} = 0.64477612 \text{ g cm}^{-3} = 645 \text{ kg m}^{-3}$$

Ergunova jednadžba (12) služi za predstavljanje odnosa između pada tlaka (Δp) i protoka fluida (L) u kolonama s fiksnim slojem punila. Pad tlaka u koloni je jedan od najvažnijih parametara pri dizajnu zadanog procesa, zbog toga što bitno utječe na profil strujanja fluida u koloni i na izlazu iz kolone.

$$\frac{\Delta p}{L} = K_e * \text{Re}^* (150 + 1.75 * \text{Re}) \frac{1 - \varepsilon}{\varepsilon} \frac{\mu^2}{\rho_f * D_p^3}$$
(12)

Za izračun Ergunove jednadžbe potrebno je prvo izračunati iznos Reynoldsove značajke te odrediti ostale parametre u jednadžbi (13). Jednadžba (13) prikazuje izraz za izračun vrijednosti Reynoldsove značajke, dok su u Tablici 5. prikazane sve vrijednosti parametara Ergunove jednadžbe.

$$\operatorname{Re} = \frac{\operatorname{S}_{f}^{*}W^{*}D_{p}}{\mu(1-\varepsilon)}$$
(13)

Tablica 5. Parametri Ergunove jednadžbe

Parametri	Vrijednosti
Projektni faktor za protok, S_f	1,100
Nasipna gustoća punila, $ ho_p$ / kg m ⁻³	645
Gustoća plina, $\rho_f / \text{kg m}^{-3}$	8,66
Udio praznog prostora u punilu, ε	0,428
Ekvivalentni promjer peleta, Dp / m	0,002
Maseni protok plina, $m / \text{kg s}^{-1}$	0,08465
Površina poprečnog presjeka, A / m ²	0,1256
Masena brzina plina, $W / \text{kg s}^{-1} \text{m}^{-2}$	0,67
Viskoznost plina, μ / kg m ⁻¹ s ⁻¹	$1,74 \times 10^{-5}$
Konstanta u Ergunovoj jednadžbi, Ke	0,001
Konstanta za BL, <i>K</i> _{bl}	0,098

Izračun:

$$Re = \frac{S_{f} * W * D_{p}}{\mu(1-\epsilon)}$$

$$Re = \frac{1.1 * 0.67 \frac{kg}{s * m^{2}} * 0.002 \text{ m}}{1.74 * 10^{-5} \frac{kg}{m * s} (1-0.428)} = 149$$

$$\frac{\Delta p}{L} = K_{e} * Re * (150 + 1.75 * Re) \frac{1-\epsilon}{\epsilon} \frac{\mu^{2}}{\rho_{f} * D_{p}^{3}}$$

$$\frac{\Delta p}{L} = 0.001 * 149 * (150 + 1.75 * 149) \frac{1-0.428}{0.428} \frac{(1.74 * 10^{-5} \frac{kg}{m * s})^{2}}{8.66 \frac{kg}{m ^{3}} * (0.002)^{3}}$$

$$\frac{\Delta p}{L} = 0.36 \frac{kPa}{m}$$

Nakon izračuna pada tlaka pomoću Ergunove jednadžbe, potrebno je izračunati pad tlaka potreban za fluidizaciju sloja adsorbensa. Ukoliko bi došlo do fluidizacije kolone, znači da se sloj adsorbensa podiže duž kolone zbog sila koje nastaju protjecanjem fluida. Jednadžba (14) prikazuje izraz za izračun pada tlaka potreban za fluidizaciju:

$$\frac{\Delta p}{L} = K_{bl}^* \left(\rho_p - \rho_f \right)^* (1 - \varepsilon)$$
(14)

Izračun:

$$\frac{\Delta p}{L} = K_{bl} * \left(\rho_p - \rho_f\right) * (1 - \varepsilon)$$
$$\frac{\Delta p}{L} = 0.098 * \left(645 \frac{kg}{m^3} - 8.66 \frac{kg}{m^3}\right) * (1 - 0.428)$$
$$\frac{\Delta p}{L} = 3,567 \frac{kg}{m^3}$$

Izračunom Ergunove jednadžbe i pada tlaka potrebnog za fluidizaciju kolone, dobivaju se dimenzije kolone koje zadovoljavaju vrijednosti pada tlaka. Slika 21. prikazuje dimenzije kolone korištene u simulaciji.

Slika 21. Dimenzije adsorpcijske kolone

3.3. Postavke simulacije i ciklusa adsorpcije

Proces adsorpcije u najjednostavnijem obliku se izvodi sa dvije kolone kako bi se osigurao kontinuirani rad. Stoga, simulacija adsorpcije CO₂ sadržava ulaznu struju, dvije adsorpcijske kolone, vršni izlaz s niskom koncentracijom ugljikova (IV) oksida, dvije struje s otpadnim plinom te struju pročišćenog ugljikova (IV) oksida. Procesna shema iz softvera Aspen Adsorption prikazana je na Slici 22.

Slika 22. Shema procesa adsorpcije CO2 u Aspen Adsorption softveru

Zadane ulazne i izlazne struje su povezane sa kolonama za adsorpciju pomoću procesnih struja te je na svaku struju postavljen ventil za kontrolu protoka u svrhu regulacije samog rada procesa.

Koraci ciklusa adsorpcije

Simulaciju procesa adsorpcije potrebno je podijeliti u četiri koraka, tj. režima rada kolona:

Korak 1 (**Tlačenje kolone, TL**) - pojna struja definirana u Tablici 1. ulazi u kolonu sve dok se ne postigne radni tlak adsorpcije, koji iznosi 10 bara.

Korak 2 (**Adsorpcija**, **AD**) - konstantni protok kroz kolonu omogućuje se otvaranjem ventila na vrhu kolone, pri čemu se propušta čisti plin niske koncentracije CO₂ u vršni izlaz, dok se ulazni CO₂ adsorbira na adsorbens.

Korak 3 (Ispuštanje tlaka u koloni, IS) – zatvaranjem ulaza smjese u kolonu i otvaranjem ventila za struju otpadnog plina snižava se tlak u koloni, pri čemu se odvija desorpcija uglavnom N_2 i O_2 uz male količine CO_2 u struju otpadnog plina. Ovaj korak se provodi do trenutka kada se skoro sva količina N_2 i O_2 plina desorbirala.

Korak 4 (**Desorpcija**, **DE**) – otvaranjem ventila za izlaznu struju CO_2 nastavlja se snižavanje tlaka uz desorpciju CO_2 u suprotnom smjeru u odnosu na smjer adsorpcije iz adsorbensa u izlaznu struju CO_2 .

U simulaciji procesa koja radi sa dvije kolone, kontinuiranost procesa se postiže tako da se u kolonama provodi zadani ciklus od 4 koraka, ali s vremenskim pomakom od 2 koraka. Stoga, kada je prva kolona u koraku tlačenja, u drugoj koloni se provodi korak ispuštanja tlaka te kada je prva kolona u koraku adsorpcije, u drugoj koloni se provodi korak desorpcije. Promjenom otvorenosti ventila u procesu omogućuje se kontrola procesa te izmjena koraka u ciklusu adsorpcije. Slika 23. prikazuje ventile korištene u simulaciji procesa adsorpcije.

Slika 23. Prikaz ventila i njihovih oznaka u simulaciji procesa adsorpcije

U simulacijskom okruženju rad ventila definira se na četiri načina (specifikacije):

1 – potpuno otvoren ventil

2 – protok kroz ventil je definiran koeficijentom protoka (Cv) i trenutnom razlikom tlakova uzvodno i nizvodno od ventila (Tablica 6.)

3 – otvorenost ventila je definirana molarnim protokom struje (F) kroz ventil (Tablica 7.)

Tablica 6. Ventili definirani koeficijentom protoka (Cv)

Ventili definirani koeficijentom protoka (Cv)					
Ventil	Vbd1	Vbd2	VW1	VW2	
Cv / kmol/h/bar	0,4	0,4	7,5	7,5	

Tablica 7. Ventili definirani molarnim protokom struje (F)

Ventili definirani molarnim protokom struje (F)				
Ventil	VF1	VF2		
F / kmol/h	10	10		

Tablica 8. prikazuje popis ventila korištenih u simulaciji procesa te njihove specifikacije rada pri određenim koracima ciklusa.

Tablica 8. Specifikacije rada ventila za simulac	ciju procesa adsorpcije
--	-------------------------

Kolona	Korak adsorpcije			
1	TL	AD	IS	DE
2	IS	DE	TL	AD
Ventil				
Vbd1	0	0	2	0
Vbd2	2	0	0	0
VF	1	1	1	1
VF1	3	3	0	0
VF2	0	0	3	3
VP	1	1	1	1
VP1	1	1	1	1
VP2	1	1	1	1
VW	1	1	1	1
VW1	0	0	0	2
VW2	0	2	0	0

Prelazak iz koraka u korak definiran je zadanim uvjetima (vrijeme, tlak u koloni) koji se moraju zadovoljiti prije prelaska u slijedeći korak ciklusa. Uvjeti za svaki korak definirani su u Tablici 9.

Uvjeti za prelazak u slijedeći korak ciklusa za kolonu 1					
Korak	Uvjet				
Tlačenje kolone (TL)	Postizanje tlaka od 1,03 bara (A) na vrhu kolone 2				
Adsorpcija (AD)	Istek vremena od 25 min				
Ispuštanje tlaka (IS)	Postizanje tlaka od 1,03 bara (A) na vrhu kolone 1				
Desorpcija (DE)	Istek vremena od 25 min				

Tablica 9. Uvjeti za prelazak u slijedeći korak ciklusa za kolonu 1

Iako je prvi korak tlačenje kolone (TL), kao uvjet za prelazak u sljedeći korak ne koristi se postizanje određene vrijednosti tlaka u toj koloni koja se trenutno tlači, već u drugoj koloni, koja je u tom trenutku u koraku ispuštanja tlaka (IS). Simulacijski rezultati pokazali su da je ovo znatno bolji pristup jer osigurava da se promjena koraka između ispuštanja tlaka (IS) i desorpcije (DE) uvijek odvija na istom tlaku, što je presudno za postizanje konstantne čistoće i iscrpka CO₂.

Ipak, kako bi se osiguralo konzistentno postizanje i zadržavanje zadanog tlaka u koloni koja se tlači, vršni ventili VP-1 i VP-2 postavljeni su kao nepovratni te su u svakom koraku potpuno otvoreni prema vršnom izlazu koji ima definiran granični tlak. Na taj način, čim tlak u koloni koja se tlači postigne vrijednost malo iznad vrijednosti graničnog tlaka izlazne struje, protjecanje kroz odgovarajući vršni ventil (VP-1 ili VP-2, ovisno o koraku) započne i kolona ostane na zadanom tlaku. Ovakav pristup dozvoljava da trajanje pražnjenja jedne kolone ne bude nužno jednako vremenu punjenja druge, što znači da se kolona koja je u koraku IS može polaganije prazniti, a da ne utječe na odvijanje adsorpcije u drugoj koloni.

4. REZULTATI I RASPRAVA

U ovom poglavlju opisani su grafički rezultati dobiveni simulacijom zadanog procesa adsorpcije.

4.1. Simulacija procesa adsorpcije

Prvi korak tlačenja kolone 1 definiran je tako da se provodi sve dok se ne postigne tlak od 1,03 bara na vrhu kolone 2 koja je u tom trenutku u koraku ispuštanja tlaka. Sam proces adsorpcije ugljikova (IV) oksida na adsorbens započinje čim se postigne tlak od 10 bara na vrhu kolone 1, a traje sve dok ne istekne vrijeme trajanja od 25 minuta nakon prelaska sa prvog koraka u ciklusu definiranog u Tablici 9. Nakon adsorpcije, provodi se ispuštanje tlaka u koloni 1 do postizanja tlaka od 1,03 bara na vrhu kolone, čime počinje zadnji korak desorpcije ugljikova (IV) dioksida sa adsorbensa. Nakon 25 minuta desorpcije, ciklus ponovno započinje postavljanjem otvorenosti ventila za prvi korak, kao što je definirano u Tablici 8. U koracima adsorpcije, struja plina očišćenog od ugljikova (IV) oksida ispušta se kroz vršni izlaz, dok se u koracima desorpcije pročišćeni ugljikov (IV) oksid usmjerava u izlaznu struju CO₂.

Dinamički proces adsorpcije u simulaciji je u ovom slučaju ponavljan 12 puta s ciljem postignuća cikličkog stacionarnog stanja. U cikličkom stacionarnom stanju procesa, varijable procesa postižu identičnu vrijednost, ako se promatra isti vremenski trenutak svakog od koraka ciklusa. Postizanjem cikličkog stacionarnog stanja nema promjene kvalitete ni iscrpka proizvoda s vremenom.

Tokom provedbe procesa, praćene su vremenske ovisnosti ukupne količine adsorbiranih komponenata plina u sloju adsorbensa (Slika 24. i Slika 25.) te tlakova u kolonama (Slika 26. i Slika 27.). Činjenica da maksimalne i minimalne vrijednosti ukupne adsorbirane količine tvari ne mijenjaju svoj iznos, tj. da "pikovi" na grafičkom prikazu ne mijenjaju visinu ukazuje na postizanje cikličkog stacionarnog stanja.

Slika 24. Vremenska ovisnost ukupne adsorbirane količine komponenata u koloni 1

Slika 25. Vremenska ovisnost ukupne adsorbirane količine komponenata u koloni 1 – prikaz jednog ciklusa

Na Slici 26. može se uočiti kako u koracima tlačenja i adsorpcije jako raste količina adsorbiranog ugljikova (IV) oksida u adsorbensu. Istodobno, količina adsorbiranog kisika i dušika vrlo brzo postiže maksimalnu vrijednost koja je znatno niža, što ukazuje na značajnu razliku u kapacitetu adsorpcije CO₂ u odnosu na O₂ i N₂. Time se postiže da u procesu adsorpcije na vrhu kolone izlazi struja kisika i dušika s vrlo niskom koncentracijom ugljikova (IV) oksida. Pri kraju koraka adsorpcije, maksimalna vrijednost količine adsorbiranog ugljikova (IV) okida je oko 21 puta veća od maksimalne vrijednosti adsorbiranog kisika i dušika, što ukazuje na vrlo visoku selektivnost NOTT-300 adsorbensa prema ugljikovom (IV) oksidu.

U koraku ispuštanja tlaka u koloni, zbog slabih veza s adsorbensom, dolazi do desorpcije u početku uglavnom kisika i dušika uz vrlo nisku vrijednost desorpcije ugljikova (IV) oksida. Simulacijski rezultati su pokazali da se takvo stanje održava sve do tlaka od 1,03 bara, kod kojega počinje i značajnija desorpcija CO₂. Ova vrijednost tlaka zato i služi kao točka prijelaza iz koraka ispuštanja tlaka (IS) u korak desorpcije (DE).U ovom trenutku, adsorbens sadrži velike adsorbirane količine gotovo isključivo ugljikova (IV) oksida koji se zatim desorbira otvaranjem ventila prema izlaznoj struji CO₂ i prelaskom ciklusa u korak desorpcije (DE). Izlazna struja bogata ugljikovim (IV) oksidom se odvodi sve dok u adsorbensu postoji još uvijek vezane molekule CO₂, tj. dok se količina adsorbiranog CO₂ u adsorbensu ne vrati na početnu vrijednost prije početka tlačenja kolone. Da bi se to postiglo, potrebno je spustiti tlak u koloni ispod atmosferskog, tj. vakuumirati kolonu.

Slika 26. Tlak u koloni 1 i 2 tijekom 12 ciklusa adsorpcije

Slika 27. Tlak u koloni 1 i 2 tijekom jednog ciklusa adsorpcije

Promjena tlaka u kolonama je ključna u procesu PSA. Tako se u ovom slučaju, kao što je prikazano na Slici 27., tlak u kolonama mijenja od vrijednosti 0.113 bar na početku koraka tlačenja tj. kraju koraka desorpcije, do vrijednosti 10 bara na kraju koraka tlačenja tj. početku koraka adsorpcije. Tlačenjem kolone na vrijednost od 10 bara postiže se veći parcijalni tlak CO₂ što povećava kapacitet adsorpcije CO₂, dok snižavanje tlaka u koloni na niske vrijednosti dovodi do desorpcije CO₂.

Praćenjem koncentracije CO₂ u izlaznoj struji s vrha kolone i količine adsorbiranog CO₂ kroz visinski profil kolone kroz vrijeme, može se donijeti nekoliko zaključaka. Ukoliko se želi postići što bolji iscrpak CO₂, potrebno je u koraku adsorpcije postići što manju koncentraciju CO₂ u vršnoj izlaznoj struji, jer to predstavlja direktni gubitak CO₂. S druge strane, u koraku desorpcije pak je potrebno ostvariti što veću koncentraciju CO₂. Tome, između ostalog, ponajviše pridonosi stupanj iskorištenja kapaciteta, odnosno zasićenja sloja adsorbensa, za koji je poželjno da je što viši. Ipak, sloj adsorbensa nije moguće u potpunosti zasititi bez da se propuste značajnije količine CO₂ u vršni izlaz (engl. *break-through*). Stoga je ključno u odgovarajuće vrijeme zaustaviti korak adsorpcije tako da se postigne što veći stupanj zasićenja sloja adsorbensa, ali bez da dođe do gubitaka CO₂ kroz vršni izlaz kolone.

Slijedeći grafovi prikazani na slikama 28 - 31, prikazuju profile koncentracije CO₂ u plinovitoj (neadsorbiranoj) fazi i količinu adsorbiranog CO₂ kroz sloj punila za vrijeme koraka tlačenja i adsorpcije. Vrijeme je dano u minutama.

<u>Tlačenje kolone</u>

Slika 28. Profil udjela CO₂ u plinskoj fazi tijekom koraka tlačenja

Slika 29. Profil količine adsorbiranog CO₂ u adsorbensu tijekom koraka tlačenja

Analizom grafičkog prikaza na Slici 28 može se vidjeti kako tlačenjem kolone, tj. ulaskom smjese dolazi do nagle promjene sastava CO₂ u plinovitoj fazi unutar kolone. Prije početka koraka tlačenja sastav struje duž kolone je uglavnom čisti CO₂ koji se u tom trenutku nalazi

na niskom tlaku (iz prethodnog koraka desorpcije). Tlačenjem kolone ulaznom strujom sastava definiranog u Tablici 1. dolazi do porasta tlaka u koloni te koncentracija CO_2 u struji duž kolone pada na vrlo niske vrijednosti. Pad koncentracije može se pripisati ponovnoj adsorpciji te male količine CO_2 uslijed povećavanja tlaka, kao i miješanju sa strujom bogatom N_2 i O_2 . U vremenu t=1.00 min, koje označuje kraj koraka tlačenja, može se uočiti kako količina adsorbiranog CO_2 pri ulazu u kolonu počinje rasti, što ukazuje na početak adsorpcije CO_2 u adsorbens. Već ovdje je primjetno kako se punilo ne zasićuje ravnomjerno.

<u>Adsorpcija</u>

Slika 30. Profil udjela CO2 u plinskoj fazi tijekom koraka adsorpcije

Slika 31. Profil količine adsorbiranog CO₂ u adsorbensu tijekom koraka adsorpcije

U koraku adsorpcije, količina adsorbiranog CO₂ u sloju punila se postupno povećava do svoje gotovo maksimalne vrijednosti. Vidljivo je da se adsorbens na donjem dijelu kolone (bliži ulazu smjese) prvi zasićuje. Kada se element sloja adsorbensa zasiti s CO₂, više ne može prihvatiti dodatnu količinu CO₂ iz ulazne smjese. U tom slučaju kroz taj dio kolone ulazna struja samo prostrujava sve dok ne dođe do elementa sloja adsorbensa koji još nije zasićen i koji još uvijek može na sebe vezati CO₂. Ovo potvrđuje i grafički prikaz na slici 30. Prema njemu je vidljivo da sastav ulazne smjese ostaje nepromijenjen kroz sve dulji sloj adsorbensa kako se povećava proteklo vrijeme koraka adsorpcije.

Korak adsorpcije se provodi sve dok se na samom vrhu kolone ne počne mijenjati sastav plinovite faze. U suprotnom, ukoliko bi se on nastavio i nakon što je cijeli adsorbens zasićen sa CO₂, na vrhu kolone bi izlazila struja jednakog sastava kao i ulazna. Stoga je adsorpciju potrebno zaustaviti u trenutku kada se većina kolone zasitila s CO₂, a izlazna struja i dalje sadrži minimalne koncentracije CO₂.

Na slici 30. također je potrebno primijetiti da sastav CO₂ u plinovitoj fazi ni u jednoj točki sloja adsorbensa i neovisno o vremenu ne poprima vrijednost nula. To znači da tijekom cijelog perioda adsorpcije mala količina CO₂ izlazi iz vrha adsorpcijske kolone. Do ovoga dolazi zbog nepotpune desorpcije CO₂ za vrijeme prethodnog ciklusa gdje u kompletnoj masi punila ostaje adsorbirana mala količina CO₂. Budući da su parcijalni tlak pojedine komponente

i adsorbirana količina te komponente međusobno u ravnoteži i definirani adsorpcijskom izotermom, ova mala količina adsorbiranog CO_2 zapravo određuje minimalni parcijalni tlak CO_2 koji se može postići unutar sloja adsorbensa. Uz pretpostavku da je ukupni tlak u sustavu konstantan, to znači da postoji minimalni teorijski sastav CO_2 u plinovitoj smjesi koji je moguće postići. Jedini način smanjenja količine preostalog adsorbiranog CO_2 u sloju adsorbensa je postizanje što nižeg tlaka u koraku desorpcije. To znači da je za postizanje istovremeno velike čistoće i velikog iscrpka CO_2 potrebno proces voditi na vrlo visokom (za vrijeme adsorpcije) i vrlo niskom (za vrijeme desorpcije) tlaku.

Ispuštanje tlaka

Slika 32. Profil udjela CO₂ u plinskoj fazi tijekom koraka ispuštanja tlaka

Slika 33. Profil količine adsorbiranog CO2 u adsorbensu tijekom koraka ispuštanja tlaka

U koraku ispuštanja tlaka dolazi do desorpcije uglavnom kisika i dušika iz kolone, dok se CO₂ također desorbira u vrlo malim količinama. Na Slici 32. može se vidjeti kako koncentracija CO₂ u plinovitoj fazi počinje rasti duž kolone te se na kraju koraka postiže sastav plinovite faze gotovo čistog CO₂ duž cijele kolone. Ovdje je potrebno napomenuti da se ispuštanje tlaka odvija u smjeru adsorpcije, tj. prema vrhu kolone. Vidljiva je također manja koncentracija CO₂ u plinovitoj fazi u dijelu sloja koji se nije u potpunosti zasitio tijekom prethodnog koraka. Objašnjenje toga može se vidjeti na grafičkom prikazu na Slici 33, gdje je vidljivo da se profil adsorbiranog CO₂ s vremenom djelomično uravnotežio kroz cijelu duljinu sloja. Drugim riječima, dio desorbiranog CO₂ iz donjeg dijela kolone, prije nego što uspije izaći kroz gornji izlaz prolazi kroz dio nezasićenog sloja adsorbensa i adsorbira se na njemu. Postizanje plinovite faze bogate s CO₂ unutar kolone je ključan parametar u koraku ispuštanja tlaka. To znači da su iz sloja punila istjerane sve ostale komponente koje predstavljaju nečistoće. Kada se postigne zadovoljavajući sastav plina unutar kolone, prelazi se u korak desorpcije pri kojem se plinovita faza koja je u ovom trenutku gotovo čisti CO₂ usmjerava u suprotnom smjeru u struju izlaznog CO₂.

<u>Desorpcija</u>

Slika 34. Profil udjela CO₂ u plinskoj fazi tijekom koraka desorpcije

Slika 35. Profil količine adsorbiranog CO₂ u adsorbensu tijekom koraka desorpcije

U koraku desorpcije, otvaranjem ventila prema izlaznoj struji CO_2 , omogućuje se desorpcija CO_2 iz adsorbensa pri čemu se postepeno snižava tlak. Tokom desorpcije CO_2 iz

adsorbensa, količina adsorbiranog CO_2 se smanjuje s vremenom i tlakom, sve dok ne postigne minimalnu vrijednost koja odgovara adsorpciji CO_2 pri određenom parcijalnom tlaku CO_2 . Iz grafičkog prikaza na slici 36 vidljivo je da se CO_2 desorbira jednoliko, duž cijelog sloja adsorbensa. Kada se iz adsorbensa izdvoji sav adsorbirani CO_2 koji je na postignutom vakuumu moguće izdvojiti, kolona se može smatrati regeneriranom te ju je ponovno moguće koristiti za novi ciklus, odnosno početi s tlačenjem pomoću ulazne smjese plinova.

Važno je napomenuti kako se pomoću analize dinamičkog vladanja procesa optimira rad procesa, tako da se u koracima tlačenja i ispuštanja tlaka kao ključan uvjet uzeo tlak u koloni kojoj se ispušta tlak i koji iznosi 1,03 bara. Pri tom tlaku, u koloni je desorbiran gotovo sav kisik i dušik, dok je količina CO₂ koji se desorbira i odlazi u vršni izlaz minimalna. Vrijeme trajanja adsorpcije i desorpcije, koje iznosi 25 minuta, odgovara optimalnom vremenu za adsorpciju CO₂ tijekom koraka adsorpcije, odnosno optimalnom vremenu za desorpciju CO₂ duž cijelog sloja adsorbensa tijekom koraka desorpcije.

4.2. Numerički rezultati

U Tablici 7. prikazani su parametri i svojstva ulazne struje i struje sa desorbirajućom komponentom tj. izlazne struje CO₂. Izlazna struja CO₂ sadrži 99.83 mol% CO₂ što ukazuje na vrlo učinkovito uklanjanje CO₂ iz adsorbensa uz vrlo niske količine ostalih komponenata. Ukupni iscrpak iznosi 93.10 %, što znači da se toliki postotak ulaznog CO₂ odvoji u željeni proizvod, dok ostalih 6.90% ulazne količine CO₂ izlazi na vršnom izlazu i otpadnim strujama 1 i 2. i na taj način zaostaje u obrađivanom dimnom plinu.

Iz dobivenih rezultata vidljivo je da se primjenom ovakvog procesa adsorpcije CO₂ iz dimnih plinova sastav CO₂ iz dimnih plinova može smanjiti s gotovo 15% na manje razinu od oko 1% CO₂. Pritom se dobiva CO₂ visoke čistoće čije je daljnje zbrinjavanje znatno lakše.

Sastav, mol / %	Pojna struja	Desorbirani	Pročišćeni dimni	
		proizvod	plin	
Ugljikov (IV) oksid, CO ₂	14,29	99,83	1,13	
Dušik, N ₂	81,32	0,11	93,81	
Kisik, O ₂	4,40	0,06	5,06	
Svojstva procesnog toka				
Protok, F / kmol h ⁻¹	10,0	1.34	8,66	
Tlak, p / bar(A)	12,0	0.11	10,0	
Temperatura, T / K	303,0	303,0	303,0	

Tablica 10. Parametri i svojstva pojne struje i struje s desorbiranom komponentom

U Tablici 11. prikazane su količine tvari svih komponenata u strujama nakon provedenih 12 ciklusa adsorpcije.

Tablica 11. Bilanca tvari procesa adsorpcije nakon 12 provedenih ciklusa

Struja	Dušik,	Kisik, O ₂ /	Ugljikov (IV) oksid, CO ₂ / kmol
	N ₂ /	kmol	
	kmol		
Pojna	111,37	6,02	19,57
struja			
Otpadna	1,27	0,30	0,08
struja 1			
Otpadna	1,27	0,30	0,08
struja 2			
Vršni izlaz	108,72	5,40	1,18
Izlazna	0,12	0,02	18,22
struja CO ₂			
Iscrpak CO ₂ , %			93,10

5. ZAKLJUČAK

Ugljikov (IV) oksid je jedan od glavnih stakleničkih plinova koji uzrokuju globalno zatopljenje. U današnje vrijeme, ugljikov (IV) oksid gotovo je neizbježan produkt u termoelektranama te ostalim postrojenjima i uređajima sa sagorijevanjem goriva. Znanstvenici sve više istražuju tehnologije kojima se CO2 može ukloniti i zbrinjavati, s ciljem zaštite okoliša te smanjenja učinka na globalno zatopljenje. Primjena adsorpcije promjenom tlaka vrlo je inovativna tehnologija, koja se uz svoje jednostavno postavljanje u postojeća postrojenja i jednostavnu primjenu čini kao vrlo isplativa tehnologija za uklanjanje CO₂. Trenutno, ova tehnologija nema veliku primjenu u industriji, no daljnjim istraživanjem adsorbensa za ovakvu upotrebu može se postići njena primjena za mnoga postrojenja različitih sastava dimnih plinova.

U ovom radu, simuliran je proces uklanjanja CO₂ iz tipičnog sastava dimnih plinova termoelektrana tehnologijom adsorpcije promjenom tlaka (PSA). Kao adsorbens, korišten je NOTT-300 koji se pokazao kao vrlo učinkovit i selektivan adsorbens za odvajanje CO₂ iz struje dimnih plinova. Odvajanje CO₂ postignuto je prvotnim povišenjem tlaka u koloni do 10 bara te propuštanjem smjese dimnih plinova na tom tlaku kroz kolonu. Za to vrijeme, na adsorbens se veže uglavnom ugljikov (IV) oksid te male količine kisika i dušika. Zatim se tlak u koloni ispušta kako bi se prvo desorbirali kisik i dušik te se zatim, kada se gotovo sva njihova količina desorbira i odvede, sakuplja gotovo čisti CO₂ daljnjim sniženjem tlaka u koloni, sve dok se adsorbens ne regenerira, nakon čega se ciklus ponavlja.

Pomoću namještanja odgovarajućih radnih uvjeta procesa (tlak i veličina kolone, otvorenost ventila) te vrijeme trajanja svakog koraka u ciklusu moguće je regulirati sastav izlazne struje ugljikova (IV) oksida. U ovom radu, određena je veličina kolone koja odgovara padu tlaka u koloni, računato pomoću Ergunove jednadžbe. S ciljem dobivanja što čišće struje CO₂ na izlazu uz visoku vrijednost iscrpka, proveden je niz ciklusa adsorpcije, pri čemu su mijenjani uvjeti za prelazak iz koraka u korak ciklusa.

Optimalni rezultati dobiveni su postavkama ciklusa prikazanih u Tablici 5. i Tablici 6., pri čemu se na izlazu desorpcijske komponente dobiva CO₂ čistoće 99.83 mol% uz vrlo visok iscrpak koji iznosi 93.10 %. Ovim rezultatima može se opravdati potencijalno korištenje tehnologije adsorpcije promjenom tlaka kao vrlo učinkovite, inovativne i jednostavne tehnologije za uklanjanje CO₂ iz dimnih plinova termoelektrana i drugih postrojenja sa sličnim sastavima dimnih plinova.

Korišteno punilo pokazalo je veliku selektivnost prema CO₂. Iako ima pogodniju, tj. linearniju adsorpcijsku krivulju u odnosu na adsorbense bazirane na zeolitima (npr. 5A, 13X), i dalje je za postizanje velikih iscrpaka uz zadržavanje zadovoljavajuće čistoće nužno koristiti vrlo niske vrijednosti tlakova u fazi desorpcije, što u industrijskoj primjeni može biti izazovno za ostvariti i može smanjivati ekonomičnost procesa.

6. POPIS SIMBOLA

- q Masa adsorbirane tvari po jedinici mase adsorbensa, mg/g
- c Koncentracija adsorbata, mg/L
- q_m Maksimalna količina adsorbata u adsorbensu
- b Ravnotežna konstanta povezana s entalpijom procesa
- a Masa adsorbirana s jedinstvenom koncentracijom
- n Empirijska konstanta u Freundlichovoj jednadžbi
- P_i Parcijalni tlak adsorbata
- T Temperatura, K
- A, B, C, D, E, F Parametri Langmuir-Freundlichove izoterme
- θ Udio mjesta na adsorbensu koja su adsorbirala molekule adsorbata
- z Omjer između tlaka adsorbata i njegovog tlaka zasićenja pri istoj temperaturi
- c Konstanta koja ovisi o entalpiji desorpcije i isparavanja
- F Molarni protok, kmol/h
- P Tlak, bar (A)
- PXRD Difrakcije rendgenskih zraka
- DFT Diskretna Fourierova transformacija
- ρ_s Gustoća punila (krutine), g/cm³
- V_p Specifični volumen pora, cm³/g
- d Promjer otvora pora, Å
- ρ_p Nasipna gustoća punila, kg/m³
- $\frac{\Delta p}{L}$ Omjer pada tlaka i protoka fluida, kPa/m

- Ke Konstanta u Ergunovoj jednadžbi
- *K*_{bl} Konstanta za BL
- Re Reynoldsova značajka
- ε Udio praznog prostora u punilu
- μ Viskoznost plina, kg/ms
- ρ_f Gustoća plina, kg/m³
- Dp Ekvivalentni promjer peleta, m
- S_f Projektni faktor za protok
- *W* Masena brzina plina, kg/sm²
- *m* Maseni protok plina, kg/s
- A Površina poprečnog presjeka, m²
- *Cv* Koeficijent protoka, kmol/h/bar

LITERATURA

Siqueira, R. M., Freitas, G. R., Peixoto, H. R., do Nascimento, J. F., Musse, A. P. S., Torres,
 A. E. B., Azevedo, D. C. S., Bastos-Neto, M., Carbon Dioxide Capture by Pressure Swing
 Adsorption, Energy Procedia, 114 (2017) 2182–2192.

[2] Gibbins, J., Chalmers, H., Carbon capture and storage, Energy Technology for Sustainable Development Group, Mechanical Engineering Department, Imperial College London, Exhibition Road, London SW7 2AZ, UK, Energy Policy 36 (2008) 4317–4322.

[3] Liu, Z., Deng, Z., Davis, S. et al., Monitoring global carbon emissions in 2022. Nat Rev Earth Environ 4 (2023) 205–206.

[4] Liu, Z., Deng, Z., Zhu, B., Global patterns of daily CO₂ emissions reductions in the first year of COVID-19., Nat. Geosci. 15 (2022) 615–620.

[5] Yadav, S., Mondal, S., A Review of Progress and Prospects of Oxygen Carbon Capture and Sequestration (CCS) Technology, Fuel, 308, (2022) 122057

[6] Bandilla, K. W., Future Energy, Carbon Capture and Storage, (2020) 669-692.

[7] Jansenc, D., Gazzani, M., Manzolini, G., Van Dijkc, E., Carbo, M., Pre-combustion CO2 capture, Int. J. Greenhouse Gas Control 40 (2015) 167-187.

[8] Yu, C.H., Huang, C.H., Tan, C.S., A Review of CO₂ Capture by Absorption and Adsorption, Aerosol Air Qual. Res. 12 (2012) 745–769.

[9] X. Wu, Y. Yu, Z. Qin, Z. Zhang, The Advances of Post-Combustion CO2 Capture with Chemical Solvents: Review and Guidelines, Energy Procedia 63 (2014) 1339 – 1346.

[10] Allangawi, A.; Alzaimoor, E.F.H.; Shanaah, H.H.; Mohammed, H.A.; Saqer, H.; El-Fattah, A.A.; Kamel, A.H. Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C 9 (2023) 17.

[11] https://www.britannica.com/science/adsorption (pristupljeno 25. kolovoza 2024.)

[12] Artioli, Y., Adsorption, Encyclopedia of Ecology, (2008) 60-65.

[13] N. Fouladi, M. A. Makarem, M. A. Sedghamiz, H. R. Rahimpour, CO₂ adsorption by swing technologies and challenges on industrialization, Advances in Carbon Capture, Woodhead Publishing, 11 (2020) 241-267.

[14] Kwon, S., Fan, M., DaCosta, H. F. M., Russell, A. G., Berchtold, K. A., Dubey, M. K., CO₂ Sorption, Coal Gasification and Its Applications, (2011) 293–339.

[15] Yang, Sihai, et al., Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host, Nat. Chem. 4.11 (2012) 887-894.

[16] Song, C., Pan, W., Srimat, S.T., Zheng, J., Li, Y., Wang, Y., Xu, B., Zhu, Q., Tri-reforming of Methane over Ni Catalysts for CO₂ Conversion to Syngas With Desired H₂/CO Ratios Using Flue Gas of Power Plants Without CO₂ Separation, Stud. Surf. Sci. Catal. 153 (2004) 189-192.

[17] Schroder, M., Yang, S., US2015/0047505 A1, Metal-organic frameworks (MOF) for gas capture (2015)