Priprema stroncijem dopiranih manganita za višestruku primjenu

Žužić, Andreja

Doctoral thesis / Doktorski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:810330

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

Sveučilište u Zagrebu

FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE

Andreja Žužić

PRIPRAVA STRONCIJEM DOPIRANIH MANGANITA ZA VIŠESTRUKU PRIMJENU

DOKTORSKI RAD

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE

Kandidatkinja Andreja Žužić

predala je dana: <u>18. travnja 2024.</u> doktorski rad izrađen pod mentorstvom prof. dr. sc. Jelene Macan, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije.

Povjerenstvo za ocjenu doktorskog rada u sastavu:

- 1. prof. dr. sc. Marko Rogošić, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije
- 2. prof. dr. sc. Vesna Tomašić, Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije
- 3. dr. sc. Andreja Gajović, znanstvena savjetnica u trajnom zvanju, Institut Ruđer Bošković

pozitivno je ocijenilo doktorski rad doktorandice Andreje Žužić, a Fakultetsko vijeće Sveučilišta u Zagrebu Fakulteta kemijskog inženjerstva i tehnologije na sjednici održanoj dana 1. srpnja 2024. prihvatilo je ocjenu i odobrilo obranu doktorskog rada pred istim povjerenstvom.

Obrana doktorskog rada održana je dana <u>6. rujna 2024.</u>

Dekan

prof. dr. sc. Ante Jukić

University of Zagreb

FACULTY OF CHEMICAL ENGINEERING AND TECHNOLOGY

Andreja Žužić

THE PREPARATION OF STRONTIUM DOPED MANGANITES FOR MULTIPLE APPLICATIONS

DOCTORAL THESIS

Sveučilište u Zagrebu FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE

Andreja Žužić

PRIPRAVA STRONCIJEM DOPIRANIH MANGANITA ZA VIŠESTRUKU PRIMJENU

DOKTORSKI RAD

Mentor: Prof. dr. sc. Jelena Macan

University of Zagreb FACULTY OF CHEMICAL ENGINEERING AND TECHNOLOGY

Andreja Žužić

THE PREPARATION OF STRONTIUM DOPED MANGANITES FOR MULTIPLE APPLICATIONS

DOCTORAL THESIS

Supervisor: Prof. dr. sc. Jelena Macan

Bibliografski podaci

UDK:	539.216:54.057:621.383.51(043.3)
Znanstveno područie:	tehničke znanosti
Znanstveno polie:	kemijsko inženierstvo
Znanstvena grana:	kemijsko inženjerstvo u razvoju materijala
Institucija:	Sveučilište u Zagrebu
, and the second s	Fakultet kemiiskog inženierstva i tehnologije
	Zavod za fizikalnu kemiju
Voditelj rada:	prof. dr. sc. Jelena Macan
Broj stranica:	149
Broj slika:	56
Broj tablica:	19
Broj priloga:	3
Broj literaturnih referenci:	199
Datum obrane:	
Sastav povjerenstva za obra	anu:
1 0	prof. dr. sc. Marko Rogošić,
	Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije
	prof. dr. sc. Vesna Tomašić,
	Šveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije
	dr. sc. Andreja Gajović, znanstvena savjetnica u trajnom zvanju

Institut Ruđer Bošković

Rad je pohranjen u:

Nacionalnoj i sveučilišnoj knjižnici u Zagrebu, Hrvatske bratske zajednice bb; Knjižnici Sveučilišta u Zagrebu Fakulteta kemijskog inženjerstva i tehnologije, Trg Marka Marulića 20.

Tema rada prihvaćena je na 247. redovitoj sjednici Fakultetskog vijeća Fakulteta kemijskog inženjerstva i tehnologije u Zagrebu, održanoj 12. srpnja 2021., te odobrena na 1. redovitoj elektroničkoj sjednici Senata Sveučilišta u Zagrebu, održanoj 19. listopada 2021. u 353. akademskoj godini (2021./2022.).

Zahvale

Zahvaljujem svojoj mentorici prof. dr. sc. Jeleni Macan na stručnom vodstvu, savjetima, pomoći i podršci tijekom mog istraživačkog rada i pisanja doktorske disertacije. Također joj zahvaljujem na profesionalnom, a opet prijateljskom odnosu zbog kojeg mi je ovaj doktorski studij bio zbilja lijep period mog cjelokupnog obrazovanja.

Također zahvaljujem dr. sc. Andreji Gajović što me uključila kao suradnicu na projekt "Nanokompoziti s perovskitima za fotovoltaike, fotokatalizu i senzoriku, (NanoPeroPhotoSens)", IP2018-01-5246, financiran od Hrvatske zaklade za znanost čime je omogućeno djelomično financiranje mog istraživanja.

Veći dio doktorata izrađen je na Sveučilištu u Zagrebu Fakultetu kemijskog inženjerstva i tehnologije, prvenstveno u mom matičnom Zavodu za fizikalnu kemiju, a zatim u Zavodu za anorgansku kemijsku tehnologiju i nemetale te zahvaljujem svim kolegama s kojima sam dijelila laboratorij, instrumente i brojne prijateljske trenutke. Veliko hvala prof. dr. sc. Vesni Tomašić i višem asistentu dr. sc. Filipu Caru iz Zavoda za reakcijsko inženjerstvo i katalizu na pomoći u provedbi istraživanja katalitičkih aktivnosti materijala i interpretaciji rezultata.

Istraživanja električnih svojstava provedena su u Institutu Ruđer Bošković, Zavodu za kemiju materijala te zahvaljujem dr. sc. Ani Šantić, dr. sc. Luki Paviću i njihovim mlađim suradnicima na provedbi mjerenja i stručnoj pomoći pri obradi i interpretaciji dobivenih rezultata.

Istraživanja magnetskih svojstava provedena su na Sveučilištu u Zagrebu Prirodoslovnomatematičkom fakultetu, Odsjeku za fiziku. Od srca zahvaljujem prof. dr. sc. Damiru Pajiću, dr. sc. Pavli Šenjug i Dariju Barišiću, mag. phys., na provedenim mjerenjima, vremenu koje su odvojili za diskusiju o rezultatima i pomoći u njihovoj interpretaciji.

Najveće hvala mom suprugu Ivanu koji je ovaj doktorat proživio zajedno sa mnom i bio bezuvjetna podrška tijekom studija.

Veliko hvala mojim roditeljima i sestri na bezuvjetnoj ljubavi i podršci tijekom cijelog obrazovanja.

Sažetak

Moderno se društvo vrlo brzo razvija, procesi urbanizacije i industrijalizacije sve su izraženiji, a kvaliteta života raste na račun velike potrošnje energije. Prema statističkim podacima, više od 80 % utrošene energije dobiva se sagorijevanjem fosilnih goriva što rezultira povećanim emisijama štetnih tvari i izraženim klimatskim promjenama. Stoga je za održivi razvoj društva potrebno razvijati nove tehnologije za proizvodnju i skladištenje energije, a nove tehnologije zahtijevaju i nove radne materijale. Skupina novih funkcionalnih materijala su perovskitni oksidi, materijali opće formule ABO₃ u kojima se na mjestu A nalazi kation zemnoalkalijskog metala ili metala rijetkih zemalja, a mjesto B okupirano je kationom nekog polivalentnog prijelaznog metala. Zbog prisutnosti miješanih valencija kationa B unutar kristalne rešetke, perovskiti imaju brojna atraktivna svojstva kao što su električna vodljivost, magnetska svojstva, fotokatalitička i katalitička aktivnost.

U ovom doktoratu proučavani su perovksitni oksidi na bazi mangana koji se skraćeno nazivaju manganitima. Tema istraživanja bili su Sr-dopirani kalcijevi (Ca_{1-x}Sr_xMnO₃, CSMO), barijevi (Ba_{1-x}Sr_xMnO₃, BSMO) i lantanovi (La_{1-x}Sr_xMnO₃, LSMO) manganiti. Svi navedeni materijali pripremljeni su dvama različitim postupcima sinteze iz otopine – limunskim i koprecipitacijskim postupkom. Nastanak ciljanih manganitnih faza potvrđen je rendgenskom difrakcijskom analizom, a parametri kristalnih rešetki te okupancije (zaposjednutosti) pojedinih atoma određene su Rietveldovom metodom utočnjavanja. Budući da je za manganite karakterističan nestehiometrijski sadržaj kisika, on je određen permanganatnom titracijom uz Mohrovu sol.

Nakon što je utvrđeno da su u svim pripremljenim materijalima nastale ciljane manganitne faze, pristupilo se istraživanju primjenskih svojstava materijala. Impedancijskom spektroskopijom određena je električna vodljivost materijala u široku rasponu frekvencija i temperatura. Za LSMO- i CSMO-materijale ta je vodljivost bila frekvencijski neovisna u cijelom području što ukazuje na brzi transport elektrona bez blokirajućih efekata. Također je rasla s porastom temperature što ukazuje na poluvodički karakter tih materijala, a pokazalo se i da ju povećavaju kisikove vakancije. Stoga su LSMO- i CSMO-materijali prepoznati kao potencijalni katodni materijali u gorivnim ćelijama s čvrstim oksidom kao elektrolitom (engl. *solid oxide fuel cells*, SOFC). S druge strane, električna vodljivost BSMO-materijala bila je frekvencijski ovisna, a materijali su također pokazali

poluvodički karakter. Iako neprikladni za SOFC, prepoznati su kao atraktivni za primjenu u uređajima za pohranu podataka.

Istraživanja magnetskih svojstava pokazala su da se LSMO-i ponašaju kao meki feromagneti s Curiejevom temperaturom koja raste s porastom udjela Sr-dopiranja te za udjele od 0,2 i 0,3 prelazi sobnu temperaturu, što ih čini prikladnima za širok spektar primjena. Osim toga, LSMO-i pokazuju i magnetokalorični učinak što ih čini potencijalnom zamjenom gadoliniju u magnetskim hladnjacima. Za razliku od njih, CSMO-i i BSMO-i po svojem su magnetskom uređenju antiferomagneti kod kojih zbog distorzija kristalne rešetke uslijed dopiranja dolazi do naginjanja, tj. kantiranja spinova. Njihove temperature faznog prijelaza (antiferomagnet – paramagnet) daleko su ispod sobne, no bez obzira na to prikladni su za primjenu u suvremenim uređajima za pohranu podataka i u novom polju fizike – spintronici jer se na njihovu električnu vodljivost može utjecati promjenom orijentacije spina.

Svi pripremljeni manganiti pokazali su izvrsnu katalitičku aktivnost pri simultanoj razgradnji četiriju hlapljivih organskih komponenti: benzena, toluena, etilbenzena i *o*-ksilena. Pritom su sve komponente osim benzena potpuno ili gotovo potpuno uklonjene na konačnoj temperaturi od 450 °C, dok je benzen bilo teže ukloniti zbog njegove visoke stabilnosti i činjenice da je razgradni produkt svih ostalih komponenata u smjesti. Katalitička aktivnost s obzirom na uspješnost uklanjanja benzena rasla je u nizu LSMO < CSMO < BSMO, a najbolji rezultati dobiveni su za BSMO-uzorke pripremljene limunskim postupkom.

Na temelju svega navedenog zaključeno je da se manganiti mogu uspješno pripremiti jednostavnim i ekološki prihvatljivim postupcima iz otopine. Uz to, dokazano je da su po svojim višestrukim svojstvima potencijalni materijali za primjenu u novim tehnologijama važnim za održivi rast i razvoj društva kao što su gorivne ćelije, magnetski hladnjaci i suvremeni uređaji za pohranu podataka. Osim toga, potencijalna su ekonomična zamjena za katalizatore na bazi plemenitih metala u procesima katalitičke oksidacije štetnih organskih tvari.

Ključne riječi: dopiranje, električna svojstva, katalitička aktivnost, koprecipitacija, limunski postupak, magnetska svojstva, manganiti, perovskiti, stroncij

Abstract

Modern society is developing rapidly, with increasing urbanization and industrialization processes, and the quality of life is improving by relying on high energy consumption. According to statistical data, over 80% of the consumed energy is derived from the combustion of fossil fuels, resulting in increased emissions of harmful substances and pronounced climate changes. Therefore, sustainable development of society requires the development of new technologies for energy production and storage, and these new technologies demand new functional materials. One group of such materials are perovskite oxides, which have a general formula ABO₃, where the A site is occupied by an alkaline earth metal or a rare earth metal cation, and the B site is occupied by a multivalent transition metal cation. Due to the presence of mixed valences of the B cation within the crystal lattice, perovskites exhibit numerous attractive properties such as electrical conductivity, magnetic properties, photocatalytic and catalytic activity.

This dissertation is focused on the study of perovskite oxides based on manganese, commonly referred to as manganites. The subject of this research are strontium-doped calcium manganites ($Ca_{1-x}Sr_xMnO_3$, CSMO), barium manganites ($Ba_{1-x}Sr_xMnO_3$, BSMO), and lanthanum manganites ($La_{1-x}Sr_xMnO_3$, LSMO). All mentioned materials were prepared using two different solution-based synthesis methods – the citrate method and the coprecipitation method. The formation of the desired manganite phases was confirmed by the X-ray diffraction analysis, and the parameters of crystal lattices and occupancies of individual atoms were determined using the Rietveld refinement method. Since manganese oxides exhibit oxygen non-stoichiometry, the oxygen content was determined by permanganate titration with Mohr's salt.

After confirming the formation of the desired manganite phases in all prepared materials, the research shifted towards investigating the application properties of the materials. The electrical conductivity of the materials was determined over a wide range of frequencies and temperatures using impedance spectroscopy. For LSMO and CSMO materials, the frequency-independent conductivity was observed throughout the entire range, indicating fast electron transport without blocking effects. Conductivity also increased with temperature, suggesting their semiconductor character, and it was demonstrated that oxygen vacancies enhance conductivity. Therefore, LSMO and CSMO materials in solid oxide fuel cells (SOFC). On the other hand, the electrical conductivity of BSMO materials was frequency-

dependent, and they also exhibited semiconductor characteristics. Although unsuitable for SOFC, they were identified as attractive for application in data storage devices.

Research on magnetic properties revealed that LSMO behaves as a soft ferromagnet with its Curie temperature increasing with the Sr-doping content, surpassing room temperature for the doping level of 0.2 and 0.3. This makes them suitable for a wide range of applications. Additionally, LSMO showed magnetocaloric effects, making them a potential substitute for gadolinium in magnetic refrigerators. In contrast, CSMO and BSMO exhibited antiferromagnetic ordering due to distortions in the crystal lattice resulting from doping, causing spin canting. Their phase transition temperatures (antiferromagnet – paramagnet) were well below room temperature. However, they are suitable for application in modern data storage devices and in the emerging field of physics, spintronics, as their electrical conductivity can be influenced by changing spin orientation.

All prepared manganites showed excellent catalytic activity in the simultaneous degradation of four volatile organic components: benzene, toluene, ethylbenzene, and *o*-xylene. All components except benzene were completely or nearly completely removed at the final temperature of 450 °C. Benzene removal was more challenging due to its high stability and the fact that it is the degradation product of all other components in the mixture. Catalytic activity, regarding the success of benzene removal, increased in the sequence LSMO < CSMO < BSMO, with the best results obtained for BSMO samples prepared using the citrate method.

In conclusion, it was determined that manganites can be successfully prepared using simple and environmentally friendly solution-based methods. Furthermore, these materials were proven to be potential candidates for various applications in new technologies crucial for sustainable growth and development, such as fuel cells, magnetic refrigerators, and modern data storage devices. Additionally, they have the potential to be cost-effective substitutes for noble metal catalysts in catalytic oxidation processes of harmful organic substances.

Keywords: catalytic activity, citric procedure, coprecipitation, doping, electrical properties, magnetic properties, manganites, perovskites, strontium

Sadržaj

Sa	žetak	
Ał	ostract.	iv
1.	UVO	D 1
2. OPĆI DIO		
	2.1.	Perovskitna struktura
	2.1.1.	Idealna kubična rešetka
	2.1.2.	Distorzije idealne strukture
	2.2.	Postupci sinteze perovskita
	2.2.1.	Reakcija u čvrstom stanju7
	2.2.2.	Postupci otopinske sinteze10
	2.3.	Svojstva perovskita
	2.3.1.	Feroelektričnost i električna vodljivost17
	2.3.2.	Piezoelektrična i piroelektrična svojstva19
	2.3.3.	Supravodljivost
	2.3.4.	Magnetska svojstva
	2.3.5.	Katalitička svojstva
	2.4.	Teorijska podloga instrumentalnih metoda za strukturnu i primjensku karakterizaciju 26
	2.4.1.	Infracrvena spektroskopija s Fourierovom transformacijom
	2.4.2.	Rendgenska difrakcijska analiza i Rietveldova metoda utočnjavanja
	2.4.3.	Pretražna elektronska mikroskopija i energijski disperzivna rendgenska spektroskopija 30
	2.4.4.	Impedancijska spektroskopija
	2.4.5.	Magnetometri
2.4.5.1. SQU 2.4.5.2. VSM		.5.1. SQUID-magnetometar
		.5.2. VSM-magnetometar
	2.4.6.	Plinska kromatografija (GC)
3.	EKS	PERIMENTALNI DIO
	3.1.	Materijali
	3.2.	Priprava manganita
	3.2.1.	Limunski postupak sinteze
	3.2.2.	Koprecipitacijski postupak sinteze
	3.2.3.	Priprema peleta uzoraka

3.3.	Karakterizacija materijala	
3.3.1.	Toplinske analize	
3.3.2.	Permanganatna titracija	
3.3.3.	Infracrvena spektroskopija s Fourierovom transformacijom	
3.3.4.	Rendgenska difrakcijska analiza i Rietveldova metoda utočnjavanja	
3.3.5.	Pretražna elektronska mikroskopija	
3.3.6.	Određivanje specifične površine i raspodjele pora	
3.3.7.	Određivanje električnih svojstava	
3.3.8.	Određivanje magnetskih svojstva	
3.3.9.	Određivanje katalitičke aktivnosti	
4. REZ	ULTATI I RASPRAVA	
4.1.	Određivanje temperature žarenja	
4.2.	Kristalizacija manganita	50
4.2.1.	Lantanovi manganiti	50
4.2.2.	Kalcijevi manganiti	56
4.2.3.	Barijevi manganiti	61
4.3.	Morfologija manganita	66
4.3.1.	Lantanovi manganiti	66
4.3.2.	Kalcijevi manganiti	
4.3.3.	Barijevi manganiti	
4.4.	Električna svojstva manganita	
4.4.1.	Lantanovi manganiti	
4.4.2.	Kalcijevi manganiti	
4.4.3.	Barijevi manganiti	
4.5.	Magnetska svojstva manganita	85
4.5.1.	Lantanovi manganiti	
4.5.2.	Kalcijevi manganiti	
4.5.3.	Barijevi manganiti	
4.6.	Katalitička aktivnost manganita	
4.6.1.	Lantanovi manganiti	102
4.6.2.	Kalcijevi manganiti	106
4.6.3.	Barijevi manganiti	108

5.	ZAKLJUČAK	112
6.	LITERATURA	117
7.	PRILOZI	136
8.	POPIS KRATICA I OZNAKA	142
ŽIV	ΌΤΟΡΙς	147

1. UVOD

Povećana industrijalizacija i urbanizacija rezultirale su eksponencijalnim rastom potrošnje energije tijekom posljednjih desetljeća. Najveći zabilježeni skok dogodio se u razdoblju od 1995. do 2015. kada je potrošnja energije s 360 EJ narasla na 550 EJ [1]. Više od 80 % energije i dalje se dobiva iz fosilnih goriva, što direktno utječe na povećane emisije štetnih plinova, te je moderno društvo suočeno s izazovom kako nastaviti gospodarski razvoj i istovremeno očuvati okoliš za buduće generacije [2]. Ujedinjeni narodi su 2015. donijeli ciljeve održivog razvoja unutar kojih je onečišćenje zraka prepoznato kao najveći ekološki problem [3,4]. Potencijalno rješenje za postizanje održivog razvoja je razvoj i implementacija novih tehnologija s nižom stopom štetnih emisija. Nove tehnologije vrlo često zahtijevaju razvoj novih materijala s višestrukim svojstvima, pri čemu važnu ulogu ima inženjerstvo materijala. Među novim materijalima ističu se perovskiti koji su postali fokus znanstvenih istraživanja nakon što je Goodenough [5] 1955. objavio rad o fleksibilnosti njihovih svojstava.

Perovskiti se opisuju općom formulom ABX₃ te se prema kemijskom sastavu dijele na dvije velike skupine: perovskitne okside i halogenide. U skupini perovskitnih halogenida najviše istraživani su metilamonijevi olovni halogenidi (CH₃NH₃PbX₃, X = I, Br, Cl) s izvrsnim optičkim svojstvima i potencijalnom primjenom u solarnim ćelijama i fotodetektorima [6]. S druge strane, barijev titanat (BaTiO₃) [7] i lantanov manganit (LaMnO₃) [8] ubrajaju se u najviše istraživane perovskitne okside zahvaljujući obećavajućim feroelektričnim i magnetskim svojstvima. Upravo zbog tih svojstava perovskitni oksidi potencijalni su materijali za primjenu u novim tehnologijama poput gorivnih ćelija s čvrstim oksidom kao elektrolitom (engl. *solid oxide fuel cell*, SOFC), kalcijevim baterijama, magnetskim hladnjacima, spintronici i pohrani podataka te katalitičkoj oksidaciji hlapljivih organskih spojeva (engl. *volatile organic compounds*, VOCs), o čemu svjedoči velik broj preglednih radova objavljenih tijekom posljednjeg desetljeća [9–13]. Osim što imaju širi spektar svojstava i primjena u odnosu na perovskitne halogenide, perovskitni oksidi sigurniji su za primjenu budući da u svojoj strukturi ne sadrže ione Pb²⁺ koji imaju visoku toksičnost i mogućnost akumulacije u ekosustavima [14]. Budući da su glavna tema ovog doktorskog rada perovskitni oksidi, u nastavku teksta radi jednostavnosti nazivat će se samo perovskitima.

Svojstva perovskita potječu od miješanih valencija kationa B koje mogu biti posljedica strukturnih defekata kristalne rešetke prisutnih u obliku kisikovih ili kationskih vakancija te dopiranja kationa

A ili B drugim kationima [15]. Kisikove vakancije pridonose ionskoj vodljivosti koja je izuzetno važna za difuziju kisikovih aniona kroz sloj čvrstog elektrolita u SOFC-u [16]. S druge strane, električna vodljivost, feromagnetičnost i reducibilnost rezultat su miješanih valencija kationa. Proučavanje svojstava perovskitnih oksida rezultiralo je nastankom novih pojmova poput mehanizma dvostruke izmjene (engl. *double exchange mechanism*) i kolosalnog magnetootpora (engl. *colossal magnetoresistance*, CMR) [17,18] kojima se uočeni fenomeni opisuju, a o kojima će više riječi biti u općem dijelu doktorskog rada.

U ovom doktorskom radu pripremljeni su uzorci stroncijem (Sr) dopiranih kalcijevih (CaMnO₃), barijevih (BaMnO₃) i lantanovih (LaMnO₃) manganita limunskim i koprecipitacijskim postupkom sinteze. Cilj istraživanja bio je ispitati kako vrsta kationa na poziciji A, udio Sr-dopiranja i postupak priprave utječu na električna, magnetska i katalitička svojstva manganita. Osim toga, cilj je bio odrediti strukturu pripremljenih manganita, nestehiometriju kisika i omjer miješanih valencija Mn³⁺/Mn⁴⁺ te ih korelirati s primjenskim svojstvima materijala.

2. OPĆI DIO

Naziv "perovskit" originalno je označavao mineral CaTiO₃, kojega je u gorju Ural 1839. otkrio njemački mineralog Gustav Rose i nazvao perovskitom u čast ruskom plemiću i mineralogu Levu Aleksejeviču von Perovskom. Razvojem rendgenske difrakcijske analize određena je i struktura CaTiO₃, te se danas svi spojevi iste ili srodne strukture i opće formule ABO₃ svrstavaju u skupinu perovskita [19].

2.1. Perovskitna struktura

2.1.1. Idealna kubična rešetka

Idealna perovskitna struktura je kubična, prostorne grupe *Pm3m* i vrlo jednostavna rasporeda iona [20] kao što je prikazano na slici 1.

Slika 1. (a) Uobičajeni prikaz idealne perovskitne strukture s oktaedarski koordiniranim kationom B i (b) prikaz idealne perovskitne strukture s naznačenom koordinacijom kationa A s 12 kisikovih aniona. Prikazi struktura izrađeni su u računalnom programu VESTA 3 [21].

U idealnoj perovskitnoj strukturi na pozicijama A i B nalaze se kationi čiji ukupni naboj iznosi +6. Poziciju B zauzimaju manji kationi prijelaznih metala (Fe, Ti, Mn, Co, itd.) koji su oktaedarski koordinirani kisikovim anionima kako je prikazano na slici 1(a). Poziciju A pak najčešće zauzimaju kationi nižih valencija poput kationa zemnoalkalijskih metala (Ca, Sr, Ba) ili metala rijetkih zemalja (Ce, La, Pr, Nd, Eu, Gd, Dy, itd.) te su koordinirani s 12 kisikovih aniona kako je prikazano na slici 1(b). Ukoliko se kation A ili B supstituira (dopira) kationom niže valencije, ukupni naboj tih kationa iznosi manje od +6 i dolazi do stvaranja kisikovih vakancija u kristalnoj rešetki te do stvaranja miješanih valencija kationa B da bi se očuvala elektroneutralnost [22]. Upravo te pojave uzrok su atraktivnih svojstava perovskita kao što su ionska i električna vodljivost, magnetizam i reducibilnost. Osim toga, pozicije A i B mogu biti okupirane raznim kationima pa su perovskiti naročito poznati po svojoj fleksibilnosti kemijskog sastava.

2.1.2. Distorzije idealne strukture

Fleksibilnost kemijskog sastava perovskita često uzrokuje odstupanja od idealne kubične strukture, tj. distorzije kristalne rešetke. Distorzija u perovskitima rezultira prijelazom iz idealne kubične strukture u heksagonsku strukturu (prostorne grupe P63/mmc i $R\overline{3}c$) ili ortorompsku strukturu (prostorna grupa Pnma), koje su prikazane su na slici 2. U slučaju idealne kubične rešetke, os *a* kristalne rešetke geometrijski je povezana s ionskim radijusima (*r*) iona A, B i O [23] kako je prikazano jednadžbom (1):

$$a = \sqrt{2}(r_{\rm A} + r_{\rm 0}) = 2(r_{\rm B} + r_{\rm 0}). \tag{1}$$

Omjer tih dvaju izraza za duljinu rešetke *a* naziva se Goldschmidtov faktor tolerancije (*t*) te omogućava određivanje stupnja distorzije kristalne rešetke prema jednadžbi (2):

$$t = \frac{(r_{\rm A} + r_{\rm O})}{\sqrt{2}(r_{\rm B} + r_{\rm O})}.$$
(2)

Primjer idealne kubične kristalne rešetke je SrTiO₃ kod kojeg je t = 1,00. S obzirom na to da je $r_0 = 1,40$ Å, idealni radijusi kationa su $r_A = 1,44$ Å i $r_B = 0,605$ Å. Ako je radijus kationa na poziciji A veći, odnosno na poziciji B manji od idealnog, t će poprimiti vrijednosti veće od 1, što dovodi do naginjanja i spajanja oktaedarskih ploha te rezultira heksagonskom distorzijom prostorne grupe P63/mmc prikazanom na slikama 2(a, b). Druga vrsta heksagonske distorzije je ona prostorne grupe $R\overline{3}c$ kod koje ne dolazi do spajanja oktaedara, već samo do njihova naginjanja što je vidljivo iz slika 2(c, d). Takav tip distorzije javlja se kada je kation na poziciji A manji od idealnog, a kation na poziciji B većeg ionskog radijusa od idealne vrijednosti. Ako je kation A puno manji od idealne vrijednosti, neovisno o veličini kationa B, t će poprimiti vrijednosti manje od 1 što će dovesti do zakretanja oktaedara BO₆ kako bi se popunio prostor i umanjile odbojne sile između kationa. Niske vrijednosti t rezultiraju nastankom strukture niže simetrije, tj. ortorompskom Pnma-distorzijom koja je prikazana na slikama 2(e, f) [23].

Slika 2. (a, b) Heksagonske distorzije vrste P63/mmc i (c, d) $R\overline{3}c$ i (e, f) ortorompska distorzija *Pnma* perovskitne rešetke. Kristalne strukture u smjeru osi *a* prikazane su pod (a, c i e), dok su trodimenzionalne sheme s označenim oktaedrima BO₆ prikazane pod (b, d i f). Prikazi struktura izrađeni su u računalnom programu VESTA 3 [21].

U heksagonskoj distorziji P63/mmc [slike 2(a, b)] mogu se uočiti dvije kristalografski neovisne pozicije kationa A (A1 i A2) te dvije vrste neekvivalentnih kisikovih aniona (O1 i O2) [24]. S druge strane, u heksagonskoj distorziji $R\overline{3}c$ [slike 2(c, d)] svi su ioni ekvivalentni upravo zbog toga što dolazi samo do naginjanja, ali ne i spajanja oktaedara BO₆. U ortorompskoj distorziji Pnma [slike 2(e, f)] također dolazi do spajanja oktaedara BO₆ vrhovima uslijed njihova naginjanja radi popunjavanja prostora unutar rešetke te postoje dva kristalografski različita tipa kisikovih iona: četiri (O1) na plohama zrcalne simetrije i osam (O2) na uobičajenim pozicijama [25]. Navedene razlike u pozicijama kationa i kisikovih aniona od velike su važnosti za tumačenje supstitucije kationa i nestehiometrije kisika. Han i sur. [26] proučavali su supstituciju kationa A u heksagonskoj distorziji P63/mmc i pokazali da se kation na poziciji A1 preferirano supstituira kationom manjeg ionskog radijusa kako bi se zadržala stroža oktaedarska koordinacija. Nadalje, anioni kisika na poziciji O2, smješteni na centralnoj ravnini plošno spojenih oktaedara [slike 2a, b)], posjeduju veću vjerojatnost formiranja kisikovih vakancija u odnosu na one smještene na poziciji O1. To su potvrdili Torino i sur. [27] proučavajući heksagonski BaTiO_{3- δ} teorijom funkcionala gustoće (engl. density functional theory, DFT) koja omogućuje izračun elektronskih struktura atoma, molekula i krutina na osnovi temeljnih zakona kvantne mehanike [28]. Izračuni su pokazali da energija formiranja kisikovih vakancija na poziciji O2 niža za 0,44 eV u odnosu na energiju potrebnu za formiranje vakancija na poziciji O1 u distorziji P63/mmc. Taylor i sur. [29] istraživali su nastajanje kisikovih vakancija u ortorompskoj distorziji *Pnma* i pokazali da je energija formiranja vakancija na poziciji O1 niža u odnosu na poziciju O2. Pokazalo se da je ta razlika u energijama vrlo niska te da iznosi svega 0,015 eV, što je rezultat niske simetrije distorzije *Pnma* koja pridonosi njezinoj najnižoj energiji i najvišoj stabilnosti od svih navedenih oblika distorzija [30].

Osim razlike u veličini kationa, za distorziju perovskitne strukture odgovorna su još dva faktora, a to su odstupanje od idealnog stehiometrijskog sastava i Jahn-Tellerov efekt. Odstupanje od idealnog stehiometrijskog sastava u perovskitima manifestira se u obliku kisikovih ili kationskih vakancija do čega dolazi u postupku njihove sinteze, tj. tijekom kalciniranja u reducirajućoj ili oksidirajućoj atmosferi. Na primjer, Mn u SrMnO₃ može poprimiti oksidacijsko stanje +3 i +4 pa sadržaj kisika može varirati od 2,5 do stehiometrijske vrijednosti 3 [23]. Jahn-Tellerov efekt definira se kao geometrijska distorzija molekula i iona vezana uz određenu elektronsku konfiguraciju kationa na poziciji B. Dobar primjer ponovno je kation Mn³⁺ koji u 3*d*-orbitali ima četiri elektrona. Budući da je u perovskitnoj rešetci okružen sa šest aniona kisika, dolazi do

degeneracije elektronskog stanja, tj. do cijepanja *d*-orbitala na dva različita energijska nivoa. Pritom će tri elektrona biti smještena na istom energijskom nivou dok će jedan elektron biti nesparen na nivou više energije i uzrokovati istezanje oktaedara MnO_6 da bi se smanjila ta degeneracija i ukupna energija sustava [31].

2.2. Postupci sinteze perovskita

2.2.1. Reakcija u čvrstom stanju

Postupci sinteze u čvrstom stanju često se nazivaju i mehanokemijskim postupcima budući da se mehanička energija miješanja primjenjuje za poticanje kemijske reakcije. Međutim, u sintezi perovskita u čvrstom stanju mehanokemijski se postupci (mljevenje) primjenjuju kao početni korak u kojem se reaktanti usitnjavaju kako bi se sinteza olakšala, tj. skratio difuzijski put te djelomično razorila njihova kristalna struktura. Reaktanti su najčešće u obliku karbonata ili oksida pri čemu oni međusobno kemijski ne reagiraju pri sobnoj temperaturi, a kemijska se reakcija provodi tek u procesu kalciniranja kada se smjesa reaktanata zagrije na temperaturu od 700 do 1500 °C [32]. Visoka temperatura istovremeno razgrađuje reaktante i omogućava mobilnost kationa kroz kristalna zrna, rezultira nastajanjem perovskitne strukture i utječe na svojstva pripremljenog materijala. Glavni nedostaci postupaka sinteze reakcije i nemogućnost priprave nanočestica jer visoke temperature dovode do rasta kristalita i agregacije čestica [33]. Osim toga, moguća je kontaminacija finalnog materijala onečišćenjima koja najčešće potječu od pribora za mljevenje (tarionik, kuglice za usitnjavanje ili posuda planetarnog mlina) i teško ih je izdvojiti iz produkata [34].

Ručna homogenizacija

Ručna je homogenizacija najjednostavniji postupak sinteze u čvrstom stanju u kojem se reaktanti miješaju u stehiometrijskom omjeru nakon čega slijedi usitnjavanje i miješanje u ahatnom tarioniku uz dodatak etanola ili acetona kao medija za miješanje. Taj postupak miješanja ponavlja se u nekoliko ciklusa (3 – 5) nakon čega slijedi sušenje i kalciniranje na temperaturi višoj od 1000 °C ovisno o prirodi produkta koji se želi dobiti [35,36]. Iako je ručna homogenizacija vrlo jednostavan postupak, često je i najmanje učinkovita jer se istovremeno može miješati svega nekoliko grama praha, a uložena mehanička energija nije dovoljna za transformaciju kristalne rešetke reaktanata te

su potrebne visoke temperature za provođenje kemijske reakcije. Kako bi se povećala učinkovitost sinteza u čvrstom stanju, one se najčešće provode strojno u planetarnim mlinovima.

Mehanokemijska sinteza u planetarnom mlinu

Planetarni se mlin sastoji od reakcijske posude u koju se stavlja prah reaktanata te se dodaju kuglice za usitnjavanje. Reakcijska posuda i kuglice najčešće se izrađuju od izdržljivih materijala poput korunda (Al₂O₃), nehrđajućeg čelika te itrijem stabiliziranog cirkonijeva oksida (YSZ). Naziv 'planetarni' potječe od toga što se reakcijska posuda rotira oko svoje osi dok je postavljena na nosač, tj. disk koji se vrti u suprotnom smjeru. Razlika u brzini i smjeru rotacije reakcijske posude i kuglica dovodi do snažnog trenja između posude i kuglica te rezultira usitnjavanjem praha [37].

Glavna je prednost sinteze u planetarnom mlinu mogućnost istovremenog mljevenja nekoliko stotina grama praha, a često unutar mlina postoji i više od jedne reakcijske posude pa je pogodan za pripreme većih količina materijala [37]. Postupak sinteze u planetarnom mlinu uključuje postupke usitnjavanja, ručnog miješanja, usitnjavanja pomoću kuglica u mlinu te žarenja i spaljivanja reaktanata u nekoliko ciklusa, a najčešće se sastoji od sljedećih koraka [38,39]:

- Odvažu se stehiometrijske količine reaktanata;
- Izmiješani reaktanti prebace se u planetarni mlin gdje se usitnjavaju i miješaju uz dodatak acetona ili alkohola kao medija za bolju homogenizaciju te postupak traje od 4 do 12 sati uz 25 – 100 okretaja u minuti u smjeru kazaljke na satu te obrnuto;
- Smjesa reaktanata suši se i zatim kalcinira na visokoj temperaturi od 600 do 1500 °C ovisno o produktu koji se želi dobiti.

Međutim, mljevenje u planetarnom mlinu također nije dovoljno energijski snažno za dobivanje nanočestica, često je dugotrajno i dovodi do trošenja materijala reakcijske posude i kuglica čime se kontaminira produkt. Nadalje, postupak kalciniranja na visokim temperaturama neizbježan je za dobivanje perovskitne faze što opet nije pogodno za dobivanje praha velike specifične površine pogodnog za npr. katalitičke primjene [33,34]. Stoga se za nanočestice u čvrstom stanju pripravljaju postupcima u visoko-energijskom planetarnom mlinu.

Mehanokemijska sinteza u visoko-energijskom planetarnom mlinu

Ta metoda sinteze vrlo je slična prethodno opisanoj ali se u njoj primjenjuju mlinovi koji postižu od nekoliko stotina do nekoliko tisuća okretaja u minuti, a za mljevenje se upotrebljavaju vrlo sitne kuglice. Tom se metodom perovskitni oksidi sintetiziraju pri niskim temperaturama, a kao produkt dobivaju se nanočestice. Od prethodnog postupka razlikuje se i prirodom reaktanata: kao reaktanti u obzir dolaze jedino oksidi, jer u protivnom postoji mogućnost nastajanja otrovnih plinova tijekom kemijske reakcije u procesu mljevenja [32].

Postupak se najčešće sastoji od sljedećih koraka [32]:

- Odvažu se stehiometrijske količine reaktanata u obliku oksida;
- Reaktanti se miješanju i usitnjavaju u ahatnom tarioniku;
- Mljevenje reaktanata provodi se u mlinu tijekom 12 do 30 h uz korištenje cirkonij-oksidnih kuglica te alkohola kao medija za miješanje pri čemu je omjer uzorka i kuglica 1:10, a brzina okretanja 300 – 1000 rpm;
- Dobiveni se produkt zatim suši i kalcinira na temperaturi 400 900 °C, što je niže u odnosu na postupak s ručnom homogenizacijom ili mljevenjem u planetarnom mlinu.

Dodatna prednost tog postupka sinteze očituje se u mogućnosti priprave produkata bez kalciniranja. Cortés Escobedo i sur. [40] uspješno su pripremili LaMnO₃ u visoko-energijskom planetarnom mlinu uz La₂O₃ i Mn₂O₃, odnosno MnO₂ kao reaktante. U prvom se slučaju reakcija provela unutar 210 min, dok je u drugom slučaju vrijeme reakcije iznosilo 270 min. Upotreba MnO kao reaktanta uz La₂O₃ nije rezultirala fazom LaMnO₃ bez dodatnog kalciniranja. Navedeno istraživanje ukazuje na to da je kod odabira reaktanata važno voditi računa o njihovoj kristalnoj rešetki te o oksidacijskom stanju metalnih kationa. Naime, manje energije morat će se uložiti u procesu mljevenja i kalciniranja ukoliko je kristalna rešetka reaktanata slična onoj u kojoj se očekuje kristalizacija produkata.

2.2.2. Postupci otopinske sinteze

Kako bi se izbjegli prethodno navedeni nedostaci postupaka sinteze reakcijom u čvrstom stanju, primjenjuju se postupci iz otopine među kojima su najzastupljeniji Pechinijeva metoda, limunski postupak i hidrotermalna metoda, dok su koprecipitacijski i mikroemulzijski postupci slabije zastupljeni.

Pechinijeva metoda (sol-gel postupak)

Sol-gel postupak sinteze obično uključuje hidrolizu i kondenzaciju metalnih alkoksida praćenu starenjem nastalog gela, sušenjem i kalciniranjem radi uklanjanja površinskih hidroksilnih skupina. Sol-gel postupak u svojem izvornom obliku rijetko se upotrebljava za pripremu perovskita, zbog malog broja metala koji stvaraju stabilne alkokside te zbog njihove visoke reaktivnosti [41]. Alternativa klasičnom sol-gel postupku je Pechinijev postupak, nazvan prema svojem izumitelju Maggiju Pechiniju [42], koji se temelji na otapanju izvora metalnih iona (najčešće u obliku oksida, nitrata i karbonata) te dodatku limunske kiseline koja ima ulogu kelatnog agensa i s metalnim kationima stvara metal-citratne komplekse. U nastalu otopinu zatim se dodaje etilen-glikol te dolazi do reakcije esterifikacije između citrata i etilen-glikola (slika 3.), pri čemu nastaje homogena otopina prekursora koja sadrži metal-citratne kelatne komplekse. Zagrijavanjem otopine prekursora dolazi do poliesterifikacije između citrata i etilen-glikola pri čemu se stvara kovalentna mreža u kojoj su zarobljeni metalni ioni (slika 4.) [41–46].

Slika 3. Reakcija esterifikacije limunske kiseline i etilen-glikola [41].

Slika 4. Shematski prikaz nastajanja kovalentne mreže sa zarobljenim metalnim ionima u Pechinijevoj metodi sinteze [41].

Kada je formiranje kovalentne mreže dovršeno, materijal se žari u peći pri čemu organska matica sagorijeva i dolazi do nastajanja produkta – keramike. Jedna od najvećih prednosti Pechinijeva postupka je mogućnost formiranja polimernog prekursora čime se osigurava homogena disperzija više metalnih iona sadržanih u otopini [41–46].

Da bi se Pechinijeva metoda sinteze primijenila na pripremu šireg raspona materijala, tijekom posljednjih dvaju desetljeća uvodile su se razne modifikacije [47–54]. Vezanje metalnih iona i limunske kiseline ovisi o pH otopine: pri niskoj pH-vrijednosti dolazi do protoniranja limunske kiseline što otežava vezanje metalnih iona, a visoka pH-vrijednost dovodi do precipitacije metalnih hidroksida. Stoga je kontroliranje pH-vrijednosti važno za održavanje homogenosti nastalog gela kao i za kontrolu veličine čestica u nastalom produktu. Abreu Jr. i sur. [43] u svojem su istraživanju za optimiranje pH-vrijednosti upotrebljavali ureu koja se postepeno raspada dajući amonijak (NH₃), čime se postepeno povećava pH-vrijednost otopine.

Ostale najčešće modifikacije Pechinijeve metode su:

- Limunski postupak u kojem se u otopinu metal-citratnih kompleksa ne dodaje etilenglikol, već limunska kiselina služi kao organsko gorivo u postupku samozapaljenja reakcijske smjese;
- Zamjena limunske kiseline dikarboksilnim, drugim trikarboksilnim ili tetrakarboksilnim kiselinama;
- Zamjena etilen-glikola drugim poliolima.

Prvi pokušaji modifikacije Pechinijeve metode bili su usmjereni na zamjenu limunske kiseline kelatnim agensom koji ima višu temperaturu toplinske razgradnje, kao što je

etilendiamintetraoctena kiselina (EDTA). Tako je u sintezi supravodljivog YBa₂Cu₃O_{7-x} zamjena limunske kiseline s EDTA-om dovela do nastajanja čistog produkta, odnosno spriječila je nastajanje nepoželjne faze barijeva karbonata. To se objašnjava odgođenom toplinskom razgradnjom EDTA, odnosno dužim periodom homogenosti reakcijske smjese na početku perioda zagrijavanja. Zanimljivo je da pri upotrebi EDTA nastaju veće čestice nego pri upotrebi limunske kiseline, što ukazuje na to da struktura i stupanj razgranatosti nastalog polimera imaju direktan utjecaj na veličinu čestica [41].

Limunski postupak

Od svih modifikacija Pechinijeva postupka sinteze, limunski postupak svakako je najzastupljeniji, a u literaturi se često naziva i sintezom uz sagorijevanje (engl. *combustion synthesis*) ili uz samozapaljenje (engl. *autocombustion synthesis*) [47,54,55]. Postupak je vrlo sličan Pechinijevu, tj. metalni kationi kompleksiraju se dodatkom limunske kiseline pri čemu nastaju metal-citratni kompleksi, ali se sinteza provodi bez dodatka etilen-glikola. Zagrijavanjem smjese metal-citratnih kompleksa nastaje smolasta struktura u kojoj su kationi homogeno raspoređeni, a nitrati ne izlaze iz reakcijske smjese u obliku NO_x tijekom njezina zagrijavanja već ostaju u njoj i uzrokuju njezino samozapaljenje što rezultira nastajanjem praha prekursora [55].

U tom postupku sinteze najvažniji je parametar omjer goriva (limunske kiseline) i oksidansa (nitrata) koji utječe na svojstva dobivenog produkta. Najveća egzotermnost reakcije i temperatura plamena postiže se za stehiometrijski omjer ($\Phi_e = 1$) goriva i oksidansa. Taj omjer označava količinu goriva potrebnu da bi se provela potpuna oksidacija limunske kiseline do ugljikova dioksida i potpuna redukcija nitrata do dušika, kako je prikazano sljedećim jednadžbama:

$$C_6H_8O_7 + 5 H_2O \rightarrow 6 CO_2 + 18 H^+ + 18 e^-$$
 (3)

$$2 \text{ NO}_3^- + 12 \text{ H}^+ + 10 \text{ e}^- \rightarrow \text{N}_2 + 6 \text{ H}_2\text{O}$$
(4)

$$5 C_6 H_8 O_7 + 18 H NO_3 \rightarrow 30 CO_2 + 9 N_2 + 29 H_2 O$$
(5)

Neka istraživanja pokazuju da gorivom siromašnija ($\Phi_e < 1$) reakcijska smjesa dovodi do nastajanja produkta manje veličine kristalita zbog manje količine topline oslobođene izgaranjem i niže temperature plamena. S druge strane, gorivom bogatija ($\Phi_e > 1$) reakcijska smjesa pridonosi stvaranju lokalne reducirajuće atmosfere što rezultira nastajanjem kisikovih vakancija u kristalnoj strukturi produkta [56].

Osim rješavanjem sustava redoks-reakcija, stehiometrijski omjer goriva i oksidansa može se izračunati dvama različitim pristupima. Prvi pristup dali su Jain i sur. [57] stavljajući u omjer oksidacijske i redukcijske elemente prisutne u smjesi:

$$\Phi_{\rm e} = \frac{\sum {\rm specifičnih koeficijenata oksidacijskih elemenata valencija}}{-\sum {\rm specifičnih koeficijenata redukcijskih elemenata valencija}},$$
(6)

pri čemu su specifični koeficijenti umnošci stehiometrijskih koeficijenata elemenata u kemijskoj formuli goriva i oksidansa pomoženi s *a* za gorivo i *b* za oksidans, dok se za valencije uzimaju oksidacijski brojevi pripadajućih elemenata u reakcijskim produktima. Valencije se uvrštavaju s predznakom + za oksidacijske elemente te s predznakom – za redukcijske elemente. Dakle, za slučaj limunske i nitratne kiseline izračun bi bio sljedeći:

$$\Phi_{\rm e} = \frac{7a \cdot 2_{\rm O} + 3b \cdot 2_{\rm O}}{-(6a \cdot (-4_{\rm C}) + 8a \cdot (-1_{\rm H}) + b \cdot (-1_{\rm H}) + b \cdot 0_{\rm N})} = 1, \tag{7}$$

iz čega slijedi a/b = 5/18, tj. omjer limunske kiselina i nitrata od 5:18.

Za razliku od prethodnog pristupa Epherre i sur. [47] ne razmatraju pojedinačne elemente, već molekule goriva i oksidansa kao cjeline:

$$\Phi_{\rm e} = \frac{\sum {\rm ukupnih \ valencija \ goriva}}{|\sum {\rm ukupnih \ valencija \ oksidansa|}}.$$
(8)

Pritom se gorivu ponovno pridružuje koeficijent *a*, a oksidansu koeficijent *b*, dok se u valencije uvrštavaju oksidacijski brojevi elemenata u reakcijskim produktima, ali s obrnutim predznacima u odnosu na pristup po Jainu i sur. [57]. Za slučaj limunske kiseline i nitrata, izračun je sljedeći:

$$\Phi_{\rm e} = \frac{a \cdot [(6 \cdot 4_{\rm C}) + (8 \cdot 1_{\rm H}) + (7 \cdot -2_{\rm O})]}{|b \cdot [(1 \cdot 1_{\rm H}) + (1 \cdot 0_{\rm N}) + (3 \cdot -2_{\rm O})]|} = 1, \tag{9}$$

te također proizlazi rezultat a/b = 5/18.

Kao glavne prednosti limunskog postupka sinteze izdvajaju se dobra homogenost reakcijske smjese postignuta miješanjem željenih omjera metalnih kationa na molekularnoj razini, visoka čistoća i

kristalnost produkta, uska raspodjela veličina čestica, jednostavna kontrola stehiometrije i dopiranja, jednostavna oprema za provedbu procesa i sinteza bez mnogo uzastopnih koraka [58].

Koprecipitacijski postupak

Koprecipitacijski postupak sinteze perovskita shematski je prikazan na slici 5. U tom se postupku miješaju otopina aniona (precipitacijskog agensa) i otopina metalnih kationa uslijed čega dolazi do procesa nukleacije, rasta kristala i aglomeracije te se iz reakcijske smjese talože soli u obliku karbonata, hidroksida, oksalata, sulfata, cijanida i sl. Dobiveni talog odvaja se filtracijom te se nekoliko puta ispire destiliranom vodom nakon čega slijedi sušenje na zraku ili u sušioniku te kalciniranje na visokoj temperaturi ovisno o fazi koja se želi dobiti [32].

Slika 5. Shema koprecipitacijskog postupka sinteze.

U koprecipitacijskoj sintezi perovskita cilj je dobiti čvrstu otopinu, tj. što homogeniju raspodjelu kationa u nastalom talogu kako bi difuzijski put prilikom kalciniranja bio što kraći i kako bi se olakšalo provođenje kemijske reakcije. Postizanje istovremenog taloženja svih prisutnih kationa u otopini zahtjevan je postupak koji zahtijeva kontrolu temperature, koncentracije, pH-vrijednosti

otopine te njezine homogenosti. Za kontrolu pH-vrijednosti najčešće služe amonijak, urea ili amonijev karbonat [59–62], pri čemu se najčešće talože miješani oksalati ili karbonati koji se počinju razgrađivati na 300 °C, odnosno 600 °C. Prednost miješanih karbonata kao prekursora očituje se u tome što se formiranje prekursora (miješanih karbonata) može lako pratiti i potvrditi infracrvenom spektroskopijom s Fourierovom transformacijom (FTIR) prije procesa kalciniranja [63].

Hidrotermalna sinteza

Prethodno opisanim postupcima priprave perovskita zajedničko je to što su za raspadanje prekursora i formiranje perovskitne faze potrebne visoke temperature u procesu kalciniranja. Poznato je da kalciniranje dovodi do rasta kristalita i agregacije čestica [33] zbog čega je tim postupcima vrlo teško pripremiti nanomaterijale. Stoga se za pripremu nanočestica vrlo često primjenjuje hidrotermalna sinteza. Pojam *hidrotermalno* dolazi iz geologije, a prvi ga je upotrijebio škotski geolog Sir Roderick Murchison sredinom 19. st. kako bi opisao fenomene koji se dešavaju u Zemljinoj kori te objasnio formiranje stijena i minerala pod utjecajem vode, visokog tlaka i temperature [64]. U inženjerstvu materijala pojam hidrotermalne sinteze označava heterogenu reakciju u vođenom mediju pri visokom tlaku ($10^2 - 10^6$ kPa) i temperaturi (100 - 1000 °C) čime se osigurava topljivost i rekristalizacija materijala koji su gotovo netopljivi pri normalnim uvjetima (sobna temperatura i atmosferski tlak) [65]. Prednosti hidrotermalne sinteze očituju se u mogućnosti priprave nanomaterijala na relativno niskim temperaturama uz visoko iskorištenje reakcije te u mogućnosti kontrole morfologije što znači da se tom metodom mogu pripremiti nanočestice, nanocjevčice i šuplje nanosfere širokog raspona fizikalnih i kemijskih svojstava [64,66].

Reverzna mikroemulzijska metoda

Osim hidrotermalne sinteze, reverzna mikroemulzijska metoda navodi se u literaturi [67–69] kao učinkovita niskotemperaturna metoda priprave nanostrukturiranih materijala. Naziv reverzna mikroemulzijska metoda potječe od toga što se sinteza provodi u organskim otapalima (uljima) uz dodatak vode pa se molekule površinski aktivne tvari orijentiraju oko vodene jezgre obrnuto (reverzno) od orijentacije koju bi imale u vodenom mediju [70], tj. oblikuje se reverzna mikroemulzija. Sinteza se provodi u mikroemulzijama voda/ulje pri čemu se reaktant u obliku

nitrata ili neke druge soli otapa u vodenim micelama mikroemulzije koje su zapravo nanoreaktori za sintezu čestica željenog materijala. Budući da su vodene micele male, mali su i nukleusi, a rast čestica ograničava se dodatkom površinski aktivne tvari koja se adsorbira na površinu čestice čim ona dosegne veličinu vodene jezgre [71]. Shematski prikaz sinteze nanočestica reverznim mikroemulzijskim postupkom dan je na slici 6.

Slika 6. Shematski prikaz sinteze nanočestica reverznim mikroemulzijskim postupkom (prema [70]).

Soleymani i sur. [69] tim su postupkom uspješno pripremili nanočestice La_{0,7}Sr_{0,3}Mn_{1-y}Ti_yO₃. Na početku su pripremljene dvije emulzije od kojih je prva sadržavala metalne nitrate, a druga amonijev oksalat koji je imao ulogu taložnog sredstva. Te dvije mikroemulzije zatim su miješane 12 h na sobnoj temperaturi, nakon čega je talog prekursora odvojen centrifugiranjem i žaren na 700 °C tijekom 4 h. Taj postupak sinteze sličan je koprecipitacijskom postupku, a prednost je ta što se mogu dobiti nanočestice. Međutim, glavni nedostaci tog postupka su uporaba organskih otapala te nemogućnost sinteze konačnog produkta bez kalciniranja.

2.3. Svojstva perovskita

2.3.1. Feroelektričnost i električna vodljivost

Feroelektričnost označava pojavu spontane polarizacije materijala, tj. nastanak dipolnih momenata na čiju se orijentaciju može utjecati vanjskim električnim poljem [72], kako je prikazano na slici 7.

Slika 7. Grafički prikaz polarizacije materijala pod djelovanjem vanjskog električnog polja.

Feroelektričnost u perovskitima posljedica je distorzije, tj. malih pomaka kationa u odnosu na anione koji rezultiraju nastankom dipolnih momenata i spontane polarizacije [73]. To svojstvo najprije je otkriveno u barijevu (BaTiO₃) i stroncijevu titanatu (SrTiO₃) koji su i dalje predmet znanstvenih istraživanja te se upotrebljavaju u visokonaponskim kondenzatorima [72]. Perovskiti su naročito interesantni jer uz feroelektričnost posjeduju i svojstvo električne vodljivosti [74]. Električna vodljivost je svojstvo perovskita koji sadrže miješane valencije kationa B, tj. vezu B^{n+} –O– B^{n+1} gdje su dva kationa B u različitim oksidacijskim stanjima premoštena anionom kisika. Interakcija između *d*-orbitala kationa B i 2*p*-orbitala kisika dovodi do mehanizma izmjene elektron/šupljina koji se u literaturi naziva mehanizmom dvostruke izmjene (engl. *doubleexchange mechanism*) ili pak Zenerovim mehaniznom izmjene prema Clarenceu Zeneru koji je prvi opisao uočenu pojavu 1951. [17]. Da bi se Zenerov mehanizam mogao provoditi, nužno je da u kristalnoj rešetki na poziciji B budu smješteni ioni prijelaznih metala s nepotpuno popunjenim *d*orbitalama, poput Mn i Fe. Shematski prikaz Zenerova mehanizma izmjene u manganitima na vezi Mn³⁺–O–Mn⁴⁺ dan je na slici 8.

Slika 8. Shematski prikaz Zenerova mehanizma izmjene u magnanitima.

Ukoliko unutar kristalne rešetke manganita postoje ioni Mn³⁺ i Mn⁴⁺, stanje Mn³⁺–O–Mn⁴⁺ može prijeći u Mn⁴⁺–O–Mn³⁺ "preskakivanjem" elektrona preko aniona kisika, tvoreći vezu nalik metalnoj [5,17].

Feroelektričnost se u perovskitima obično istražuje transmisijskom elektronskom mikroskopijom (engl. *transmission electron microscopy*, TEM) pri čemu se na atomskom razlučivanju identificiraju domenski zidovi. Pritom se pojam domenskih zidova upotrebljava za opisivanje fenomena spontano narušene očekivane orijentacije unutar čiste kristalne faze kako je prikazano na

slici 9. [75-77].

Slika 9. Shematski prikaz karakterističnih domenskih struktura u (a) monokristalnim i (b) polikristalnim feroelektricima [77].

Za daljnja istraživanja funkcionalnih svojstava domenskih zidova primjenjuju se tehnike poput pretražne tunelirajuće mikroskopije (engl. *scanning tunneling microscopy*, STM) i mikroskopije

atomskih sila s mjerenjem struje (engl. *conductive atomic force microscopy*, C-AFM) [78]. Za analizu feroelektričnih i električnih svojstava perovskita najviše se primjenjuje C-AFM tehnika koja se može provoditi pri normalnim okolišnim uvjetima zbog izvrsne stabilnosti perovskita. Metoda se temelji na kontaktu vrha igle s površinom uzorka pri čemu se topografija površine dobiva pomoću detektora kojim se mjere sile koje uzrokuju otklon vrha igle od uzorka, dok se električna svojstva određuju iz struje nastale između vrha igle i površine materijala [79]. Tom tehnikom moguće je istovremeno odrediti morfologiju uzorka (topografiju) te odrediti lokalna električna svojstva na površini uzoraka.

Električna vodljivost perovskita određuje se impedancijskom spektroskopijom (engl. *impedance spectroscopy*, IS) u čvrstom stanju u širokom temperaturnom (od –80 do 600 °C) i frekvencijskom rasponu (od 0,01 Hz do 1 MHz). Metoda se temelji na pobudi uzorka poznatom strujom ili naponom pri čemu se mjeri rezultantni napon ili struja kao odgovor na tu pobudu. Rezultati mjerenja opisuju se ekvivalentnim strujnim krugom te se dobiva uvid u fizikalna svojstva uzorka poput feroelektričnog prijelaza, distribucije napona u masi uzorka i na granicama zrna [80].

2.3.2. Piezoelektrična i piroelektrična svojstva

Piezoelektrična i piroelektrična svojstva perovskita izravno su povezana s njihovim feroelektričnim svojstvima. Piezoelektrična svojstva posjeduju materijali koji stvaraju električni naboj kada se podvrgnu mehaničkom naprezanju (izravni piezoelektrični efekt) ili pak oni koji se mehanički deformiraju kada se na njih primijeni električni napon (inverzni piezoelektrični efekt) [81]. Piezoelektrični efekt javlja se u svim perovskitima koji nemaju centar simetrije, a reprezentativni primjer je olovov cirkonat titanat, Pb(Zr,Ti)O₃, koji se primjenjuje u senzorima i u uređajima za upravljanje i regulaciju [82].

Piroelektrični efekt je fenomen spontane polarizacije materijala uzrokovane promjenom temperature koji se očituje kao pojava slobodnog naboja na površini materijala ili pak kao nastajanje strujnog toka u vanjskom strujnom krugu u koji je materijal uključen [83]. Istraživanje tehnološke primjene takvih materijala započelo je 1960-ih te se danas piroelektrici primjenjuju u protupožarnim alarmima, protuprovalnim detektorima, toplinskom skeniranju za vojne potrebe, instrumentima za analizu plinova, itd. [84]. Taj efekt pojavljuje se u materijalima koji posjeduju

polarnu točku simetrije, a najznačajniji perovskiti koji pokazuju piroelektrični efekt su PbTiO₃ i Pb(Zr_{0,9}Ti_{0,1})O₃ [83,84].

U razvoju novih piezoelektrika, naročito nanokristala, ključan korak je karakterizacija. Novija istraživanja pokazuju da je AFM-tehnika s piezosenzorom učinkovita i nedestruktivna tehnika za određivanje topografije i vodljivosti piezoelektričnih nanokristala. Mjerenje se provodi kako je opisano u odjeljku 2.3.1., a deformacija materijala uslijed primjene napona prati se refleksijom laserskog snopa od vrha AFM-igle. Budući da se mjerenje provodi kontaktnom metodom gdje su vrh igle i uzorak u stalnom kontaktu, nužno je imati stabilan uzorak pripremljen u obliku tankog filma [82].

Piroelektrični materijali karakteriziraju se tehnikama koje mjere struju oslobođenu zagrijavanjem materijala ili izlaganjem materijala infracrvenom zračenju [83]. Najčešće se uzorak zagrijava ili hladi poznatom brzinom pri čemu se nastala struja mjeri elektrometrom. Glavni nedostatak te metode je što umjesto piroelektrične struje može mjeriti toplinski potaknutu struju, nastalu uslijed oslobađanja "zamrznutih" naboja zagrijavanjem materijala. Stoga su razvijene metode koje uključuju osvjetljivanje materijala infracrvenim zračenjem čiji se intenzitet sinusoidno mijenja. Zračenje zagrijava materijal i rezultira piroelektričnom strujom koja se mjeri. Dodatna prednost te metode jest što sinusoidna pobuda male amplitude uzrokuje isto takvo zagrijavanje materijala, što je vrlo slično uvjetima rada piroelektričnog detektora [83,85]. Dakle, tako se istovremeno testira odgovor materijala na pobudu u uvjetima ciljane primjene.

2.3.3. Supravodljivost

Supravodljivost je stanje pojedinih materijala koje se očituje u nestanku njihova električnoga otpora kada se ohlade ispod određene temperature, tj. prolasku električne struje kroz tanku izolatorsku barijeru unutar njih bez električnoga otpora (Josephsonov učinak) i lebdenju magneta iznad njihove površine (Meissnerov učinak) [34]. Svojstvo supravodljivosti u perovskitima uočeno je u La₂CuO₄ i La_{2-x}Sr_x(Ba_x)CuO₄ (x < 0,2) na temperaturama 30 – 40 K. Ti slojeviti perovskiti posjeduju ortorompsku strukturu sastavljenu od slojeva CuO₂. Budući da su perovskiti skloni nestehiometriji kisika koja igra važnu ulogu u njihovim svojstvima, uočeno je i da deficit kisika veći od 0,6 dovodi do promjene strukture iz ortorompske u tetragonsku te do gubitka svojstva supravodljivosti [86]. Glavni izazov ostao je sintetizirati perovskite koji bi to svojstvo
supravodljivosti zadržavali i na višim temperaturama pogodnijim za tehnološku primjenu. Xiao i sur. [87] proučavali su kako nestehiometrija kisika utječe na supravodljivost tetragonskog YBa₂Cu₃O₇ te su uočili da smanjenje sadržaja kisika od stehiometrijske vrijednosti 7 do nestehiometrijske vrijednosti 6 dovodi do sniženja temperature potrebne za svojstvo supravodljivosti sa 92 K na 0 K. Time je potvrđeno da ravnine CuO₂ u perovskitnoj strukturi pridonose brzom transportu elektrona te da pretjerana nestehiometrija kisika dovodi do nestanka tog mehanizma. Važnost transporta elektrona kroz ravnine CuO₂ potvrđena je i rezultatima Baiuttija i sur. [88] koji su proučavali Sr-dopiranje jednog atomskog sloja unutar La₂CuO₄ i potvrdili da dopiranje znatno pridonosi supravodljivosti Sr-dopiranog La₂CuO₄.

2.3.4. Magnetska svojstva

Magnetska svojstva pokazuju materijali koji imaju nesparene elektrone u *d*- i *f*-orbitalama, a to su prijelazni metali i njihovi spojevi. Materijali općenito mogu imati različita magnetska uređenja koja se dijele u pet skupina prikazanih na slici 10. [89]:

- a) Paramagnetsko uređenje karakterizira nasumična orijentacija magnetskih momenata u prostoru. Kada se takav materijal stavi u vanjsko magnetsko polje, magnetski momenti usmjeravanju se u smjeru primijenjenog magnetskog polja.
- b) Feromagnetsko uređenje imaju oni materijali kod kojih su magnetski momenti nesparenih elektrona međusobno paralelni te imaju određeni ukupan magnetski moment.
- c) Antiferomagnetsko uređenje je suprotno feromagnetskom te su u njemu magnetski momenti nesparenih elektrona jednaki po iznosu, ali suprotne orijentacije te se međusobno poništavaju pri čemu je ukupni magnetski moment jednak nuli.
- d) Slabo antiferomagnetsko uređenje je ono u kojem u antiferomagnetskim materijalima postoji vrlo mali magnetski moment jer orijentacije magnetskih momenata nisu u potpunosti antiparalelne te se ne poništavaju potpuno.
- e) Ferimagnetsko uređenje u kojem su magnetski momenti nesparenih elektrona orijentirani antiparalelno, ali nisu jednakog iznosa pa materijal posjeduje određeni magnetski moment.

Slika 10. Tipovi magnetskih uređenja sustava; (a) paramagnetsko, (b) feromagnetsko, (c) antiferomagnetsko, (d) slabo antiferomagnetsko i (e) ferimagnetsko.

Feromagnetska i antiferomagnetska svojstva opažaju se u perovskitima u kojima su ioni u bliskom kontaktu te njihovi magnetski momenti utječu jedni na druge. Kao što je već rečeno, feromagnetizam je svojstvo prijelaznih metala i njihovih spojeva, dok se antiferomagnetizam obično uočava u keramici koja sadrži ione Mn^{2+} , Fe^{3+} i Gd^{3+} [90].

Temperatura na kojoj feromagnetsko uređenje postaje paramagnetsko svojstvena je svakom materijalu te se naziva Curiejevom temperaturom ($T_{\rm C}$). Iznad te temperature materijali više ne mogu zadržati svoje magnetsko uređenje zbog termičkih gibanja. U feromagnetskim manganitima dopiranim ionima zemnoalkalijskih metala, primjena vanjskog magnetskog polja (H) znatno utječe na električnu vodljivost pri temperaturama bliskim $T_{\rm C}$ te se taj fenomen naziva kolosalnim magnetootporom (engl. *colossal magnetoresistance*, CMR) [91]. Taj su fenomen prvo uočili Searle i Wang [92] 1969. prilikom proučavanja La_{1-x}Pb_xMnO₃. Tada je zaključeno da je za postojanje

fenomena nužna istovremena prisutnost miješanih Mn³⁺ i Mn⁴⁺ valencija do koje dolazi dopiranjem trovalentnog La-iona dvovalentnim Pb-ionom kako bi se zadržala elektroneutralnost spoja. Međutim, Baldini i sur. [93] uočili su isti CMR-fenomen i u nedopiranom LaMnO₃. Ta pojava tada je objašnjena nastankom nehomogene faze s dvjema komponentama pod djelovanjem tlaka: (i) nevodljivom komponentom sa strukturnom distorzijom i (ii) vodljivom komponentom bez strukturne distorzije. Zaključeno je da se CMR-fenomen javlja uslijed prijelaza perovskita iz izolatorske u vodičku fazu koja je praćena promjenom magnetskog uređenja iz paramagnetskog u feromagnetsko u primijenjenom vanjskom magnetskom polju [94]. Budući da je za CMR potrebno na materijal primijeniti magnetsko polje i od nekoliko tesla što je nepraktično za primjenu, novija istraživanja usmjerena su na magnetootpor u strukturama kao što su filmovi i tunelni spojevi (tanke izolacijske barijere između dvaju elektrovodljivih slojeva) kod kojih se CMR postiže i niskim magnetskim poljima [91].

Važno svojstvo karakteristično za manganite je i magnetokalorični učinak, tj. svojstvo reverzibilne promjene temperature feromagnetskog materijala kao odgovora na uključivanje i isključivanje vanjskog magnetskog polja. S termodinamičkog gledišta magnetski materijali mogu se promatrati kao sustavi sastavljeni od triju glavnih spremnika energije: fonona ili vibracijske pobude rešetke, magnetskih stanja magnetske podrešetke i elektronskog doprinosa povezanog s elektronskim vrpcama materijala. Pojava magnetokaloričnog učinka povezana je sa svim trima pobudama. Kada se na magnetski materijal primijeni vanjsko magnetsko polje, magnetski momenti nastoje se orijentirati u smjeru polja kako bi smanjili ukupnu energiju. To dovodi do smanjenja entropije magnetske podrešetke i sustav prelazi iz neuređenog u magnetski uređeno stanje. Ukoliko se materijal nalazi u adijabatskim uvjetima, sustav će smanjenje magnetske entropije morati kompenzirati povećanjem entropije kristalne rešetke kako bi ukupna entropija ostala konstantna, što će rezultirati mjerljivim povišenjem temperature materijala. Ta je promjena reverzibilna; kada se vanjsko magnetsko polje ukloni, doći će ponovno do nasumične orijentacije magnetskih momenata i povećanja magnetske entropije što će rezultirati smanjenjem entropije kristalne rešeke i očitovati se kao sniženje temperature magnetokaloričnog materijala [11,91]. To svojstvo važno je za razvoj magnetskih hladnjaka koji se sve više proučavaju kao zamjena za klasične kompresorske hladnjake zbog svoje učinkovitosti, uštede energije i netoksičnosti za okoliš jer se u postupku magnetskog hlađenja ne upotrebljavaju freoni i ostali štetni plinovi [91]. Najveći izazov u razvoju magnetskih hladnjaka je taj što većina magnetokaloričnih materijala ima niske vrijednosti $T_{\rm C}$ te gube svoja svojstva na sobnoj temperaturi, što im ograničava primjenu. Prvi magnetski hladnjaci za komercijalnu primjenu konstruirani su s gadolinijem (Gd) kao radnim materijalom, a s obzirom na njegovu visoku cijenu, manganiti se intenzivno istražuju kao alternativni radni materijali [11,54,91].

Magnetska svojstva materijala određuju se najčešće supravodljivim kvantnim interferometrom (engl. *superconducting quantum interferometer device*, SQUID) te magnetometrom s vibrirajućim uzorkom (engl. *vibrating sample magnetometer*, VSM). SQUID-tehnika naročito je pogodna za mjerenje magnetskih svojstava nanomaterijala i može se primijeniti za određivanje magnetskih momenata individualnih molekula [95]. Komercijalni SQUID-magnetometri detektiraju promjenu magnetskog toka stvorenog mehaničkim gibanjem uzorka kroz supravodljivu zavojnicu. Rezultantni magnetski tok zatim se pretvara u napon proporcionalan magnetskom momentu [96]. S druge strane, VSM-tehnika spada u direktnu tehniku kojom se mjeri makroskopska magnetizacija uzorka. Pri VSM-mjerenju uzorak je pričvršćen na oscilator koji vibrira poznatom frekvencijom. Budući da je uzorak magnetiziran vanjskim magnetskim poljem, u detekcijskim zavojnicama inducira se struja proporcionalna magnetskom momentu koji nastaje u primjenjenom polju [97].

2.3.5. Katalitička svojstva

Katalizatori su materijali koji imaju sposobnost ubrzati kemijsku reakciju sniženjem energijske barijere između reaktanata, prijelaznih stanja i konačnih produkata [98]. U katalitičkoj aktivnosti perovskita glavnu ulogu ima kation prijelaznog metala smješten na poziciji B budući da redokssvojstva materijala potječu od njegovih miješanih valencija. Omjer miješanih valencija dodatno se može povećati supstitucijom kationa na poziciji A koji je također odgovoran za stabilizaciju strukture prema Goldschmidtovu faktoru tolerancije [25,99]. Za katalitičku aktivnost perovskita važne su i kisikove vakancije budući da se reakcije oksidacije provode prema Mars – van Krevelenovu mehanizmu [100], u kojem se adsorpcija disociranog kisika iz zraka pospješuje kisikovim vakancijama u kristalnoj rešetki:

$$(-M--) + \frac{1}{2} O_2 \rightarrow (-M-O-M-)$$

$$(10)$$

Regeneracija vakancija provodi se redukcijom oksida redukcijskim sredstvom (R = CO, NO_x , hlapljive organske komponente, itd.) kako bi se završio katalitički ciklus:

$$\mathbf{R} + (-\mathbf{M} - \mathbf{O} - \mathbf{M}) \rightarrow (-\mathbf{R} - \mathbf{O}) + (-\mathbf{M} - \mathbf{M} - \mathbf{M})$$
(11)

Katalitička aktivnost perovskita poznata je od 1970. kada su Libby [101] i Voorhoeve i sur. [102] predložili perovskite na bazi kobalta kao zamjenu za plemenite metale u elektrokatalitičkoj i katalitičkoj razgradnji spojeva prisutnih u ispušnim plinovima iz motornih vozila. Ohrabrujući rezultati dobiveni su prilikom testiranja Co- i Mn-perovskita za oksidaciju ugljikova monoksida i redukciju dušikova(II) oksida. Međutim, početni entuzijazam splasnuo je zbog visoke osjetljivosti perovskita na SO₂-trovanje [99,103].

S druge strane, perovskiti su obećavajući katalizatori za oksidaciju hlapljivih organskih tvari (engl. *volatile organic compounds*, VOCs) koje mogu biti štetne za ljudsko zdravlje i okoliš ako se njihove emisije ne kontroliraju. Za tu primjenu istraživani su perovskiti različitih sastava, a najbolji rezultati dobiveni su primjenom perovskita koji sadrže Mn, Co, La i Ce. Istraživani su i perovskiti na bazi Cr, koji nisu zaživjeli u primjeni unatoč svojoj visokoj katalitičkoj aktivnosti, jer prilikom oksidacije dolazi do nastanka vrlo otrovnog kromova(VI) oksida. Perovskiti na bazi vanadija pokazali su pak dobru otpornost prema trovanju sumporom i kloriranim spojevima, ali nisu pogodni za pročišćavanje vlažnih plinovitih smjesa jer može doći do jake korozije opreme [104]. Među svim navedenim perovskitnim katalizatorima, oni na bazi Mn najpogodniji su za daljnja istraživanja i potencijalnu primjenu zbog niske cijene, niske toksičnosti i visoke učinkovitosti za oksidaciju kloriranih VOC-smjesa. Katalitička aktivnost obično se testira na modelnim molekulama (najčešće toluenu) provođenjem mjerenja do uspostave stacionarnog stanja pri konstantnoj temperaturi i protoku reakcijske smjese. Učinkovitost katalizatora u procesu oksidacije prati se određivanjem konverzije modelne komponente, odnosno mjerenjem promjene njezine ulazne i izlazne koncentracije [105].

2.4. Teorijska podloga instrumentalnih metoda za strukturnu i primjensku karakterizaciju

2.4.1. Infracrvena spektroskopija s Fourierovom transformacijom

Infracrvena (IR) spektroskopija je instrumentalna metoda za identifikaciju funkcionalnih skupina u molekuli te se njome proučavaju vibracijski prijelazi molekula u području valnih duljina od 2,5 do 25 µm. Analizom se dobiva IR-spektar koji prikazuje apsorbirano elektromagnetsko zračenje kao funkciju valne duljine. Da bi u molekuli došlo do apsorpcije elektromagnetskog zračenja, frekvencija radijacije elektromagnetskog zračenja mora biti jednaka frekvenciji vibracija veza u molekuli [106]. Razlikuju se dvije osnovne vrste vibracija (slika 11.):

- Istezanje (engl. stretching) kojem odgovaraju veće vrijednosti valnih brojeva i
- Savijanje (engl. *bending*) kojem odgovaraju niže vrijednosti valnih brojeva.

Slika 11. Vrste vibracija u molekulama (prema [106]).

Unutar IR-spektroskopije, vrlo zastupljena tehnika analize materijala je infracrvena spektroskopija s Fourierovom transformacijom (engl. *Fourier-transform infrared spectroscopy*, FTIR) koja se zasniva na prikupljanju interferograma, tj. prikaza intenziteta svjetlosti kao funkcije razlike optičkog puta zraka primjenom interferometra. Najčešći tip interferometra je Michelsonov interferometar shematski prikazan na slici 12. Sastoji se od razdjelnika snopa, nepomičnog zrcala (zrcalo 1) te od zrcala koje se vrlo precizno pomiče naprijed i nazad (zrcalo 2). Ulazno zračenje dolazi na razdjelnik snopa izrađen od posebnog materijala koji transmitira polovicu upadnog

zračenja, dok drugu polovicu reflektira. Transmitirano zračenje odlazi na nepomično zrcalo, a reflektirano zračenje pada na pomično zrcalo. Nepomično i pomično zrcalo zatim reflektiraju zračenje nazad na razdjelnik snopa pri čemu se polovica upadnog zračenja ponovno transmitira, a druga polovica reflektira što rezultira prolaskom jedne zrake prema detektoru (izlazu), dok se druga zraka vraća prema izvoru (ulazu). Razlika optičkog puta definira se kao umnožak fizičke udaljenosti koju je prošlo pomično zrcalo i indeksa loma medija (*n*) u interferometru koji je najčešće zrak. Signal generiran FTIR-spektrometrom naziva se interferogramom i znatno je kompleksniji od jednostavne sinusoide koja bi bila generirana u slučaju jedne valne duljine svjetlosti [106,107].

Slika 12. Shematski prikaz Michelsonova interferometra [107].

Kako bi se snimljeni interferogram pretvorio u spektar upotrebljava se matematička operacija – Fourierova transformacija koja se zasniva na prebacivanju funkcije iz jedne domene u drugu. U slučaju FTIR-a interferogram, tj. spektar kao funkcija pomaka pretvara se u spektar koji daje ovisnost apsorbancije ili transmitancije o valnom broju [106].

IR-spektroskopija najčešće se primjenjuje na organske spojeve budući da anorganski spojevi, kojima pripadaju i perovskitni oksidi, imaju manji broj širih vrpci koje se nalaze pri nižim valnim brojevima. Stoga je pri analizi anorganskih spojeva FTIR često samo prateća tehnika jer se njime ne može odrediti sastav i kristalna struktura nastalog spoja.

2.4.2. Rendgenska difrakcijska analiza i Rietveldova metoda utočnjavanja

Rendgenska difrakcijska analiza (engl. *X-ray diffraction analysis*, XRD) najčešće je primjenjivana tehnika analize kristalnih uzoraka, i temelji se na difrakciji rendgenskog zračenja $(\lambda = 10^{-11} - 10^{-8} \text{ m})$ na kristalnoj rešetki. Difrakcija rendgenskih zraka, valne dužine λ , u kristalu u nekom prostornom smjeru može se predočiti kao refleksija od skupa mrežnih ravnina razmaka *d* pod kutom θ , koji zadovoljava Braggov uvjet: $2d\sin\theta = \lambda$ [108]. Instrument za rendgensku difrakcijsku analizu naziva se difraktometrom i sastoji se od:

- Rendgenske cijevi koja je izvor zračenja;
- Goniometra kojim se rotira uzorak i tako mijenja upadni kut zračenja,
 tj. difrakcijski kut (θ);
- Detektora koji radi na principu ionizacijske komore.

Dobiveni električni signal pojačava se i šalje na računalo te se dobiva grafički prikaz – difraktogram koji prikazuje ovisnost intenziteta (*I*) difraktiranog zračenja o difrakcijskom kutu. Budući da instrument bilježi kut zakretanja brojača koji je jednak 2θ , difraktogrami uobičajeno prikazuju intenzitet kao funkciju 2θ . Snimljeni difraktogram ovisi o geometriji kristalne rešetke, vrsti i položaju atoma u njoj, te dvije različite tvari ne mogu dati isti difraktogram. Stoga se rendgenska difrakcijska analiza upotrebljava kao važna metoda za kvalitativnu i kvantitativnu analizu kristalnih uzoraka, tj. za identifikaciju pojedinih kristalnih faza i određivanje njihovih udjela [109].

Kvalitativna analiza difraktograma provodi se usporedbom snimljenih maksimuma sa standardnim rendgenskim ICDD-karticama (engl. *International Centre for Diffraction Data*) pojedinih faza. Za kvantitativnu analizu difraktograma najčešće se primjenjuje tehnika Rietveldova utočnjavanja nazvana po svojem izumitelju Hugu Rietveldu koji ju je razvio i objavio 1969. Utočnjavanje kristalne strukture prema Rietveldu provodi se metodom najmanjih kvadrata, tj. minimiziranjem sume težinskih, kvadriranih razlika opaženih i izračunatih intenziteta na dobivenoj difrakcijskoj slici. Kao ulazni podaci pri utočnjavanju unose se strukturne informacije o svakoj pojedinoj fazi sadržane u CIF-datoteci (engl. *cystallographic information file*). CIF-datoteka je zapravo tekstualna datoteka sastavljena od podataka kao što su simetrija prostorne grupe, parametri jedinične ćelije, koordinate položaja atoma te zaposjednutosti (okupancije) pojedinih položaja određenim atomima [110].

Za procjenu uspješnosti utočnjavanja, tj. slaganja između modela i eksperimentalnih podataka, primjenjuju se statistički pokazatelji [111]. Najvažniji među njima je težinska vrijednost slaganja profila R_{wp} (engl. *resultant weighted-profile factor*) koja se definira sljedećom jednadžbom:

$$R_{\rm wp} = \left[\frac{\sum_{i} w_i (y_{{\rm C},i} - y_{{\rm O},i})^2}{\sum_{i} w_i (y_{{\rm O},i})^2}\right]^{1/2},\tag{12}$$

gdje je $y_{C,i}$ izračunati, a $y_{O,i}$ eksperimentalno određeni intezitet na vrijednosti difrakcijskog kuta $2\theta_i$, dok je w_i težinski faktor koji odgovara recipročnoj vrijednosti kvadrata standardne nesigurnosti $\sigma[y_{O,i}]$.

Idući važan statistički pokazatelj je očekivani *R*-faktor, R_{exp} (engl. *expected R factor*) koji označava najbolju moguću R_{wp} -vrijednost koja se pri modeliranju može postići u slučaju kada model u potpunosti točno predviđa sve vrijednosti $y_{0,i}$. U tom bi slučaju prosječna vrijednost $(y_{C,i}-y_{0,i})^2$ bila jednaka $\sigma^2[y_{0,i}]$, a očekivana vrijednost $w_i(y_{C,i}-y_{0,i})^2$ bila bi jednaka 1. Stoga se R_{exp} može definirati jednadžbom (13):

$$R_{\exp} = \left[\frac{N}{\sum_{i} w_i (y_{\mathsf{O},i})^2}\right]^{1/2},\tag{13}$$

gdje je *N* broj izmjerenih intenziteta umanjen za broj parametara koji se utočnjavaju i uvećan za broj ograničenja koja se primjenjuju u metodi najmanjih kvadrata i predstavlja broj stupnjeva slobode.

Veličina koja povezuje oba navedena *R*-faktora je χ^2 i definira se kao:

$$\chi^2 = (R_{\rm wp}/R_{\rm exp})^2.$$
(14)

Za podatke dobivene XRD-analizom, modeliranje se smatra završenim za vrijednosti R_{exp} i $R_{wp} < 10 \%$ i $1 < \chi^2 < 2$. Bez obzira na statističke pokazatelje, prije završetka modeliranja važno je i vizualno pregledati opisuje li model zadovoljavajuće svaki od difrakcijskih maksimuma. Iz tako dobivenog modela dobivaju se vrijedni podaci za pojedinu fazu, poput parametara jedinične ćelije i okupancija pojedinih atoma [111]. Utvrđivanje okupancija atoma posebno je važno za potvrdu udjela dopiranja i nestehiometrije kisika u dopiranim manganitima. Osim toga, praćenjem parametara jediničnih ćelija i njihovih promjena također je moguće utvrditi je li došlo do uspješnog dopiranja u proučavanom sustavu.

2.4.3. Pretražna elektronska mikroskopija i energijski disperzivna rendgenska spektroskopija Pretražna elektronska mikroskopija (engl. *scanning electron microscopy*, SEM) je tehnika koja se koristi fokusiranim snopom elektrona visoke energije za stvaranje slike površine uzorka. Shema pretražnog elektronskog mikroskopa prikazana je na slici 13.

Slika 13. Shema pretražnog elektronskog mikroskopa [112].

Elektroni nastaju u izvoru elektrona koji se još naziva i elektronski top te se ubrzavaju na anodi i usmjeravaju na leće koje imaju ulogu preciznog fokusiranja elektronskog snopa na površinu uzorka. Optimalni radni napon pri SEM-analizi kreće se od 1 do 50 kV jer preveliki napon šteti razlučivanju površine zbog prejakog prodiranja elektrona u dubinu uzorka. Snop elektrona sustavno prelazi preko površine uzorka koji se analizira pri čemu uslijed međudjelovanja s uzorkom nastaju sekundarni elektroni nižih energija koji se detektiraju i iscrtavaju u obliku slike na ekranu računala. Iscrtavanje slike sinkronizirano je s prelaženjem snopa elektrona preko uzorka

okrenuta prema detektoru svjetlija, dok je površina okrenuta od detektora tamnija jer su sekundarni elektroni s tog dijela uzorka djelomično zaklonjeni samim uzorkom [112,113].

Energijski razlučujuća rendgenska spektroskopija (engl. *energy dispersive X-Ray spectroscopy*, EDXS) je tehnika koja se upotrebljava zajedno s elektronskom mikroskopijom i u kojoj elektronski snop energije od 10 do 20 keV pada na površinu uzorka i izbija elektron njegove ljuske, a skok elektrona iz ljuske više energije u ispražnjenu ljusku uzrokuje emisiju rendgenskog zračenja. Kao rezultat EDXS-analize dobiva se spektar ovisnosti intenziteta o energiji emitiranog zračenja. Budući da je energija emitiranog zračenja svojstvena svakom elementu, moguće je identificirati elemente prisutne u uzorku. S druge strane, kvantitativni EDXS nije tako jednostavan jer različiti elementi mogu dati maksimume različitih intenziteta za isti udio. Na kvantifikaciju također utječe apsorpcija u uzorku koja se najčešće događa pri radu s debelim uzorcima, kao i pojava fluorescencije koja se javlja kada je energija oslobođene rendgenske zrake dovoljna da pobudi susjedni atom. Iako moderni računalni programi mogu korigirati navedene utjecaje, EDXS-analizu najbolje je raditi na tankim uzorcima i filmovima kako bi se dobili što pouzdaniji rezultati. Također je važno napomenuti da se EDXS-om najlakše detektiraju ioni teških metala poput Ag, Au i Pd, dok je lake elemente poput O i H jako teško ili nemoguće detektirati [113,114].

2.4.4. Impedancijska spektroskopija

Impedancijska spektroskopija (engl. *impedance spectroscopy*, IS) je metoda istraživanja električnih svojstava materijala i međupovršina između materijala i elektroda. Prema tome istražuje li se gibanje nosioca naboja u kapljevinama ili krutinama, impedancijska spektroskopija dijeli se na elektrokemijsku impedancijsku spektroskopiju i na impedancijsku spektroskopiju u čvrstom stanju (engl. *solid-state*). Budući da su tema ovog rada čvrsti uzorci manganita, u ovom će se odjeljku objasniti princip analize materijala impedancijskom spektroskopijom u čvrstom stanju.

IS-mjerenja izvode se u ćeliji s dvjema identičnim elektrodama između kojih se smješta uzorak pripravljen u obliku čvrstog i kompaktnog peleta. Mjerenja se mogu provoditi u inertnoj, reducirajućoj ili oksidirajućoj atmosferi, ili u vakuumu. Metoda se temelji na pobudi uzorka strujom ili naponom poznatog iznosa preko elektroda, te mjerenju odgovora uzorka na tu pobudu, tj. rezultantnog napona ili struje. Standardni način provedbe mjerenja je pobuda uzorka naponom određene frekvencije i mjerenje amplitude i faznog pomaka rezultantne struje na toj frekvenciji, kako je shematski prikazano na slici 14. [115].

Slika 14. Osnovni princip rada impedancijske spektroskopije [115].

Mijenjanjem pobudne frekvencije napona i temperature u ćeliji s uzorkom može se odrediti impedancija u širokom području frekvencija pri različitim temperaturama. Pritom je važno da iznos primijenjenog pobudnog napona bude dovoljno mali da odziv sustava bude linearan.

Kada se na uzorak primijeni izmjenični napon određene frekvencije, javlja se cijeli niz osnovnih mikroprocesa koji pridonose ukupnom električnom odgovoru uzorka, a to su: prijenos elektrona kroz dodirnu površinu elektroda-uzorak, prijenos elektrona u masi uzorka te gibanje iona u ionskim vodičima. Kao što je već navedeno, mjerenja se mogu provoditi pri različitim frekvencijama, temperaturama i u različitim atmosferama što omogućuje ispitivanje svojstva uzorka u uvjetima njegove potencijalne primjene [115].

Električna impedancija, $Z^*(\omega)$ definira se prema Ohmovu zakonu kao omjer pobudnog napona i rezultantne struje [115]:

$$Z^*(\omega) = \frac{U(t)}{I(t)},\tag{15}$$

ili modulom impedancije:

$$|Z^*(\omega)| = \frac{U_0(\omega)}{I_0(\omega)}.$$
(16)

Zbog fazne razlike između napona i struje impedancija je kompleksna veličina te se zapisuje na sljedeći način:

$$Z^* = |Z^*| \exp(i\theta) = Z'(\omega) + iZ''(\omega).$$
⁽¹⁷⁾

Rezultati impedancijske spektroskopije najčešće se prikazuju kao ovisnost izmjenične provodnosti (σ) o frekvenciji (v), tj. kao spektar električne provodnosti (slika 15.). Općenito se takav spektar na određenoj temperaturi sastoji od dviju domena [116]:

- domene niskih frekvencija u kojoj je provodnost frekvencijski neovisna i koja se naziva zaravan istosmjerne provodnosti (engl. *direct current*, DC), iz koje se očitava σ_{DC} ;
- domene visokih frekvencija pri kojima provodnost raste s porastom frekvencije.

Slika 15. Prikaz spektra električne provodnosti i karakterističnih područja.

Frekvencijski neovisno područje karakterizira nesmetani transport elektrona kroz granice zrna bez prisutnosti blokirajućih efekata, što je povezano s nosiocima naboja dugog dosega. S druge strane, u frekvencijski ovisnom području provodnost raste eksponencijalno s porastom frekvencije, a razlog tome su strukturalne distorzije te korelirano i uređeno gibanje nosilaca naboja kratkog dosega [116].

Iz ovisnosti σ_{DC} o recipročnoj vrijednosti temperature moguće je odrediti i energije aktivacije za istosmjernu provodnost (E_{DC}) koristeći se Arrheniusovom jednadžbom [117]:

$$\sigma_{\rm DC} = \sigma_0 \cdot e^{\frac{-E_{\rm DC}}{k_{\rm B} \cdot T}},\tag{18}$$

gdje je σ_0 Arrheniusov faktor, k_B Boltzmanova konstanta (1,38×10⁻²³ J K⁻¹) i *T* temperatura u K.

2.4.5. Magnetometri

2.4.5.1. SQUID-magnetometar

U SQUID-magnetometru magnetsko se polje proizvodi supravodljivim magnetom te u vertikalnom smjeru može poprimiti vrijednosti do $\pm 5,5$ T. Zavojnica magneta proizvodi homogeno polje u prostoru gibanja uzorka koje je konstantno u vremenu, a mjerenje magnetskih svojstava može se provesti nakon stabiliziranja polja ili pak s uključenim izvorom napajanja koje proizvodi željeno magnetsko polje.

SQUID-magnetometar, shematski prikazan na slici 16., odlikuje visoka stabilnost magnetskog polja i temperature, ali i preciznost mjerenja. Temperaturu SQUID-magnetometra moguće je kontrolirati u rasponu od 1,8 do 800 K strujanjem para He određene temperature i protoka. Ukapljeni He uvodi se kroz kapilaru u prostor za hlađenje, gdje isparava i grije se na zadanu temperaturu. U komori s uzorkom nalazi se He pod tlakom od nekoliko mbar koji osigurava dobar prijenos topline do uzorka. Temperature niže od 4,2 K moguće je postići otpumpavanjem He iz prostora za hlađenje ili pak kontinuiranim puštanjem He kroz kapilaru uz podtlak [118].

Slika 16. Pojednostavljena shema rada SQUID-magnetometra [119].

Magnetizirani uzorak giba se kroz detekcijsku zavojnicu i pomakne za ukupni put u željenom broju koraka. Promjena magnetskog toka uzrokuje indukciju električne struje u zavojnici koja je supravodljiva (nema gubitka signala). Za visoku osjetljivost SQUID-magnetometra zaslužna je SQUID-petlja koja je u osnovi Josephsonov spoj sastavljen od dvaju supravodiča i tankog sloja izolatora između njih. Josephsonov efekt koji se pritom javlja vrlo je sličan Faradayevu zakonu indukcije, ali struja ne potječe od nastalog magnetskog toka, već od kinetičke energije nosilaca naboja. Ti nosioci naboja opisuju se valnom funkcijom i imaju sposobnost tuneliranja kroz izolatorsku barijeru. Zbog sloja izolatora nastaje fazna razlika između valnih funkcija nosilaca naboja u supravodičima s dviju strana izolatora pa nastaje rezultantna struja koja se definira izrazom:

$$I_{\rm s} = -I_{\rm JC} \sin\left(\frac{2\pi\Phi}{\Phi_0}\right),\tag{19}$$

gdje je: Φ_0 elementarni tok magnetskog polja (2,07×10⁻¹⁵ Tm²), Φ tok kroz prsten, a *I*_{JC} kritična struja koja ovisi o izolatoru i geometriji [118,120].

SQUID-petlja ne može neposredno detektirati magnetski moment, već se to čini pojačalom te se pri svakom pomaku uzorka na izlazu iz pojačala dobije napon. Funkcijska ovisnost napona o pomaku određuje se softverski te se kao konačni podatak dobiva magnetski moment pri zadanoj temperaturi i primijenjenom magnetskom polju [118,119].

2.4.5.2. VSM-magnetometar

U VSM-uređaju uzorak se postavlja na nosač između polova magneta. Uzorak je u polju magnetiziran i titra poznatom frekvencijom (najčešće 50 - 100 Hz) i amplitudom (1 – 3 mm) zbog čega se u detekcijskim zavojnicama inducira električna struja. Nastala struja proporcionalna je magnetskom momentu u smjeru polja pa se kalibracijom uređaja kao izlazni rezultat dobiva magnetski moment [119].

Magnetsko je polje u VSM-magnetometru horizontalno s maksimalnom vrijednošću od 1 T u obama smjerovima i proizvodi se elektromagnetskom zavojnicom. Polje se mijenja kontinuirano zadanom brzinom pa je uređaj pogodan za određivanje magnetske histereze.

Temperatura se može održavati na niskim vrijednostima od 1,5 do 4,2 K otpumpavanjem He, a više temperature do 800 °C postižu se korištenjem grijaće cijevi. Budući da He struji neposredno oko uzorka, temperatura u VSM-magnetometrima manje je stabilna u odnosu na SQUID-uređaje [118]. Shema VSM-magnetometra s osnovnim dijelovima prikazana je na slici 17.

Slika 17. Shematski prikaz VSM-magnetometra [119].

2.4.6. Plinska kromatografija (GC)

Plinska kromatografija (engl. *gas chromatography*, GC) primjenjuje se kao analitička metoda od 1952. Uzorak isparava u grijanom injektoru instrumenta te se komponente uzorka razdvajaju na posebno pripremljenoj GC-koloni. Metoda je pogodna za analizu plinovitih uzoraka te onih uzoraka koji se zagrijavanjem mogu prevesti u plinovito stanje bez raspada [121].

Općenito se sustav za plinsku kromatografiju (slika 18.) sastoji od izvora mobilne faze (plina nosioca), regulatora tlaka i protoka, injektorskog sustava, GC-kolone smještene u peći, detektora te računala za obradu podataka. Pravilan izbor GC-kolone jako je važan jer se u njoj odvija raspodjela molekula prisutnih u uzorku između kolone kao stacionarne i plina nosioca kao mobilne faze. GC-kolone dijele se na punjene i kapilarne. Punjene kolone izrađene su od metala ili stakla i punjene česticama koje na sebi imaju tanki polimerni sloj. Osnovna prednost punjenih kolona je 10 - 1000 puta veći kapacitet, tj. dulje vrijeme zadržavanja komponente na stacionarnoj fazi u odnosu na mobilnu fazu u odnosu na kapilarne kolone. Kapilarne su kolone pak izrađene od stakla ili taljenog SiO₂, a unutrašnjost im je prekrivena slojem stacionarne faze. Prednost tog tipa kolona očituje se u većem broju teorijskih tavana i boljoj separaciji složenih smjesa [121].

Plin nosilac (He, N₂)

Slika 18. Shematski prikaz sustava za plinsku kromatografiju [122].

Kao plin nosilac upotrebljava se inertni plin poput helija ili dušika, a njegovim odabirom dodatno se može utjecati na osjetljivost tehnike. Regulacija protoka plina iznimno je važna jer eventualne promjene mogu narušiti ponovljivost analize i otežati identifikaciju komponenata. Injektorski sustav služi za dovođenje uzoraka na grijanu GC-kolonu koja se nalazi u peći i može imati dvije izvedbe: grijanu, pri kojoj uzorak prilikom injektiranja postiže temperaturu od 100 do 300 °C i pritom isparava, te verziju *on-line*, gdje već ugrijani plinoviti uzorak dolazi primjerice iz reaktora te injektorskim sustavom samo prolazi do kolone [121].

Omjer koncentracije komponente u stacionarnoj i mobilnoj fazi definira se koeficijentom raspodjele (K_D). Budući da njegova vrijednost ovisi o temperaturi kolone i termodinamičkim parametrima, općenito se zapisuje kao [121]:

$$\ln K_{\rm D} = \frac{-G^0}{RT},\tag{20}$$

gdje je G^0 Gibbsova slobodna energija isparavanja komponente iz stacionarne faze, R opća plinska konstanta i T temperatura u K.

Iz te jednadžbe proizlazi da se komponente na stacionarnoj fazi raspodjeljuju ovisno o Gibbsovoj slobodnoj energiji isparavanja, pri čemu se vrijeme koje komponenta provede zadržana na stacionarnoj fazi naziva vrijeme zadržavanja (*t*_R). Nakon raspodjele, komponente dolaze na detektor gdje se detektiraju. Postoje razne vrste GC-detektora poput plameno-ionizacijskog detektora (engl. *flame-ionisation detector*, FID), detektora toplinske vodljivosti (engl. *thermal conductivity detector*, TCD), detektora zarobljavanja elektrona (engl. *electron capture detector*, ECD), masenog spektrometra (engl. *mass spectrometer*, MS) i mnogih drugih [121].

FID-detektor, primijenjen u eksperimentalnom dijelu ovog rada, za rad se koristi vodikom pomiješanim s plinom nosiocem. Smjesa koja dolazi na detektor spaljuje se, a komponente koje se analiziraju stvaraju ione koji se prikupljaju na cilindričnoj elektrodi pri visokom naponu, pri čemu nastaje strujni signal. Identifikacija komponenata provodi se najčešće usporedbom sa softverski ugrađenom bazom podataka, dok je za kvantifikaciju potrebno provesti kalibraciju instrumenta standardima poznate koncentracije [121].

3. EKSPERIMENTALNI DIO

3.1. Materijali

U pripravi Sr-dopiranih kalcijevih (Ca_{1-x}Sr_xMnO₃, CSMO), barijevih (Ba_{1-x}Sr_xMnO₃, BSMO) i lantanovih (La_{1-x}Sr_xMnO₃, LSMO) manganita upotrijebljene su sljedeće kemikalije:

- kalcijev karbonat, CaCO₃, 99,8 %; VWR Chemicals; $M = 100,09 \text{ g mol}^{-1}$
- barijev karbonat, BaCO₃, 99 %; Kemika; M = 197,34 g mol⁻¹
- stroncijev karbonat, SrCO₃, 99,5 %; Alfa Aesar GmbH; M = 147,63 g mol⁻¹
- lantanov(III) oksid, La₂O₃, p.a.; \geq 99 %; Sigma-Aldrich; M = 325,81 g mol⁻¹
- manganov(II) nitrat tetrahidrat, Mn(NO₃)₂·4H₂O, p.a.; min. 97,5 %; Fisher Scientific; $M = 251,01 \text{ g mol}^{-1}$
- dušična kiselina, HNO₃, p.a.; 65%; Riedel de Haën; M = 63,01 g mol⁻¹
- limunska kiselina bezvodna, C₆H₈O₇, p.a.; 100 %; Lach-Ner, s.r.o.; $M = 192,13 \text{ g mol}^{-1}$
- amonijev hidrogenkarbonat, NH₄HCO₃, p.a.; 99 101 %; Honeywell; M = 79,06 g mol⁻¹
- amonijak 28 %, NH₃, p.a.; VWR Chemicals; M = 17,03 g mol⁻¹

Za provedbu permanganatne titracije u svrhu određivanja nestehiometrije kisika u pripremljenim manganitima korištene su sljedeće kemikalije:

- amonijev željezov(II) sulfat heksahidrat (Mohrova sol), Fe(NH₄)₂(SO₄)₂·6H₂O, min. 99,5 %; Kemika, *M* = 392,14 g mol⁻¹
- sumporna kiselina, H₂SO₄, p.a.; 96 %; Lach-Ner s.r.o.; M = 98,08 g mol⁻¹
- orto-fosforna kiselina, H₃PO₄, p.a.; 85 %; Lach-Ner s.r.o.; $M = 98,00 \text{ g mol}^{-1}$
- kalijev permanganat, KMnO₄, min. 99,0 %; Kemig d.o.o.; M = 158,03 g mol⁻¹

Za LSMO-materijale udjeli Sr-dopiranja (*x*) iznosili su 0,1, 0,2 i 0,3. Udjeli dopiranja veći od 0,3 nisu proučavani jer dovode do izdvajanja Sr i nastanka sporednih faza koje narušavaju primjenska svojstva materijala. Naročito je to važno za primjenu LSMO-materijala kao katoda u SOFC-sustavima uz YSZ kao čvrsti elektrolit gdje udjeli Sr veći od 0,2 mogu dovesti do nastanka slabo vodljive faze SrZrO₃ i negativno utjecati na rad ćelije [62]. S druge strane, udjeli Sr-dopiranja za CSMO- i BSMO-materijale bili su veći i iznosili su 0,3 i 0,5. Budući da se u tim materijalima

dvovalentni Ca i Ba supstituiraju dvovalentnim Sr, hipoteza istraživanja je da će veći udjeli supstitucije dovesti do željenih distorzija rešetke čime će se omjer Mn⁴⁺/Mn³⁺ povećati i poboljšati ciljana svojstva važna za primjenu materijala. Nazivi i nominalni sastavi svih pripremljenih uzoraka dani su u Tablici 1.

Naziv uzorka	Postupak sinteze	Nominalni sastav		
LL_Sr0		LaMnO ₃		
LL_Sr0,1	- limunski	La _{0,9} Sr _{0,1} MnO ₃		
LL_Sr0,2		$La_{0,8}Sr_{0,2}MnO_3$		
LL_Sr0,3	_	La _{0,7} Sr _{0,3} MnO ₃		
LC_Sr0		LaMnO ₃		
LC_Sr0,1	-	$La_{0,9}Sr_{0,1}MnO_3$		
LC_Sr0,2		$La_{0,8}Sr_{0,2}MnO_3$		
LC_Sr0,3	_	La _{0,7} Sr _{0,3} MnO ₃		
CL_Sr0		CaMnO ₃		
CL_Sr0,3	– limunski	Ca _{0,7} Sr _{0,3} MnO ₃		
CL_Sr0,5	_	Ca _{0,5} Sr _{0,5} MnO ₃		
CC_Sr0		CaMnO ₃		
CC_Sr0,3	koprecipitacijski	Ca _{0,7} Sr _{0,3} MnO ₃		
CC_Sr0,5	_	Ca _{0,5} Sr _{0,5} MnO ₃		
BL_Sr0	limunski	BaMnO ₃		
BL_Sr0,3		Ba _{0,7} Sr _{0,3} MnO ₃		
BL_Sr0,5	_	Ba _{0,5} Sr _{0,5} MnO ₃		
BC_Sr0		BaMnO ₃		
BC_Sr0,3	koprecipitacijski	Ba _{0,7} Sr _{0,3} MnO ₃		
BC_Sr0,5	_	Ba _{0,5} Sr _{0,5} MnO ₃		

Tablica 1. Nazivi pripremljenih uzoraka manganita i nominalni sastavi.

3.2. Priprava manganita

3.2.1. Limunski postupak sinteze

Početna otopina metalnih kationa pripremljena je otapanjem stehiometrijskih količina reaktanata (izvora metalnih kationa) u stehiometrijskom volumenu 0,5 M HNO₃. Pripremljena otopina metalnih nitrata homogenizirana je 15 minuta miješanjem na magnetskoj miješalici te je zatim dodana limunska kiselina koja je imala ulogu kompleksatora i goriva u postupku sinteze. Omjer limunske kiseline i metalnih kationa iznosio je 2:1 za CSMO i LSMO te 3:1 za pripravu BSMO. Za navedene omjere limunske kiseline i metalnih kationa, omjer limunske kiseline (goriva) i oksidansa (nitrata) bio je prema jednadžbama (7) – (9) veći od stehiometrijskog ($\Phi_e = 1$) kako bi se pogodovalo nastanku vakancija kisika u kristalnoj strukturi manganita. Tako pripremljena otopina metal-citratnih kompleksa dodatno je homogenizirana miješanjem na magnetskoj miješalici tijekom 15 minuta nakon čega je prelivena u porculanski lončić i prebačena na miješalicu s grijačem. Sinteza je provedena zagrijavanjem otopine na 350 °C uslijed čega je najprije došlo do isparavanja vode i nastajanja narančaste gelaste otopine, zatim do nastajanja smeđe pjenaste smjese koja se u zadnjoj fazi sinteze samozapalila dajući tamnosmeđi prah prekursora. Prekursor je nakon hlađenja usitnjen u ahatnom tarioniku s tučkom nakon čega je kalciniran na 1200 °C tijekom 2 h kako bi došlo do transformacije prekursora u manganitnu fazu.

3.2.2. Koprecipitacijski postupak sinteze

Uzorci istih nominalnih sastava (Tablica 1.) pripremljeni su i koprecipitacijskim postupkom. Početna otopina metalnih kationa pripravljena je na isti način kako je opisano i u limunskom postupku sinteze. Dodatno je pripravljena i otopina NH₄HCO₃ koncentracije 10 mas. % koja je korištena kao precipitacijsko sredstvo. Otopina precipitacijskog sredstva zagrijana je na 65 °C uz stalno miješanje na magnetskoj miješalici, a temperatura je kontrolirana pomoću termopara povezanog s miješalicom. U lijevak za dokapavanje prelivena je pripremljena otopina metalnih nitrata koja je zatim kap po kap dodavana u otopinu NH₄HCO₃. Kako bi se osiguralo istovremeno taloženje svih metalnih kationa prisutnih u otopini, pH-vrijednost reakcijske smjese održavana je u rasponu 8 – 8,5 dodavanjem vodene otopine NH₃. Po završetku sinteze, nastali talog odvojen je od otopine postupkom filtracije, ispran filtratom i nekoliko puta destiliranom vodom te ostavljen da se suši 24 h na sobnoj temperaturi. Dobiveni prekursor prljavo bijele boje usitnjen je zatim u ahatnom tarioniku s tučkom te kalciniran na 1200 °C tijekom 2 h kako bi došlo do formiranja manganitne faze.

3.2.3. Priprema peleta uzoraka

Za potrebe karakterizacije električnih i magnetskih svojstava pripravljenih manganita pripremljeni su peleti debljine 3 mm i promjera 6 mm prešanjem praha prekursora pomoću hidraulične preše pri tlaku od 700 MPa. Pripremljeni peleti sinterirani su na 1200 °C tijekom 2 h kako bi došlo do nastanka manganitne faze i povezivanja praha u čvrsti pelet.

3.3. Karakterizacija materijala

3.3.1. Toplinske analize

Termogravimetrijska analiza (TGA) i diferencijalna pretražna kalorimetrija (DSC) provedene su na uređaju Netzsch STA 409 u atmosferi sintetskog zraka protoka 30 cm³ min⁻¹ i u temperaturnom području od 20 do 1300 °C uz brzinu zagrijavanja od 10 °C min⁻¹. Analize su provedene na uzorcima prekursora čistih manganita CaMnO₃, BaMnO₃, SrMnO₃ i LaMnO₃ pripremljenih limunskim i koprecipitacijskim postupkom sinteze radi određivanja temperature žarenja potrebne za transformaciju prekursora u manganitnu fazu.

3.3.2. Permanganatna titracija

Nestehiometrija kisika u svim pripremljenim manganitima određena je metodom permanganatne titracije uz standardnu otopinu Mohrove soli (Fe(NH₄)₂(SO₄)₂) [123]. Metoda se temelji na otapanju 15 mg praškastih uzoraka u 15 mL 0,5 M H₂SO₄, 10 mL 0,1 M H₃PO₄ i 10 mL 0,05 M otopine Mohrove soli te titraciji pripremljene otopine s 0,02 M KMnO₄ otopinom prethodno standardiziranom pomoću otopine Mohrove soli. Pri otapanju manganita dodaje se H₂SO₄ kako bi se poboljšalo otapanje, a H₃PO₄ kako bi se spriječila oksidacija Mn i Fe (iz Mohrove soli) kisikom iz zraka. Otapanje uzoraka manganita u Mohrovoj soli može se opisati sljedećim reakcijama:

$$Mn^{4+} + 2Fe^{2+} \rightarrow Mn^{2+} + 2Fe^{3+},$$
 (21)

$$Mn^{3+} + Fe^{2+} \rightarrow Mn^{2+} + Fe^{3+}.$$
 (22)

Budući da je 0,05 M otopina Mohrove soli dodana uzorku u suvišku, titracijom s 0,02 M KMnO₄ određuje se množina neizreagiranog Fe²⁺ prema jednadžbi:

$$MnO^{4-} + 5Fe^{2+} + 8H^{+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O.$$
 (23)

Uzimajući u obzir molarne omjere reaktanata i produkata iz jednadžbi (21) – (23), izvedeni su sljedeći izrazi za određivanje nestehiometrije kisika u manganitima:

$$\delta_{\exp} = 1 - \frac{1}{2} \cdot \frac{n_1 - n_2}{n_3},\tag{24}$$

$$\delta_{\exp} = \frac{1}{2} \cdot \left(1 - \frac{n_1 - n_2}{n_3} \right), \tag{25}$$

$$\delta_{\exp} = \frac{1}{2} \cdot \left[(1+x) - \frac{n_1 - n_2}{n_3} \right],\tag{26}$$

gdje je n_1 ukupna množina Mohrove soli, n_2 množina Mohrove soli koja je izreagirala s KMnO₄, n_3 ukupna množina manganita, a *x* udio dopiranja. Izraz (24) upotrebljava se za određivanje nestehiometrije kisika u manganitima koji na poziciji A imaju dvovalentni kation, dok se izraz (25) upotrebljava kada je pozicija A okupirana trovalentnim kationom. Izraz (26) izveden je kombinacijom prethodnih dvaju izraza te se upotrebljava za određivanje nestehiometrije kisika u manganitima kod kojih je trovalentni kation na poziciji A djelomično supstituiran dvovalentnim kationom u udjelu *x*.

3.3.3. Infracrvena spektroskopija s Fourierovom transformacijom

FTIR-spektri praškastih uzoraka prekursora i manganita snimljeni su spektrofotometrom Bruker Vertex 70 metodom prigušene totalne refleksije (engl. *attenuated total reflectance*, ATR). Uzorci su utisnuti na dijamantni kristal te su spektri snimljeni pri 20 °C u području valnih brojeva od 400 do 4000 cm⁻¹ uz rezoluciju od 4 cm⁻¹ i 16 ponavljanja.

3.3.4. Rendgenska difrakcijska analiza i Rietveldova metoda utočnjavanja

XRD-analiza praškastih uzoraka prekursora i mangnita provedena je na difraktometru Shimadzu XRD-6000 s CuK α (λ = 1,5406 Å) zračenjem pri naponu od 40 kV i struji od 30 mA. Diftraktogrami su snimljeni u rasponu 2 θ od 10 do 70° uz korak od 0,02° i vrijeme zadržavanja od

4,5 s. Identifikacija kristalografskih faza provedena je korištenjem standardnih XRD-kartica ICDD-baze.

Rietveldova metoda utočnjavanja provedena je na difraktogramima uzoraka manganita koristeći se softverom FullProf Suite dostupnim u slobodnom pristupu (engl. *open source*). Kao početne vrijednosti u postupku utočnjavanja korišteni su strukturni podaci faza LaMnO₃ [124,125], CaMnO₃ [49] i BaMnO₃ [126,127] preuzeti u obliku CIF-datoteka iz COD-baze (engl. *crystallography open database*). Pozadina je opisana polinomnom jednadžbom šestog stupnja, a oblik maksimuma pseudo-Voigtovom funkcijom koja je kombinacija Gaussove i Lorentzove funkcije. Rietveldovom metodom utočnjeni su parametri jedinične ćelije i zaposjednutosti pozicija atomima unutar kristalne rešetke, tj. okupancije.

3.3.5. Pretražna elektronska mikroskopija

Morfologija pripremljenih praškastih uzoraka i lomne površine peleta istražena je SEM-om Tescan Vega 3 Easyprobe pri radnom naponu od 10 kV. Informacije o elementarnom sastavu uzoraka dobivene su EDXS-metodom uz detektor Bruker XFlash 4010-M spojen na SEM.

3.3.6. Određivanje specifične površine i raspodjele pora

Specifične površine i prosječni promjer pora praškastih manganita određeni su analizom adsorpcijsko-desorpcijskih izotermi N_2 na –196 °C instrumentom Micrometrics ASAP 2000 i izračunati pomoću Brunauer-Emmett-Tellerova (BET) modela. Prije analize, uzorci su otplinjeni pri tlaku od 6,6 Pa i temperaturi od 100 °C kako bi se uklonile komponente adsorbirane u porama materiala. Raspodjela veličine pora određena je iz adsorpcijskih izotermi N_2 pomoću Barrett-Joyner-Halendinova (BJH) modela.

3.3.7. Određivanje električnih svojstava

Električna svojstva manganita istražena su metodom impedancijske spektroskopije, tj. mjerenjem kompleksne impedancije impedancijskim analizatorom Novocontrol Alpha-AN Dielectric Spectrometer. Uzorci za mjerenje pripremljeni su u obliku sinteriranih peleta na koje su s obiju strana naparene zlatne elektrode promjera 3,8 mm pomoću naparivača Sputter Coater SC7620. Mjerenja su za LSMO- i CSMO-materijale provedena u temperaturnom rasponu od –80 do 240 °C, dok su mjerenja za BSMO provedena u rasponu temperatura od 20 do 240 °C zbog niske vodljivosti

uzoraka. Prilikom provedbe mjerenja temperatura se kontrolirala s preciznošću od $\pm 0,2$ °C. Frekvencijski raspon mjerenja bio je od 0,01 Hz do 1 MHz za sve uzorke.

3.3.8. Određivanje magnetskih svojstva

Magnetske histereze, tj. ovisnosti magnetizacije o magnetskom polju izmjerene su na magnetometru Quantum Design MPMS3 SQUID za CSMO- i BSMO-uzorke, dok su za LSMOuzorke mjerene na magmetometru s vibrirajućim uzorkom Lakeshore VSM 8600 Series. Ovisnosti M(H) pri konstantnoj temperaturi mjere se u polju koje opada od maksimalne vrijednosti do nule, a zatim ponovno raste do maksimalne vrijednosti u suprotnom smjeru te se ponovno vraća do nule i raste do maksimalne vrijednosti u prvotnom smjeru. Široka petlja magnetske histereze ukazuje na ireverzibilnost, a ako je ponašanje materijala reverzibilno, obje će se grane M(H) krivulje podudarati. Iz sjecišta histereze s x- i y-osi mogu se dobiti vrijedni podaci o iznosu koercitivnog polja i remanentne magnetizacije u materijalu koji se istražuje.

Ovisnosti magnetizacija o temperaturi za CSMO- i BSMO-uzorke izmjerene su u rasponu od 2 do 400 K. Izmjerene su ZFC (engl. zero-field-cooled) i FC (engl. field-cooled) krivulje pri raznim vrijednostima vanjskog magnetskog polja. ZFC-ovisnost dobiva se hlađenjem uzorka bez prisutnosti vanjskog magnetskog polja, te zatim mjerenjem u polju pri grijanju uzorka. Neposredno nakon toga, uzorak se hladi u istom polju, a zatim se opet mjeri prilikom grijanja čime se dobiva FC-krivulja. Eventualne razlike u ponašanju dviju krivulja upućuju na ireverzibilnosti u sustavu, koje mogu imati razne uzroke (npr. zapinjanje magnetskih domena na granicama kristalita). Uzorci za mjerenje pripremljeni su u obliku sinteriranih peleta i smješteni između dviju plastičnih slamki koje su pričvršćene na nosač za mjerenje. S obzirom na to da su uzorci relativno veliki i da su slamke značajno dulje od detekcijskih zavojnica kroz koje se uzorak provlači, signal pozadine zanemariv je naspram signala uzorka. Osim ovisnosti o temperaturi izmjerene su i ovisnosti magnetizacije o primijenjenom vanjskom magnetskom polju na odabranim temperaturama kako bi se stekao bolji uvid u magnetsko ponašanje sustava, ponajprije u uređenoj fazi. Prilikom mjerenja polje se mijenja od maksimalne do minimalne vrijednosti (od 70 kOe do -70 kOe), a zatim se opet povećava do maksimalne vrijednosti čime se dobiva petlja histereze koja se karakterizira parametrima koercitivnog polja i ostatne magnetizacije, te vrijednost magnetizacijskog zasićenja.

Radi određivanja magnetokaloričnog učinka LSMO-uzoraka izmjerene su ovisnosti magnetizacije o primjenjenom vanjskom polju u temperaturnom rasponu od 150 K oko temperature prijelaza s korakom od 2 K te za magnetska polja od 0 do 20 kOe. Uzorci su smješteni u posudicu od borova nitrida koja se pričvršćuje navojima na dugački nosač spojen na dio uređaja koji proizvodi mehaničko titranje frekvencije 88 Hz. Prilikom montiranja uzoraka bilo je potrebno prilagoditi njihove dimenzije tako da se ne mogu pomicati tijekom mjerenja, što može dovesti do značajnih pogrešaka u mjerenju. Za temperaturnu kontrolu korištena je opcija instrumenta SSVT (engl. *single-stage variable temperature*).

3.3.9. Određivanje katalitičke aktivnosti

Katalitička aktivnost praškastih uzoraka manganita ispitana je na eksperimentalnom postavu prikazanom na slici 19.

Slika 19. Prikaz eksperimentalnog postava korištenog za određivanje katalitičke aktivnosti manganita s detaljnom shemom reaktora.

Kao modelna smjesa aromatskih spojeva korištena je smjesa plinovitih benzena, toluena, etilbenzena i *o*-ksilena (engl. *benzene-toluene-ethylbenzene-xylene*, BTEX) sastavljena od 50 ppm svake komponente u dušiku. Protok reakcijske smjese bio je 80 mL min⁻¹ i kontroliran je Brooksovim masenim regulatorima protoka (engl. *mass flow controllers*, MFC). Radi osiguranja identičnih eksperimentalnih uvjeta svi su uzorci prosijani i frakcija čestica 70 – 100 μ m upotrijebljena je za provedbu testova katalitičke aktivnosti. Masa katalizatora (manganita) od 0,05 g imobilizirana je u reaktoru s nepokretnim slojem između dvaju čepova od kvarcne vune.

Tako pripremljeni reaktor postavljen je u blok s grijačem i termoparom povezanim na temperaturni regulator TC208 Series. Katalitički testovi provedeni su na različitim temperaturama u području od 100 do 450 °C i ponovljeni tri puta na svakoj temperaturi te je stoga svaka mjerna točka srednja vrijednost triju uzastopnih mjerenja. Početne i izlazne koncentracije BTEX-smjese analizirane su plinskim kromatografom Shimadzu GC-2014 s plameno ionizacijskim detektorom (FID). Konverzija (X_A) svake komponente izračunata je iz ostatne (c_A) i početne koncentracije (c_{A0}), prema:

$$X_{\rm A} = \frac{c_{A0} - c_{\rm A}}{c_{A0}} \cdot 100 \ \%. \tag{27}$$

4. REZULTATI I RASPRAVA

4.1. Određivanje temperature žarenja

Razgradnja prekursora manganita i njihova transformacija u manganitnu fazu praćene su metodama toplinske analize TGA i DSC radi određivanja temperature žarenja. Dobiveni rezultati prikazani su na slici 20. za čiste manganitne faze CaMnO₃, SrMnO₃, BaMnO₃ i LaMnO₃ pripremljene limunskim i koprecipitacijskim postupkom sinteze. Pretpostavljeno je da će se potrebne temperature žarenja dopiranih manganita nalaziti u rasponu između temperatura potrebnih za dobivanje čistih CaMnO₃, BaMnO₃ i LaMnO₃ te čistog SrMnO₃.

Slika 20. Rezultati TGA- i DSC-analize čistih uzoraka CaMnO₃, SrMnO₃, LaMnO₃ i BaMnO₃ pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze.

Kako bi se lakše uočila područja gubitka mase, u Prilogu 1 na slici P1 prikazane su derivirane TGA krivulje čiji se minimumi dobro poklapaju s maksimumima ovdje prikazanih DSC krivulja. U svim

analiziranim uzorcima uočen je mali početni gubitak mase u području od 20 do 150 °C koji odgovara gubitku vlage i na DSC-krivulji vidi se kao endotermni maksimum na oko 50 °C. Svi uzorci pripremljeni limunskim postupkom imaju gubitak mase koji odgovara endotermnom raspadu metal-citratnih kompleksa u rasponu od 400 do 800 °C što se najbolje vidi na primjeru CaMnO₃ i SrMnO₃. Kod uzoraka LaMnO₃ i BaMnO₃ taj prijelaz nije toliko izražen i konačni gubitak mase iznosi oko 15 % što je dvostruko manje u odnosu na uzorke CaMnO₃ i SrMnO₃ te je povezano s toplinom oslobođenom u koraku samozapaljenja tijekom sinteze. Uzorci CaMnO₃, LaMnO₃ i BaMnO₃ pripremljeni postupkom koprecipitacije pokazuju dva uzastopna koraka gubitka mase praćena endotermnim efektima uočenima na oko 500 i 700 °C, a izuzetak je SrMnO₃ kod kojeg je izražen samo jedan gubitak mase na oko 800 °C. Uočeni gubitci mase najvjerojatnije su posljedica raspada karbonata, što je vidljivo iz rezultata FTIR- i XRD-analiza danih u odjeljku 4.2. Na temelju TGA-krivulja vidljivo je da je područje konstantne mase za sve uzorke postignuto iznad 1000 °C, neovisno o postupku sinteze. Međutim, preliminarna istraživanja pokazala su da temperature žarenja od 1000 i 1100 °C tijekom 2 h nisu dovoljne za potpunu transformaciju prekursora u manganite te su uz manganitnu fazu nastajale i sporedne oksidne faze. Čiste manganitne faze dobivene su žarenjem na 1200 °C tijekom 2 h te je ta temperatura odabrana kao temperatura žarenja za sve pripremljene uzorke.

4.2. Kristalizacija manganita

4.2.1. Lantanovi manganiti

Kristalizacija lantanovih manganita (La_{1-x}Sr_xMnO₃, x = 0, 0,1, 0,2 i 0,3) praćena je FTIRspektroskopijom i XRD-analizom uz Rietveldovo utočnjavanje. FTIR-spektri prekursora pripremljenih limunskim i koprecipitacijskim postupkom prikazani su na slikama 21(a, b) u rasponu od 400 do 1700 cm⁻¹ budući da pri valnim brojevima iznad 1700 cm⁻¹ nisu uočene vrpce. Prva vrpca na oko 1400 cm⁻¹ potječe od asimetričnog istezanja skupine CO₃^{2–} [128,129] i s desne strane je vidljivo rame (označeno sa *) vrpce koje potječe od skupine NO₃⁻ [130]. Na 1070 cm⁻¹ uočena je vrpca koja također potječe od skupine NO₃⁻te je na slici označena sa *. Iduća vrpca karakteristična za karbonatne prekursore pozicionirana je na oko 850 cm⁻¹ i rezultat je savijanja CO₃^{2–} izvan ravnine [128,129]. Budući da se limunski postupak sinteze provodi pri visokoj temperaturi od 350 °C koja postiže i više vrijednosti u procesu samozapaljenja, u uzorku prekursora [slika 21(a)] vidljive su vrpce koje potječu od manganita. Prva vrpca pozicionirana je na oko 600 cm⁻¹ i potječe od istezanja veza Mn–O [131,132], a iduća na 480 cm⁻¹ potječe od savijanja veza Mn–O–Mn [132,134] što ukazuje na to da je u limunskom postupku sinteze lokalno postignuta dovoljno visoka temperatura za djelomičnu transformaciju prekursora u manganitnu fazu.

Slika 21. FTIR-spektri prekursora (a,b) i žarenih uzoraka LSMO (c,d) pripremljenih limunskim (oznake LL, a i c) i koprecipitacijskim (oznake LC, b i d) postupkom sinteze.

FTIR-spektri žarenih uzoraka manganita prikazani su na slikama 21(c, d) u rasponu od 400 do 1000 cm⁻¹ jer na vrijednostima valnih brojeva iznad 1000 cm⁻¹ nisu uočene vrpce. U uzorcima LL_Sr0, LL_Sr0,1, LC_Sr0 i LC_Sr0,1 uočene su tri vrpce; prva na 570 cm⁻¹ koja potječe od istezanja veza Mn–O u oktaedrima MnO₆, druga na 480 cm⁻¹ koja potječe od savijanja veza O–Mn–O i Mn–O–Mn i treća na 420 cm⁻¹ koja je rezultat savijanja veza Mn–O–Mn [134–137].

U uzorcima LL_Sr0,2, LL_Sr0,3, LC_Sr0,2 i LC_Sr0,3 s višim udjelom dopiranja, karakteristične vibracije oktaedara MnO₆ nisu uočene te su snimljeni spektri ravne linije koje rastu prema nižim vrijednostim valnih brojeva. Ta pojava karakteristična je za lantanove manganite s udjelom Sr-dopiranja jednakim ili većim od 0,2. Thenmozhi i sur. [135] pokazali su da veći udio Sr-dopiranja rezultira smanjenjem kovalentnog karaktera veze Mn–O te povećavanjem ionskog karaktera veze La–O. Budući da se ionske veze ne mogu vidjeti na FTIR-spektrima, dobiveni spektri su ravne linije bez vrpci.

Difraktogrami LSMO-prekursora prikazani su na slici 22. Kristalnost prekursora dobivenih limunskim postupkom [slika 22(a)] niska je, ali su vidljivi maksimumi identificirani kao manganitna faza LaMnO₃ (ICDD 86-1228) budući da je prilikom analize FTIR-spektara prekursora već utvrđeno da je u koraku samozapaljenja postignuta dovoljno visoka temperatura da dio prekursora prijeđe u manganitnu fazu. Maksimum na $2\Theta = 29,5^{\circ}$ uočen je u svim prekursorima i identificiran kao faza La₂O₃ (ICDD 73-0229) (označeno sa *). Prekursori dobiveni koprecipitacijskim postupkom [slika 22(b)] sastoje se od karbonatne faze La₂(CO₃)₃·8H₂O (ICDD 25-1400). Maksimumi koji bi bili karakteristični za faze SrCO₃ i MnCO₃ nisu uočeni vjerojatno zbog niske kristalnosti uzorka te zbog relativno niskog udjela dopiranja.

Slika 22. Difraktogrami prekursora LSMO-uzoraka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Uz difraktograme su priložene i standardne rendgenske kartice faza LaMnO₃ (ICDD 86-1228) i La₂(CO₃)₃·8H₂O (ICDD 25-1400), a maksimumi koji potječu od faze La₂O₃ (ICDD 73-0229) označeni su sa *.

XRD-analizom LSMO-uzoraka dobivenih žarenjem prekursora na 1200 °C potvrđeno je da su u svim uzorcima nastale željene manganitne faze, a snimljeni difraktogrami i modeli izračunati Rietveldovom metodom utočnjavanja prikazani su za sve uzorke na slici 23.

Slika 23. Rezultati Rietveldove metode utočnjavanja za LSMO uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Eksperimentalni podaci prikazani su crvenim točkama, izračunati modeli crnom linijom, a odstupanja eksperimentalnih podataka od modela prikazana su plavom linijom ispod difraktograma. Zelenim crtama prikazane su Braggove pozicije za svaku od faza.

Svi pripremljeni LSMO-uzorci kristalizirali su u romboedarskom kristalnom sustavu prostorne grupe $R\overline{3}c$ te su nastale sljedeće faze: LaMnO₃ (ICDD 86-1228) za x = 0, La_{0,9}Sr_{0,1}MnO₃ (ICDD 89-0647) za x = 0,1, La_{0,8}Sr_{0,2}MnO₃ (ICDD 89-0648) za x = 0,2 i La_{0,7}Sr_{0,3}MnO₃ (ICDD 89-093) za x = 0,3. Brojčani rezultati utočnjavanja prikazani su u Tablicama 2. i 3., a okupancije pojedinih elemenata dodatno su provjerene EDXS-analizom pri čemu su eksperimentalni rezultati pokazali dobro slaganje s izračunatim okupancijama.

Tablica 2. Kristalografski podaci LSMO-uzoraka pripremljenih limunskim postupkom dobiveni postupkom Rietveldova utočnjavanja XRD-podataka. Prikazani su i rezultati permanganatne titracije (δ_{exp}), prosječna oksidacijska stanja mangana (Mn AOS, engl. *average oxidaton state*) te udjeli pojedinih elemenata određeni EDXS-analizom.

Uzorci/	LL_Sr0	LL_Sr0,1	LL_Sr0,2	LL_Sr0,3
Parametri				
<i>x</i>	0	0,1	0,2	0,3
<i>a</i> , Å	5,5293(2)	5,5243(1)	5,5178(1)	5,5050(1)
b, Å	5,5294(2)	5,5243(1)	5,5178(1)	5,5050(1)
c, Å	13,3458(5)	13,3471(3)	13,3604(2)	13,3598(3)
<i>V</i> , Å ³	353,369(2)	352,749(2)	352,257(7)	350,621(1)
Okupancije:				
La	0,966(0)	0,901(1)	0,798(0)	0,702(0)
Sr	/	0,099(0)	0,198(1)	0,300(0)
Mn	0,962(0)	0,998(0)	0,992(1)	1,002(1)
01	3,032(1)	2,982(1)	3,012(2)	3,000(1)
$\delta_{ ext{calc.}}$	0,032	-0,018	0,012	0,000
R exp, %	6,57	6,98	7,21	7,28
R wp, %	8,10	8,50	8,60	8,68
χ^2	1,52	1,48	1,42	1,42
$\delta_{ ext{exp.}}$	0,030	-0,020	0,010	0,000
Mn AOS	3,064	3,063	3,224	3,300
EDXS-at. udjeli:				
La	$1,\!00\pm0,\!04$	$0,\!89\pm0,\!03$	$0,\!80\pm0,\!04$	$0,74 \pm 0,03$
Sr	0	0,11 ± 0,01	$0,22\pm0,02$	$0,\!32\pm0,\!02$
Mn	$0,\!99\pm0,\!02$	$1,\!00\pm0,\!02$	$1,\!00\pm0,\!05$	$0,\!99\pm0,\!05$
0	$3,05\pm0,02$	$2,\!97\pm0,\!04$	$3,02\pm0,01$	$3,00 \pm 0,01$

Timo most/				
Uzorci/	LC Sr0	LC_Sr0.1	LC Sr0.2	LC Sr0.3
Parametri	10_010	LC_510,1	LC_010,2	10_010,5
x	0	0,1	0,2	0,3
<i>a</i> , Å	5,5329(1)	5,5325(1)	5,5257(2)	5,5126(5)
b, Å	5,5329(1)	5,5325(1)	5,5257(2)	5,5126(5)
c, Å	13,3483(3)	13,3651(3)	13,3663(3)	13,3657(1)
<i>V</i> , Å ³	353,883(1)	354,283(1)	353,439(1)	351,747(6)
Okupancije:				
La	0,914(6)	0,882(2)	0,806(0)	0,696(1)
Sr	/	0,102(1)	0,198(0)	0,300(0)
Mn	0,991(0)	1,006(0)	0,992(2)	1,004(0)
01	3,053(2)	2,928(1)	2,828(1)	3,036(1)
$\delta_{ ext{calc.}}$	0,053	-0,072	-0,172	0,036
R exp, %	6,57	7,00	5,52	6,36
R wp, %	7,75	9,07	7,59	6,76
χ^2	1,39	1,68	1,89	1,13
$\delta_{ ext{exp.}}$	0,050	-0,070	-0,170	0,040
Mn AOS	3,106	2,956	2,856	3,372
EDXS-at. udjeli:				
La	$0,\!97\pm0,\!02$	$0,\!87\pm0,\!04$	$0,\!79\pm0,\!02$	$0,\!69\pm0,\!03$
Sr	0	$0,\!11\pm0,\!02$	$0,\!20\pm0,\!01$	$0{,}29\pm0{,}01$
Mn	$0,\!98\pm0,\!03$	$1,\!02\pm0,\!03$	$1,\!00\pm0,\!02$	$0{,}99\pm0{,}02$
0	3,05 ± 0,01	$2,\!93\pm0,\!04$	$2,\!83\pm0,\!03$	$3,\!04\pm0,\!02$

Tablica 3. Kristalografski podaci LSMO-uzoraka pripremljenih koprecipitacijskim postupkom dobiveni postupkom Rietveldova utočnjavanja XRD-podataka. Prikazani su i rezultati permanganatne titracije (δ_{exp}), prosječna oksidacijska stanja mangana (Mn AOS, engl. *average oxidation state*) te udjeli pojedinih elemenata određeni EDXS-analizom.

Na temelju brojčanih rezultata utočnjavanja uočeno je smanjenje parametara ćelije a = b te volumena jedinične ćelije s porastom udjela Sr-dopiranja. Iako je ionski radijus lantana $[r(\text{La}^{3+}) = 1,06 \text{ Å}]$ manji od ionskog radijusa stroncija $[r(\text{Sr}^{2+}) = 1,13 \text{ Å}]$, povećanje udjela Sr rezultira smanjenjem volumena jedinične ćelije zbog toga što supstitucija La³⁺ sa Sr²⁺ dovodi do parcijalne oksidacije dijela mangana iz stanja +3 u stanje +4 kako bi se zadržala elektroneutralnost spoja. Budući da nastali Mn⁴⁺ ima manji ionski radijus $[r(\text{Mn}^{4+}) = 0,53 \text{ Å}]$ od iona Mn³⁺

 $[r(Mn^{3+}) = 0,65 \text{ Å}]$, dolazi do smanjenja parametara kristalne rešetke. Taj trend posebno je izražen u uzorcima pripremljenim limunskim postupkom sinteze, dok uzorak LC_Sr0,1 pripremljen koprecipitacijskim postupkom odstupa, tj. kod njega dolazi do porasta volumena jedinične ćelije u odnosu na nedopirani LC_Sr0 uzorak. Uzrok tome je deficit kisika od –0,07 (Tablica 3.) koji dovodi do nastanka većeg broja iona Mn³⁺ većeg ionskog radijusa te se ukupni efekt uočava kao porast parametara kristalne rešetke.

4.2.2. Kalcijevi manganiti

Kristalizacija kalcijevih manganita (Ca_{1-x}Sr_xMnO₃, x = 0, 0,3 i 0,5) praćena je FTIRspektroskopijom i XRD-analizom uz Rietveldovo utočnjavanje. FTIR-spektri prekursora pripremljenih limunskim i koprecipitacijskim postupkom prikazani su na slikama 24(a, b) u istom rasponu valnih brojeva kao i za LSMO-uzorke. U svim uzorcima uočene su dvije vrpce karakteristične za karbonate; prva vrpca na oko 1400 cm⁻¹ potječe od asimetričnog istezanja skupine CO₃²⁻, a druga na 850 cm⁻¹ rezultat je savijanja CO₃²⁻ izvan ravnine [128,129]. U uzorcima pripremljenima koprecipitacijom [slika 24(b)] uočena je i treća karakteristična vrpca karbonata na 710 cm⁻¹ koja potječe od savijanja CO₃²⁻ u ravnini [129]. U uzorcima su također uočene i vrpce koje potječu od zaostalih nitrata, a na slikama su označene sa *. U uzorcima pripremljenima limunskim postupkom uočene su vrpce na oko 600 i 480 cm⁻¹ koje potječu od istezanja veza Mn–O i savijanja veza Mn–O–Mn [131–134]. Te vrpce mogu biti posljedica nastanka manganitne faze zbog visoke temperature na kojoj se provodi postupak sinteze ili pak potječu od faze Mn₃O₄ koja također može nastati pri visokim temperaturama.

Slika 24. FTIR-spektri prekursora (a,b) i žarenih CSMO-uzoraka (c,d) pripremljenih limunskim (oznake CL, a i c) i koprecipitacijskim (oznake CC, b i d) postupkom sinteze.

FTIR-spektri žarenih uzoraka kalcijevih manganita prikazani su na slikama 24(c, d) u rasponu od 400 do 1000 cm⁻¹ jer na vrijednostima valnih brojeva iznad 1000 cm⁻¹ nisu uočene vrpce. U snimljenim spektrima uočene su tri vrpce karakteristične za manganite: prva u području 500 – 520 cm⁻¹ koja potječe od istezanja Mn–O, druga na 450 cm⁻¹ koja potječe od savijanja O–Mn–O i treća na oko 420 cm⁻¹ koja je rezultat savijanja veza Mn–O–Mn [131–134].

Difraktogrami CSMO-prekursora dobivenih limunskim i koprecipitacijskim postupkom sinteze prikazani su na slici 25. Kristalnost prekursora dobivenih limunskim postupkom [slika 25(a)] niska je, a vidljivi maksimumi identificirani su kao faze CaCO₃ (ICDD 81-2027) i Mn₃O₄ (ICDD 1-1127). U uzorku CL_Sr0,5 s najvećim udjelom Sr-dopiranja uočeni su i maksimumi koji potječu od faze Sr(NO₃)₂ (ICDD 25-0746). Prekursori CSMO pripremljeni koprecipitacijskim postupkom [slika 25(b)] imaju veću kristalnost u odnosu na prekursore dobivene u limunskom postupku i sastoje se od miješane karbonatne faze CaMn(CO₃)₂ (ICDD 84-1290), a u Sr-dopiranim uzorcima uočeni su i maksimumi koji potječu od faze SrCO₃ (ICDD 5-0418).

Slika 25. Difraktogrami prekursora CSMO-uzoraka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Uz difraktograme su priložene i standardne rendgenske kartice faza CaCO₃ (ICDD 81-2027), Mn_3O_4 (ICDD 1-1127), Ca $Mn(CO_3)_2$ (ICDD 84-1290) i SrCO₃ (ICDD 5-0418), a maksimumi koji potječu od faze Sr(NO₃)₂ (ICDD 25-0746) označeni su sa *.

XRD-analizom CSMO-uzoraka dobivenih žarenjem prekursora na 1200 °C utvrđeno je da su u svim uzorcima nastale željene manganitne faze što je potvrđeno Rietveldovom metodom utočnjavanja, a snimljeni difraktogrami i izračunati modeli za sve uzorke prikazani su na slici 26.

Slika 26. Rezultati Rietveldove metode utočnjavanja za CSMO-uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Eksperimentalni podaci prikazani su crvenim točkama, izračunati model crnom linijom, a odstupanja eksperimentalnih podataka od modela prikazana su plavom linijom ispod difraktograma. Zelenim crtama prikazane su Braggove pozicije za svaku od faza.

U obama postupcima sinteze uspješno su sintetizirani kalcijevi manganiti koji kristaliziraju u ortorompskom kristalnom sustavu prostore grupe *Pnma*. Brojčani rezultati utočnjavanja prikazani su u Tablici 4. te je uočen porast parametara jedinične ćelije s porastom Sr-dopiranja što je posljedica supstitucije manjeg kationa Ca^{2+} [$r(Ca^{2+}) = 1,00$ Å] većim kationom Sr²⁺ [$r(Sr^{2+}) = 1,18$ Å] [136].

Tablica 4. Kristalografski podaci CSMO-uzoraka pripremljenih limunskim i koprecipitacijskim postupkom dobiveni postupkom Rietveldova utočnjavanja XRD-podataka. Prikazani su i rezultati permanganatne titracije (δ_{exp}), prosječna oksidacijska stanja mangana (Mn AOS, engl. *average oxidation state*), udio Sr određen EDXS-analizom te udio marokitne faze CaMn₂O₄ određen semikvantitativnom analizom.

Uzorci/	CI Sm0		CI S=0.5	CC S m0	CC 5m0 3	CC 5+0 5
Parametri	CL_510	CL_510,5	CL_510,5	CC_510	CC_510,5	CC_510,5
x	0	0,3	0,5	0	0,3	0,5
<i>a</i> , Å	5,2848(5)	5,3067(1)	5,3227(1)	5,2844(3)	5,3088(1)	5,3152(5)
b, Å	7,4594(1)	7,5161(1)	7,5341(5)	7,4609(5)	7,5062(3)	7,5207(5)
<i>c</i> , Å	5,2688(3)	5,3173(1)	5,3387(2)	5,2689(5)	5,3224(2)	5,3343(5)
<i>V</i> , Å ³	207,708(1)	212,091(2)	214,094(2)	207,741(2)	212,092(1)	213,241(3)
Okupancije:						
Ca	0,991(1)	0,678(2)	0,466(2)	0,996(1)	0,650(2)	0,436(2)
Sr	/	0,292(0)	0,492(0)	/	0,294(2)	0,494(1)
Mn	0,988(0)	0,992(0)	1,048(1)	0,999(1)	1,009(1)	1,002(0)
01, 02	2,968(2)	3,008(1)	2,974(2)	2,868(0)	2,901(0)	2,929(1)
δ	-0,032	0,008	-0,026	-0,132	-0,099	-0,071
$\delta_{ m exp}$	-0,030	0	-0,030	-0,130	-0,100	-0,070
Mn AOS	3,936	4	3,948	3,736	3,802	3,858
Sr (prema	/	0.27 ± 0.02	0.50 ± 0.01	/	0.28 ± 0.01	0.52 ± 0.02
EDXS-u)	/	0,27 ± 0,02	$0,50 \pm 0,01$	/	$0,20 \pm 0,01$	$0,32 \pm 0,02$
R exp, %	6,52	6,57	6,12	6,64	6,08	6,98
R wp, %	8,50	8,70	8,70	8,60	9,50	8,60
χ^2	1,70	1,75	2,00	1,68	1,44	1,52
<i>I/I</i> ₀ (CaMn ₂ O ₄), %	1,92	2,07	4,99	1,61	6,19	7,02

Okupancije kisika i stroncija dodatno su određene metodom permanganatne titracije i EDXS-analizom te su dobiveni rezultati pokazali slaganje s rezultatima dobivenim Rietveldovom metodom utočnjavanja (Tablica 4.). U svim pripremljenim uzorcima kalcijevih manganita uočen je maksimum na $2\theta = 33^{\circ}$ koji potječe od marokitne faze, CaMn₂O₄ (ICDD 16-709). Udio marokitne faze određen je semikvantitativno, preko omjera visina difrakcijskih maksimuma

najvišeg intenziteta marokitne i manganitne faze, te je utvrđeno da raste s porastom udjela Sr (Tablica 4.) jer smanjeni omjer Ca/Mn rezultira nastankom faze bogatije manganom. Ravnotežu u sustavima Ca–Mn–O proučavali su Horowitz i Longo [137] koji su pokazali da se u slučaju većeg udjela Mn, ioni Mn³⁺ stabiliziraju unutar manganitne faze te da je prilikom priprave manganita u standardnim uvjetima žarenja u zraku nemoguće izbjeći pojavu marokitne faze koja je uočena i u drugim istraživanjima provedenima tijekom posljednjih nekoliko godina [138,139]. Macan i sur. [138] potvrdili su da se pojava marokitne faze ne može izbjeći strogom kontrolom stehiometrije, variranjem metode sinteze niti promjenom temperature žarenja, dok su Torres i sur. [139] uspjeli dobiti čistu fazu CaMnO₃ produljenim žarenjem na temperaturama iznad 1200 °C. Međutim, taj se pristup ne može primijeniti na dopirane faze CaMnO₃ u kojima su fazne ravnoteže složenije, kao što su pokazali Li i sur. [60] koji su istraživali Pr- and Yb-dopirane sustave CaMnO₃ i opazili pojavu marokitne faze u udjelu od 2 do 5 mol. %.

4.2.3. Barijevi manganiti

Kristalizacija barijevih manganita (Ba_{1-x}Sr_xMnO₃, x = 0, 0,3 i 0,5) također je praćena FTIR-spektroskopijom i XRD-analizom uz Rietveldovo utočnjavanje. FTIR-spektri BSMO-prekursora pripremljenih limunskim i koprecipitacijskim postupkom prikazani su na slikama 27(a, b). U svim uzorcima uočene su karakteristične već spomenute vrpce karbonata; prva na oko 1400 cm⁻¹, druga na 850 cm⁻¹ i treća na 710 cm⁻¹ koja je najbolje vidljiva u uzorku BC_Sr0, a u prekursorima pripremljenima limunskim postupkom srasla je s vrpcom koja odgovara istezanju Mn–O [128,129]. Budući da je nitratna otopina metalnih kationa polazna u objema sintezama, uočene su i već spomenute vrpce NO₃⁻ označene sa *. U uzorcima pripremljenima limunskim postupkom uočene su vrpce na oko 600 cm⁻¹, 480 cm⁻¹ i 420 cm⁻¹ koje potječu od istezanja Mn-O i savijanja Mn–O–Mn, a posljedica su nastanka manganitne faze ili faze Mn₃O₄ pri visokim temperaturama provođenja sinteze [131-134].

Slika 27. FTIR-spektri prekursora (a,b) i žarenih BSMO-uzoraka (c,d) pripremljenih limunskim (oznake BL, a i c) i koprecipitacijskim (oznake BC, b i d) postupkom sinteze.

FTIR-spektri žarenih uzoraka barijevih manganita prikazani su na slikama 27(c, d) u rasponu od 400 do 1000 cm⁻¹. Kao i kod prethodnih dvaju sustava pripremljenih materijala, na snimljenim spektrima uočene su tri vrpce karakteristične za manganite: prva u području 500 – 520 cm⁻¹ koja potječe od istezanja Mn–O, druga na 450 cm⁻¹ koja potječe od savijanja O–Mn–O i treća na oko 420 cm⁻¹ koja je rezultat savijanja veza Mn–O–Mn [131–134].

Difraktogrami BSMO-prekursora dobivenih limunskim i koprecipitacijskim postupkom sinteze prikazani su na slikama 28(a, b). U prekursorima pripremljenima limunskim postupkom utvrđeno je postojanje faza BaCO₃ (ICDD 5-0378) i Mn₃O₄ (ICDD 1-1127), a u dopiranim uzorcima vidljivi su maksimumi faze Sr(NO₃)₂ (ICDD 25-0746) označeni sa *. U prekursorima pripremljenima koprecipitacijskim postupkom identificirane su miješane karbonatne faze BaMn(CO₃)₂ (ICDD 17-0728) i (Sr,Ba)CO₃ (ICDD 47-0224). U nedopiranom uzorku BC_Sr0 vidljivi su maksimumi koji potječu od čiste faze BaCO₃ te su označeni s °.

Slika 28. Difraktogrami prekursora BSMO-uzoraka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Uz difraktograme su priložene i standardne rendgenske kartice faza BaCO₃ (ICDD 5-0378), Mn_3O_4 (ICDD 1-1127), $BaMn(CO_3)_2$ (ICDD 17-0728) i (Sr,Ba)CO₃ (ICDD 47-0224). Maksimumi koji potječu od faze Sr(NO₃)₂ (ICDD 25-0746) na slici (a) označeni su sa *, dok su maksimumi faze BaCO₃ (ICDD 5-0378) na slici (b) označeni s °.

Unatoč nesavršenoj homogenosti prekursora, XRD-analizom BSMO-uzoraka dobivenih žarenjem prekursora na 1200 °C utvrđeno je da su u svim uzorcima nastale željene manganitne faze što je potvrđeno Rietveldovom metodom utočnjavanja. Snimljeni difraktogrami i izračunati modeli za sve BSMO-uzorke prikazani su na slici 29. Primjenom obaju postupaka sinteze (limunskog i koprecipitacijskog) uspješno su pripremljene manganitne faze čiji kristalni sustav ovisi o udjelu Sr-dopiranja. Nedopirani uzorci BL_Sr0 i BC_Sr0 kristalizirali su u romboedarskom sustavu $R\bar{3}m$, dok su uzorci BL_Sr0,5 i BC_Sr0,5 s najvišim udjelom Sr-dopiranja kristalizirali u heksagonskom kristalnom sustavu P63/mmc. Uzorci BL_Sr0,3 i BC_Sr0,3 posjeduju maksimume karakteristične za romboedarski i heksagonski kristalni sustav što se može vidjeti na difraktogramima prikazanima

Slika 29. Rezultati Rietveldove metode utočnjavanja za BSMO-uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Eksperimentalni podaci prikazani su crvenim točkama, izračunati model crnom linijom, a odstupanja eksperimentalnih podataka od modela prikazana su plavom linijom ispod difraktograma. Zelenim crtama prikazane su Braggove pozicije za svaku od faza.

Brojčani rezultati Rietveldove metode utočnjavanja prikazani su u Tablici 5. te je uočeno da Sr-dopiranje rezultira smanjenjem parametara i u konačnici volumena jedinične ćelije. To je očekivano budući da se veći kation Ba^{2+} [$r(Ba^{2+}) = 1,35$ Å] zamjenjuje manjim kationom Sr^{2+}

 $[r(Sr^{2+}) = 1,18$ Å] [136]. Budući da su barijevi manganiti općenito vrlo slabo istraženi, sam postupak Rietveldove analize bilo je znatno teže provesti nego u slučaju lantanovih i kalcijevih manganita zbog manje dostupnosti pouzdanih CIF-datoteka. To se vidi i po znatno većem odstupanju eksperimentalnih i izračunatih rezultata (plave linije ispod difraktograma na slici 29.) nego u prethodnih slučajevima. Međutim, udjeli kisika i Sr potvrđeni su permanganatnom titracijom i EDXS-analizom te su pokazali dobro slaganje s računski dobivenim rezultatima na temelju čega je zaključeno da je provedeno utočnjavanje zadovoljavajuće, a dobiveni rezultati

Tablica 5. Kristalografski podaci BSMO-uzoraka pripremljenih limunskim i koprecipitacijskim postupkom dobiveni postupkom Rietveldova utočnjavanja XRD-podataka. Prikazani su i rezultati permanganatne titracije (δ_{exp}) te udio Sr određen EDXS-analizom.

Uzorci/	DI S-0	DI Sul 2	DI 6-05	DC Sml	DC Sm0 2	DC Sr0 5
Parametri	DL_510	DL_310,3	DL_510,5	DC_510	DC_510,5	DC_510,5
x	0	0,3	0,5	0	0,3	0,5
a, Å	5,6728(3)	5,6387(5)	5,5440(5)	5,6822(5)	5,6414(2)	5,5577(1)
b, Å	5,6728(3)	5,6387(5)	5,5440(5)	5,6822(5)	5,6414(2)	5,5577(1)
c, Å	35,2631(2)	20,8890(1)	9,1330(1)	35,3183(1)	20,7970(2)	9,1422(5)
$V, Å^3$	982,770(1)	573,660(1)	243,110(1)	987,588(2)	573,688(2)	244,558(2)
Okupancije:						
Ba	1,055(5)	0,695(5)	0,498(1)	0,995(0)	0,705(0)	0,486(2)
Sr	/	0,301(1)	0,497(3)	/	0,298(1)	0,510(1)
Mn	1,002(0)	0,998(2)	1,002(2)	0,923(1)	0,992(0)	0,990(0)
01, 02	2,284(2)	2,468(2)	2,708(2)	2,285(2)	2,379(1)	2,892(0)
δ	-0,716	-0,532	-0,292	-0,715	-0,621	-0,208
$\delta_{ ext{exp}}$	-0,690	-0,530	-0,290	-0,710	-0,620	-0,210
Mn AOS	2,568	2,936	3,416	2,570	2,758	3,784
Sr (prema	/	0.29 ± 0.01	0.49 ± 0.01	/	0.30 ± 0.01	0.46 ± 0.02
EDXS-u)	/	$0,27 \pm 0,01$	$0,47 \pm 0,01$	7	$0,50 \pm 0,01$	0,40 ± 0,02
Rexp, %	7,52	7,38	7,12	7,64	7,25	6,80
R _{wp} , %	8,30	9,77	8,69	9,63	9,75	8,35
χ^2	1,22	1,75	1,49	1,59	1,81	1,51

4.3. Morfologija manganita

4.3.1. Lantanovi manganiti

Morfologija LSMO-uzoraka istražena je na praškastim uzorcima te na lomnim površinama peleta radi provjere njihova sinteriranja. Na praškastim uzorcima (slika 30.) vide se morfološke razlike između uzoraka pripremljenih dvjema različitim metodama sinteze, a unutar istog postupka sinteze nema značajne promjene morfologije s rastućim udjelom Sr-dopiranja. Uzorci pripremljeni limunskim postupkom sinteze [slika 30(a)] imaju karakterističnu spužvastu morfologiju koja je posljedica intenzivnog oslobađanja plinova tijekom samozapaljenja [41,141], a struktura je sastavljena od spojenih kristalnih zrna od kojih su neka manja od 1 µm u promjeru. S druge strane, praškasti uzorci dobiveni koprecipitacijskim postupkom imaju strukturu sastavljenu od poroznih, nepravilnih sfernih agregata građenih od kristalnih zrna slične veličine [138,142].

Slika 30. SEM-mikrografije praškastih LSMO-uzoraka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze, snimljene pri povećanju od 5000×.

Na SEM-mikrografijama lomnih površina peleta (slika 31.), pripremljenih iz prašaka dobivenih limunskim i koprecipitacijskim postupkom sinteze, nisu uočene takve morfološke razlike budući da su prije sinteriranja prašci dobro kompaktirani čime je smanjena njihova slobodna površina.

Utjecaj rastućeg Sr-dopiranja na morfologiju također nije uočen, a na temelju SEM-mikrografija zaključeno je da je sinteriranje dobro provedeno. Osim toga, uočena je prisutnost pora koja u ovom slučaju nije nedostatak jer potencijalne primjene lantanovih manganita, naročito primjena u SOFC-sustavima, zahtijevaju poroznost materijala koja pridonosi ionskoj vodljivosti i difuziji kisika kroz čvrsti elektrolit te općenito pridonosi olakšanoj difuziji reaktanata i produkata [13].

Slika 31. SEM-mikrografije lomne površine LSMO-peleta dobivenih iz prašaka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze, snimljene pri povećanju od 5000×.

Prosječne veličine kristalita (*D*) izračunate su Scherrerovom [143] jednadžbom te su vrijednosti prikazane u Tablici 6. zajedno s vrijednostima specifičnih površina (S_A) i prosječnih promjera pora (d_p) koje su određene analizom adsorpcije/desorpcije dušika. Budući da su specifične površine i promjeri pora najvažniji za katalitičku primjenu LSMO-uzoraka, analize su provedene samo na onim uzorcima koji su u preliminarnim katalitičkim ispitivanjima pokazali zadovoljavajuću aktivnost. Iz dobivenih rezultata (Tablica 6.) vidljivo je da je koprecipitacijski postupak sinteze dao manje kristalite u usporedbi s limunskim postupkom što je rezultat nestehiometrije kisika u koprecipitiranim uzorcima koja dovodi do značajnih distorzija kristalne rešetke i kompresivnog naprezanja koje zatim rezultira smanjenjem veličine kristalita. Te su pretpostavke eksperimentalno potvrđene istraživanjem koje su proveli Koralli i sur. [144]. Specifične površine uzoraka pripremljenih limunskim postupkom značajno su porasle s povećanjem udjela Sr-dopiranja s 0,1 na 0,2, dok je za udio 0,3 ponovno uslijedio pad vrijednosti. Nedostatak trenda između vrijednosti specifičnih površina i udjela dopiranja u skladu je s rezultatima koje su dobili Rabelo i sur. [145], pri čemu su te vrijednosti najviše ovisile o vrsti goriva koje se koristilo u sintezi te o omjeru goriva i metalnih kationa [44,146,147]. Istraživanja [146] su pokazala da je za molarni omjer goriva i metalnih kationa od 1,2 moguće dobiti specifičnu površinu od 26 m² g⁻¹, dok povećanje tog omjera na vrijednosti između 1,4 i 2 dovodi do naglog smanjenja specifične površine na 5 m² g⁻¹. Uzrok tome je povećana egzotermnost reakcije sinteze koja dovodi do lokalnih pregrijavanja i rasta kristalita, čime se specifična površina smanjuje. Iako su u izradi ovog rada istraženi razni omjeri goriva i metalnih kationa u rasponu od 1 do 2, omjer 2 određen je kao optimalan jer su manji omjeri rezultirali nastankom sporednih faza Mn₃O₄ i La₂O₃. Stoga su dobivene specifične površine u rasponu 1 - 6 m² g⁻¹ očekivane, uzimajući u obzir i visoku temperaturu žarenja od 1200 °C.

Tablica 6. Prosječne veličine kristalita (*D*) LSMO-uzoraka izračunate Scherrerovom jednadžbom, specifične površine (S_A) i prosječni promjeri pora (d_p) određeni analizom adsorpcije/desorpcije dušika.

Uzorak	LL_Sr0	LL_Sr0,1	LL_Sr0,2	LL_Sr0,3	LC_Sr0	LC_Sr0,1	LC_Sr0,2	LC_Sr0,3
D, nm	83	84	83	81	74	61	57	43
$S_{\rm A},{\rm m}^2{\rm g}^{-1}$	/	0,88	5,07	2,32	/	/	3,90	2,28
<i>d</i> _p , nm	/	3,76	8,51	7,82	/	/	9,66	9,61

Specifične površine uzoraka pripremljenih koprecipitacijom usporedive su sa specifičnim površinama uzoraka pripremljenih limunskim postupkom unatoč morfološkim razlikama određenim SEM-om te su veće u odnosu na prethodno objavljene rezultate Liua i sur. [148] koji su istraživali kako udio Ca, Ba i Sr-dopiranja utječe na specifičnu površinu lantanovih manganita. U njihovu istraživanju uzorci su pripremljeni postupkom koprecipitacije uz Na₂CO₃ i NaOH kao precipitacijske agense te uz održavanje pH-vrijednosti reakcijske smjese na 10. Po završetku sinteze, uzorci su žareni na 1200 °C, a određene specifične površine iznosile su od 0,22 do 0,47 m² g⁻¹. Dakle, iz rezultata prikazanih u ovom radu slijedi da je optimiranjem koprecipitacijskog postupka sinteze i odabirom precipitacijskog agensa moguće proizvesti

praškaste uzorke lantanovih manganita gotovo iste specifične površine kao i u limunskom postupku.

Raspodjele veličine pora, gdje se pod veličinom pora podrazumijeva promjer pora, određene su iz adsorpcijskih izotermi N₂ pomoću Barrett-Joyner-Halendinova (BJH) modela te su za LSMOuzorke prikazane su na slici 32. Vidljivo je da uzorci imaju široku raspodjelu veličine pora (2 – 80 nm) s većim udjelima manjih pora, što ih svrstava u mezoporozne materijale koje odlikuje prosječna veličina pora između 2 i 50 nm [149].

Slika 32. Raspodjela veličina pora LSMO-uzoraka.

Prosječna veličina pora također se ne razlikuje značajno za uzorke pripremljene različitim postupcima sinteze, ali važno je istaknuti da uzorci pripremljeni limunskim postupkom imaju multimodalnu raspodjelu, dok uzorci pripremljeni koprecipitacijskim postupkom imaju maksimum raspodjele pri 4 nm i blagi porast udjela pora većih promjera. Iako nanopore nisu vidljive na SEM-mikrografijama (slika 30.), na njima su vidljive veće pore promjera $0,5 - 2 \mu m$ važne za difuziju reaktanata i produkata, naročito u katalitičkoj primjeni manganita.

4.3.2. Kalcijevi manganiti

SEM-mikrografije praškastih uzoraka kalcijevih manganita prikazane su na slici 33. te su uočene morfološke razlike između uzoraka pripremljenih limunskim i koprecipitacijskim postupkom spomenute u prethodnom odjeljku. Limunski postupak rezultirao je uzorcima spužvaste morfologije [slika 33(a)], dok su uzorci pripremljeni koprecipitacijom sastavljeni od sfernih agregata najbolje vidljivih na SEM-mikrografiji uzorka CC_Sr0,3. Najveći promjer kristalnih zrna od 5 µm opažen je na SEM mikrografiji uzorka CC_Sr0, dok je rastući udio Sr-dopiranja doveo do smanjenja promjera kristalnih zrna ispod 1 µm, što je usporedivo s uzorcima pripremljenima limunskim postupkom sinteze.

Slika 33. SEM mikrografije praškastih CSMO-uzoraka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze, snimljene pri povećanju od 5000×.

Iz SEM-mikrografija lomne površine peleta kalcijevih manganita (slika 34.) vidljivo je da su različite metode sinteze prašaka rezultirale različitom morfologijom sinteriranih peleta pri čemu se razlika najbolje vidi za dopirane uzorke. Uzorci CL_Sr0,3 i CL_Sr0,5 sastavljeni su od spojenih kristalnih zrna, dok se na SEM-mikrografijama lomne površine CC_Sr0,3 i CC_Sr0,5 vide sferni porozni agregati.

Slika 34. SEM-mikrografije lomne površine CSMO-peleta dobivenih iz prašaka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze, snimljene pri povećanju od 5000×.

Radi daljnje morfološke karakterizacije pripravljenih CSMO-materijala, Scherrerovom jednadžbom izračunate su prosječne veličine kristalita (*D*), a specifične površine i prosječni promjeri pora određeni su analizom adsorpcije/desorpcije dušika. Dobiveni rezultati prikazani su u Tablici 7. te je vidljivo da je koprecipitacijski postupak rezultirao manjim promjerom kristalita, baš kao i kod LSMO-materijala (Tablica 6.), zbog nestehiometrije kisika koja dovodi do distorzije jedinične rešetke i smanjenja volumena. Također je uočeno smanjenje prosječne veličine kristalita s porastom udjela Sr-dopiranja. Rastući udio Sr dovodi do povećane distorzije kristalne rešetke, baš kao i nestehiometrija kisika, te do kompresivnog naprezanja koje zatim rezultira smanjenjem veličine kristalita [144].

<i>Tablica</i> /. Prosječne veličine kristalita (D) CSNIO-uzoraka izračunate Scherrerovom jednadzbom,
specifične površine (S_A) i prosječni promjeri pora (d_p) određeni analizom adsorpcije/desorpcije
dušika.

 $(\mathbf{D}) \cap (\mathbf{D}) \mathbf{I} \cap$

Uzorak	CL_Sr0	CL_Sr0,3	CL_Sr0,5	CC_Sr0	CC_Sr0,3	CC_Sr0,5
D, nm	100	92	74	89	66	53
$S_{\rm A}, {\rm m}^2 {\rm g}^{-1}$	0,45	0,83	0,89	0,50	0,59	0,72
$d_{\rm p}, {\rm nm}$	1,97	2,52	1,19	4,53	7,54	5,27

· / 1·/

1 1.

Rastući udio Sr-dopiranja rezultirao je također i porastom specifičnih površina koje su veće za CSMO-uzorke pripremljene limunskim postupkom zbog njihove karakteristične spužvaste morfologije. Međutim, specifične površine svih uzoraka ispod su 1 m² g⁻¹ što je posljedica visoke temperature žarenja potrebne za dobivanje čiste manganitne faze, koja dovodi do sinteriranja i smanjenja poroznosti. CSMO-uzorci većih specifičnih površina od 13,8 i 39,6 m² g⁻¹ uspješno su pripremljeni postupcima u čvrstom stanju [150,151]. Međutim, takvi uzorci nisu prošli naknadnu termičku obradu zbog čega nisu prikladni za visokotemperaturne primjene poput SOFC-a i katalize jer tijekom primjene može doći do faznih promjena i naknadnog sinteriranja koje će imati utjecaj na morfološke karakteristike. Nadalje, Rezlescu i sur. [152] pokazali su da specifična površina perovskita nije glavni faktor koji utječe na njihovu katalitičku aktivnost. U njihovu istraživanju pripremljeni su perovskiti SrMnO₃ ($s_A = 2, 2 \text{ m}^2 \text{ g}^{-1}$), SrCoO₃ ($s_A = 1, 9 \text{ m}^2 \text{ g}^{-1}$), MnFeO₃ ($s_A = 3, 2 \text{ m}^2 \text{ g}^{-1}$) i GdAlO₃ ($s_A = 9, 8 \text{ m}^2 \text{ g}^{-1}$) te je ispitana njihova katalitička aktivnost pri oksidaciji smjese acetona, propana i benzena. Unatoč maloj specifičnoj površini, SrMnO₃ je imao najbolju katalitičku aktivnost zahvaljujući nestehiometriji kisika i prisutnosti miješanih Mn-valencija u kristalnoj strukturi.

Trend između udjela Sr-dopiranja i prosječnog promjera pora nije uočen, s obzirom na to da promjer pora ovisi o poroznosti samih čestica, ali i o veličini pora između kristalnih zrna što je rezultat procesa sinteriranja. Prema rezultatima prikazanim u Tablici 7. vidljivo je da je prosječni promjer pora CSMO-uzoraka pripremljenih koprecipitacijskim postupkom znatno veći u odnosu na iste uzorke pripremljene limunskim postupkom sinteze, što je rezultat pora prisutnih između sfernih agregata [slika 33(b)]. Raspodjelu veličine pora za CSMO-uzorke pripremljene limunskim postupkom sinteze nije bilo moguće odrediti zbog njihove niske poroznosti i malog volumena

1 \(1

adsorbiranog N₂. Grafički prikazi raspodjele veličine pora, određeni iz adsorpcijskih izotermi N₂ pomoću BJH modela, prikazani su na slici 35. za uzorke CC_Sr0, CC_Sr0,3 i CC_Sr0,5 pripremljene koprecipitacijskim postupkom sinteze. Vidljivo je da je raspodjela veličine pora široka (2 – 30 nm) s većim udjelima pora nižih vrijednosti d_p . Dakle, pripremljeni CSMO-uzorci također su mezoporozni.

Slika 35. Raspodjela veličina pora CSMO-uzoraka pripremljenih koprecipitacijskim postupkom sinteze.

4.3.3. Barijevi manganiti

SEM-mikrografije praškastih uzoraka barijevih manganita prikazane su na slici 36. te nisu uočene karakteristične morfološke razlike vezane za postupak sinteze. U obama postupcima sinteze dobiveni su prašci spužvaste morfologije što se vjerojatno može pripisati intenzivnoj razgradnji miješanog karbonatnog prekursora u manganitnu fazu praćenoj intenzivnim oslobađanjem CO₂. Morfološke se razlike bolje mogu uočiti na SEM-mikrografijama lomnih površina peleta barijevih manganita (slika 37.). Peleti pripremljeni od prašaka dobivenih limunskim postupkom sastavljeni su od sraslih kristalnih zrna uz submikrometarske pore, dok su vidljive mikrometarske pore nastale uslijed lomljenja čvrstih peleta. S druge strane, peleti pripremljeni od prašaka dobivenih koprecipitacijskim postupkom sastavljeni su od nepravilnih sfernih agregata s porama promjera do 2 µm.

Slika 36. SEM-mikrografije praškastih BSMO-uzoraka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze, snimljene pri povećanju od 5000×.

Slika 37. SEM-mikrografije lomne površine BSMO-peleta dobivenih iz prašaka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze, snimljene pri povećanju od 5000×.

Prosječne veličine kristalita izračunate Scherrerovom jednadžbom, specifične površine i prosječne vrijednosti promjera pora prikazane su u Tablici 8. Za razliku od LSMO- i CSMO-uzoraka, veličina kristalita u BSMO-uzorcima nije se značajno promijenila ovisno o postupku sinteze zbog podjednakih vrijednosti nestehiometrije kisika za pojedine udjele Sr-dopiranja. S druge strane, uočeno je da dopiranje dovodi do značajnog smanjenja veličine kristalita zbog distorzije kristalne rešetke i kompresivnog naprezanja, kako je prethodno objašnjeno kod CSMO-uzoraka.

Tablica 8. Prosječne veličine kristalita (*D*) BSMO-uzoraka izračunate Scherrerovom jednadžbom, specifične površine (S_A) i prosječni promjeri pora (d_p) određeni analizom adsorpcije/desorpcije dušika.

Uzorak	BL_Sr0	BL_Sr0,3	BL_Sr0,5	BC_Sr0	BC_Sr0,3	BC_Sr0,5
D, nm	177	57	55	166	64	54
$S_{\rm A},{\rm m}^2{\rm g}^{-1}$	0,70	1,03	1,12	0,61	0,78	0,83
d _p , nm	4,45	5,91	6,04	5,67	5,61	6,15

Vrijednosti specifičnih površina pokazale su trend rasta s povećanjem udjela Sr-dopiranja za oba postupka sinteze, a uzorci pripremljeni limunskim postupkom imali su veću specifičnu površinu zbog intenzivnijeg oslobađanja plinova u koraku samozapaljenja. Međutim, dobivene specifične površine ponovno su male zbog termičke obrade uzoraka.

Prosječni promjer pora uzoraka pripremljenih limunskim postupkom također raste s porastom udjela Sr-dopiranja, dok uzorci BC_Sr0 i BC_Sr0,3 pripremljeni koprecipitacijskim postupkom imaju podjednake d_p -vrijednosti. Raspodjela veličine pora BSMO-uzoraka određena je iz adsorpcijskih izotermi N₂ pomoću BJH modela i prikazana na slici 38. te je vidljivo da su uzorci mezoporozni i da imaju široku raspodjelu pora (2 – 40 nm) s većim udjelima pora nižih vrijednosti d_p .

Slika 38. Raspodjela veličina pora BSMO-uzoraka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze.

4.4. Električna svojstva manganita

Električna svojstva pripremljenih lantanovih, kalcijevih i barijevih manganita istražena su metodom impedancijske spektroskopije (IS) u čvrstom stanju kako je opisano u odjeljku 3.3.7.

4.4.1. Lantanovi manganiti

Električna svojstva lantanovih manganita određivana su u rasponu temperatura od -80 do 240 °C i frekvencija od 0,01 Hz do 1 MHz. Svi LSMO-uzorci pokazali su frekvencijski neovisnu provodnost u cijelom mjernom području frekvencija i temperatura (slika P2 u Prilogu 2) iz čega proizlazi da je transport elektrona kroz granice zrna nesmetan te da nema blokirajućih efekata [116]. Istosmjerne provodnosti (σ_{DC}) pri 20 °C očitane su iz DC-zaravni i brojčano prikazane u Tablici 9. Arrheniusove ovisnosti prikazane su za sve LSMO-uzorke na slici 39. te su na temelju njih, iz nagiba pravaca, određene energije aktivacije za istosmjernu provodnost (E_{DC}) također prikazane u Tablici 9.

Slika 39. Arrheniusova ovisnost istosmjerne provodnosti (σ_{DC}) o recipročnoj vrijednosti temperature za LSMO-uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze.

Tablica 9. Istos	smjerne provod	nosti (σ _{DC}) pri 20) °C i energije aktiv	vacije ($E_{\rm DC}$)	LSMO-uzoraka.
	J	· · · / 1	0,	J	

Uzorci	$\sigma_{\rm DC}$ (20 °C), (Ω cm) ⁻¹	$E_{\rm DC}$, eV
LL_Sr0	0,012	0,159
LL_Sr0,1	0,037	0,128
LL_Sr0,2	0,176	0,069
LL_Sr0,3	0,433	-
LC_Sr0	0,078	0,081
LC_Sr0,1	0,197	0,041
LC_Sr0,2	0,452	-
LC_Sr0,3	0,413	-

Iz Arrheniusove ovisnosti za LSMO-uzorke pripremljene limunskim postupkom [slika 39(a)] vidljivo je da električna provodnost raste s porastom udjela Sr-dopiranja, a uzorci u kojima je $x \le 0,2$ pokazuju klasično poluvodičko ponašanje u kojem provodnost raste s porastom temperature [153]. Takvo ponašanje posljedica je Zenerova mehanizma izmjene [17] u kojem se transport elektrona odvija preko mostova Mn³⁺–O–Mn⁴⁺ koji se protežu kroz kristalnu rešetku

manganita. Uzorak LL_Sr0,3 s najvećim udjelom dopiranja pokazuje najveću provodnost uz pojavu nelinearnosti na povišenim temperaturama koja je vjerojatno rezultat promjene u stehiometriji kisika uslijed zagrijavanja te visokog udjela dopiranja koji pridonosi brzom transportu elektrona zbog najvećeg omjera Mn^{3+}/Mn^{4+} . Vrijednosti E_{DC} (Tablica 9.) također prate spomenute trendove i padaju s porastom provodnosti, tj. udjela dopiranja kako je prikazano na slici 40.

Na slici 39(b) prikazana je Arrheniusova ovisnost za uzorke lantanovih manganita pripremljenih koprecipitacijom. Uzorci LC_Sr0 i LC_Sr0,1 ponašaju se kao klasični poluvodiči te njihova provodnost raste s porastom temperature, dok se energija aktivacije smanjuje za dopirani uzorak (Tablica 9., slika 40.). Pri višim udjelima dopiranja provodnost ne raste s porastom udjela Sr i uzorak LC_Sr0,2 pokazuje blago veću provodnost u odnosu na uzorak LC_Sr0,3. Uzrok tome je značajna nestehiometrija kisika u uzorku LC_Sr0,2 koja iznosi –0,17 i pridonosi dodatnom rastu omjera Mn³⁺/Mn⁴⁺ i većem broju veza na kojima se Zenerov mehanizam izmjene može odvijati. Za uzorke LC_Sr0,2 i LC_Sr0,3 također se pojavila već spomenuta nelinearnost pri višim temperaturama zbog koje nije bilo moguće odrediti energije aktivacije.

Slika 40. Ovisnosti istosmjerne provodnosti (σ_{DC}) na 20 °C i energije aktivacije (E_{DC}) o udjelu dopiranja LSMO-uzoraka.

Rezultati dobiveni u ovom istraživanju značajno su bolji od prethodno objavljenih rezultata. Debbebi i sur. [154] izmjerili su električnu provodnost LSMO (x = 0,3) pripremljenog Pechinijevim postupkom i dobili vrijednost istosmjerne provodnosti na 20 °C od $6,30 \times 10^{-3} (\Omega \text{ cm})^{-1}$ te energiju aktivacije od 0,210 eV što se znatno razlikuje od 0,433 ($\Omega \text{ cm}$)⁻¹ i 0,069 eV dobivenih u ovom istraživanju za uzorak LL_Sr0,3. Wiglusz i sur. [155] pripremili su istim postupkom sinteze LSMO (x = 0,2) i odredili provodnost od $2,0 \times 10^{-4} (\Omega \text{ cm})^{-1}$ što je također znatno niže od 0,176 ($\Omega \text{ cm}$)⁻¹ izmjerenih za uzorak LL_Sr0,2. Mogući uzrok navedenih razlika leži u visokoj temperaturi (1200 °C) sinteriranja peleta u ovom istraživanju, čime je postignut jako dobar kontakt između kristalnih zrna. Na temelju dobivenih rezultata vidljivo je da su provodnosti pripremljenih lantanovih manganita usporedive s provodnosti čistog Si [1,67×10⁻² – 10 ($\Omega \text{ cm}$)⁻¹] [156] što čini te materijale primjenjivima u SOFC-sustavima.

4.4.2. Kalcijevi manganiti

Električna svojstva kalcijevih manganita izmjerena su u istom rasponu temperatura (-80 – 240 °C) i frekvencija (0,01 Hz – 1 MHz) kao i kod lantanovih manganita, a rezultati frekvencijskih ovisnosti na svim temperaturama dani su na slici P3 u Prilogu 2. Svi uzorci kalcijevih manganita pokazali su frekvencijski neovisnu provodnost u cijelom mjernom području frekvencija iz čega proizlazi da se transport elektrona kroz granice zrna odvija nesmetano bez blokirajućih efekata [116]. Na slici 41. prikazane su Arrheniusove ovisnosti [117] za sve CSMO-uzorke te su na temelju njih određene energije aktivacije za istosmjernu provodnost (E_{DC}) brojčano prikazane u Tablici 10. Iz rezultata prikazanih na slici 41. vidljivo je poluvodičko ponašanje materijala, tj. porast provodnosti CSMO-uzoraka s temperaturom i rastućim udjelom Srdopiranja (Tablica 10.). Kod CSMO-uzoraka pripremljenih limunskim postupkom [slika 41(a)] vidljive su nelinearnosti već uočene u prijašnjim istraživanjima [49,157], a kao moguća objašnjenja navedene su fazne promjene, promjena u mehanizmu vodljivosti te promjena u sadržaju kisika. Zhou i sur. [158] istraživali su moguće fazne promjene u kalcijevim manganitima XRD-metodom u rasponu temperatura 20 - 800 °C i pokazali da materijali zadržavaju stabilnu ortorompsku strukturu u cijelom temperaturnom području te potvrdili da uočene nelineranosti ne potječu od faznih promjena. Međutim, otkriveno je da postoje anomalije u kutovima zakretanja oktaedara MnO₆ te su preko tih distorzija uspješno objašnjene nelinearnosti koje postaju sve izraženije s povećanim udjelom Sr-dopiranja.

Slika 41. Arrheniusova ovisnost istosmjerne provodnosti (σ_{DC}) o recipročnoj vrijednosti temperature za CSMO-uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze.

Na slici 41(b) prikazane su Arrheniusove ovisnosti za CSMO-uzorke dobivene koprecipitacijskim postupkom. Istosmjerne provodnosti tih uzoraka manje su u odnosu na one dobivene limunskim postupkom, ali u tom slučaju nema značajnijih odstupanja od linearnosti. Nadalje, uočen je i porast energije aktivacije s udjelom Sr-dopiranja što je suprotno očekivanju jer je dopiranje povoljno utjecalo na provodnost. Iz toga je zaključeno da je kod CSMO-uzoraka pripremljenih koprecipitacijom izraženiji poluvodički karakter u odnosu na uzorke pripremljene limunskim postupkom budući da pravci imaju vrlo strm nagib pri višim temperaturama. Ovisnosti istosmjerne provodnosti i energije aktivacije za sve CSMO-uzorke dane su na slici 42.

Tablica 10. Istosmjerne provodnosti (σ_{DC}) pri 20 °C i energije aktivacije (E_{DC}) CSMO-uzoraka.

Uzorci	$\sigma_{\rm DC}$ (20 °C), (Ω cm) ⁻¹	EDC, eV
CL_Sr0	1,58×10 ⁻²	0,076
CL_Sr0,3	3,39×10 ⁻²	0,070
CL_Sr0,5	$4,07 \times 10^{-2}$	0,059
CC_Sr0	5,62×10 ⁻³	0,077
CC_Sr0,3	2,09×10 ⁻²	0,086
CC_Sr0,5	2,95×10 ⁻²	0,101

Slika 42. Ovisnosti istosmjerne provodnosti (σ_{DC}) na 20 °C i energije aktivacije (E_{DC}) o udjelu dopiranja CSMO-uzoraka.

Za razliku od LSMO- uzoraka, CSMO-uzorci pripremljeni koprecipitacijskim postupkom imaju niže provodnosti u odnosu na uzorke dobivene limunskim postupkom, iz čega se može zaključiti da u tom slučaju na provodnost utječe morfologija peleta (slika 34.), tj. bolje sinteriranje peleta pripremljenih iz praha dobivenog limunskim postupkom. Osim toga, uzorci pripremljeni limunskim postupkom sadrže manje marokitne faze (Tablica 4.) pa su homogeniji i imaju manje granica faza na kojima može doći do rekombinacije nosilaca naboja.

Izmjerene vrijednosti električnih provodnosti u ovom istraživanju kreću se u rasponu od $5,62 \times 10^{-3} (\Omega \text{ cm})^{-1} \text{ do } 4,07 \times 10^{-2} (\Omega \text{ cm})^{-1} (\text{Tablica } 10.)$ što je također usporedivo s vrijednostima za Si i čini materijale primjenjivima za SOFC-sustave. Dobivene vrijednosti u skladu su s onima dobivenim u istraživaju Melo Jorge i sur. [49] koji su odredili provodnosti peleta CaMnO₃ u rasponu od $6,07 \times 10^{-5} (\Omega \text{ cm})^{-1} \text{ do } 3,4 \times 10^{-2} (\Omega \text{ cm})^{-1}$. Alfaruq i sur. [159] pripremili su sinterirane filmove CaMnO₃ i dobili provodnosti od $5,0 \times 10^{-4} (\Omega \text{ cm})^{-1}$ do $2,0 \times 10^{-3} (\Omega \text{ cm})^{-1}$ ovisno o postupku sinteriranja. Više vrijednosti električne provodnosti kalcijevih manganita mogu se dobiti dopiranjem trovalentnim ionima kako bi se potaknula redukcija mangana iz oksidacijskog stanja +4 u stanje +3. Isasi i sur. [49] pripremili su Ca_{0,7}Ho_{0,3}MnO₃ i izmjerili provodnost od 2 ($\Omega \text{ cm})^{-1}$, dok su Zahn i sur. [160] dobili vrijednost veće od 100 ($\Omega \text{ cm})^{-1}$ za Ca_{0,9}Dy_{0,1}MnO₃. Dodatni razlog tako visoke provodnosti je i priprema peleta visoke gustoće postupkom hladnog izostatskog

prešanja. Međutim, taj postupak uvelike smanjuje toplinsku vodljivost materijala zbog čega nije primjenjiv na materijale namijenjene SOFC-sustavima.

4.4.3. Barijevi manganiti

Električna svojstva barijevih manganita izmjerena su u rasponu temperatura od 20 do 240 °C, zbog njihove niske vodljivosti pri nižim temperaturama, te u rasponu frekvencija od 0,01 Hz do 1 MHz. Rezultati frekvencijskih ovisnosti u cijelom rasponu temperatura dani su na slici P4 u Prilogu 2 i sastoje se od obiju domena – istosmjerne provodnosti i frekvencijski ovisne domene u kojoj provodnost eksponencijalno raste s porastom frekvencije [116].

Iz zaravni istosmjerne provodnosti očitane su vrijednosti istosmjerne provodnosti (σ_{DC}) pri 20 °C koje su prikazane u Tablici 11. Na slici 43. prikazane su Arrheniusove ovisnosti [117] za sve uzorke barijevih manganita te su na temelju njih određene energije aktivacije za istosmjernu provodnost (E_{DC}) brojčano prikazane u Tablici 11.

Slika 43. Arrheniusova ovisnost istosmjerne provodnosti (σ_{DC}) o recipročnoj vrijednosti temperature za BSMO-uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze.

Svi BSMO-uzorci ponašaju se kao poluvodiči, tj. provodnost im raste s porastom temperature. Suprotno trendu uočenom kod LSMO i CSMO, provodnost BSMO-materijala opada s porastom udjela dopiranja, tj. porast udjela Sr dovodi do povećanja energije aktivacije (Tablica 11., slika 44.).

Uzorci	$\sigma_{\rm DC}$ (20 °C), (Ω cm) ⁻¹	EDC, eV
BL_Sr0	$1,41 \times 10^{-6}$	0,150
BL_Sr0,3	9,33×10 ⁻⁸	0,293
BL_Sr0,5	$1,17 \times 10^{-9}$	0,395
BC_Sr0	6,03×10 ⁻⁸	0,276
BC_Sr0,3	$1,45 \times 10^{-8}$	0,378
BC_Sr0,5	$4,37 \times 10^{-10}$	0,440

Tablica 11. Istosmjerne provodnosti (σ_{DC}) pri 20 °C i energije aktivacije (E_{DC}) BSMO-uzoraka.

Slika 44. Ovisnosti istosmjerne provodnosti (σ_{DC}) na 20 °C i energije aktivacije (E_{DC}) o udjelu dopiranja BSMO-uzoraka.

Razlog tome je što nedopirani BL_Sr0 i BC_Sr0 imaju vrlo visoke deficite kisika (Tablica 5.) koji značajno pridonose povećanju omjera Mn^{3+}/Mn^{4+} , što ne može biti postignuto samim dopiranjem budući da se Ba²⁺ supstituira kationom Sr²⁺ iste valencije. Dodatno se može uočiti da su provodnosti uzoraka pripremljenih limunskim postupkom veće u odnosu na uzorke pripremljene

koprecipitacijom što je posljedica morfoloških razlika objašnjenih u odjeljku 4.3.3. i boljeg sinteriranja peleta dobivenih iz praha pripremljenog limunskim postupkom sinteze.

Izmjerene vrijednosti električnih provodnosti BSMO-uzoraka znatno su niže u odnosu na provodnosti prethodno obrađenih LSMO- i CSMO-uzoraka. Ukoliko se prema jednadžbi (2) izračuna Goldschmidtov faktor tolerancije, on za BaMnO₃ iznosi 1,00, a za Ba_{0.7}Sr_{0.3}MnO₃ i Ba_{0.5}Sr_{0.5}MnO₃ 0,99 što dovodi do zaključka da je struktura barijevih manganita idealna, bez distorzija te je jedini faktor koji pridonosi distorziji i električnoj provodnosti nestehiometrija kisika. Osim toga, važna je i kristalna struktura koja se u BSMO-uzorcima mijenja s porastom udjela dopiranja (Tablica 5.). Nedopirani uzorci BL Sr0 i BC Sr0 kristaliziraju u romboedarskom $(R\overline{3}m)$ kristalnom sustavu, a rastući udio Sr-dopiranja dovodi do distorzije kristalne rešetke koja je najizraženija za x = 0.5 kada uzorci kristaliziraju u heksagonskom (*P63/mmc*) kristalnom sustavu. U manganitima i perovskitima općenito, mobilnost nosilaca naboja kroz rešetku ovisi o kutu veze B-O-B i raste kako se taj kut približava vrijednosti od 180° koja je karakteristična za romboedarsku strukturu. Za kutove <180°, dolazi do preklapanja i interakcija 3*d*-orbitala kationa na poziciji B i 2p-orbitala kisika. Te su interakcije vrlo jake te rezultiraju povećanjem relaksacijskog vremena i smanjenom mobilnošću elektrona [161]. Dakle, uzorci BL_Sr0 i BC_Sr0 pripremljeni u ovom istraživanju imaju veće električne provodnosti u odnosu na dopirane BSMO-uzorke zbog izraženije nestehiometrije kisika i romboedarske strukture u kojoj kut veze Mn–O–Mn iznosi 180° i omogućuje transport elektrona bez interakcija orbitala Mn i O.

Rezultati za BSMO dobiveni u ovom istraživanju u skladu su s prethodno objavljenima. Hayat i sur. [162] izmjerili su provodnost BaMnO₃ od 3,16×10⁻⁶ (Ω cm)⁻¹ na sobnoj temperaturi i utvrdili da se može poboljšati dopiranjem kationima Ru i Nd na poziciji B, tj. mangana. U sljedećem istraživanju [163], pripremili su BaMn_{0,99}Ru_{0,01}O₃ i BaMn_{0,99}Nb_{0,01}O₃ sintezom u čvrstom stanju i izmjerili provodnost od oko 1,0×10⁻⁵ (Ω cm)⁻¹ na sobnoj temperaturi, što je 10× više u odnosu na nedopirani BaMnO₃ i 2,0×10⁻⁴ (Ω cm)⁻¹ za dopirani Ba_{0,5}Sr_{0,5}MnO₃. U tom je slučaju Sr-dopiranje povisilo provodnost i smanjilo energiju aktivacije s 0,32 na 0,26 eV što je u suprotnosti s rezultatima dobivenim u ovom istraživanju zbog već spomenute nestehiometrije kisika u nedopiranim uzorcima. Unatoč nižoj provodnosti u odnosu na lantanove i kalcijeve manganite, barijevi manganiti također se mogu primjenjivati kao poluvodiči te u uređajima za pohranu

podataka zahvaljujući njihovim poluvodičkim i feromagnetskim svojstvima. Istraživanje Lija i sur. [165] potvrdilo je da se barijevi manganiti pri jednoj orijentaciji spina ponašaju kao vodiči, dok se pri drugoj ponašaju kao poluvodiči.

4.5. Magnetska svojstva manganita

Magnetska svojstva manganita određena su SQUID- i VSM-instrumentima kako je detaljno opisano u odjeljku 3.3.8.

4.5.1. Lantanovi manganiti

Masene magnetizacije lantanovih manganita pripremljenih limunskim i koprecipitacijskim postupkom izmjerene su u ovisnosti o temperaturi u rasponu od 4 K do 400 K, a dobiveni rezultati prikazani su na slici 45. Prikazane ZFC- i FC-krivulje dobivene su mjerenjem magnetizacije dvama načinima kako je opisano u odjeljku 3.3.8.

Kod većine ZFC-krivulja uočeno je da magnetizacija raste s povećanjem temperature i postiže zaobljeni maksimum pri temperaturi koja se označava kao T_{max} , a često se naziva temperaturom ukočivanja T_B (engl. *blocking temperature*), ispod koje orijentacija magnetskih momenata ostaje ukočena tijekom cijelog mjerenja [166]. S druge strane, opisani trend rasta ZFC-krivulja nije uočen za uzorke LL_Sr0 i LC_Sr0 u primijenjenom polju od 100 Oe te za dopirane LSMO-uzorke u primijenjenom polju od 1000 Oe. Razlog tome leži u dinamici magnetskih domena unutar materijala te je u slučaju navedenih uzoraka primijenjeno polje bilo dovoljno jako da nadvlada barijere i orijentira domene u smjeru polja. Za razliku od ZFC-krivulja, kod FC-krivulja magnetizacija pada s porastom temperature te iznad T_B dolazi do spajanja ZFC- i FC-krivulja koje se zatim potpuno preklapaju do najviših temperatura od 400 K.

Slika 45. Magnetizacijske krivulje LSMO-uzoraka pripremljenih limunskim (oznake LL, a, c i e) i koprecipitacijskim (oznake LC, b, d i f) postupkom sinteze izmjerene pri jakostima magnetskog polja od (a, b) 10 Oe, (c, d) 100 Oe i (e, f) 1000 Oe. Prazni simboli predstavljaju ZFC-mjerenja, a ispunjeni FC-mjerenja.

Za praktičnu primjenu feromagnetskih materijala važna je Curiejeva temperatura ($T_{\rm C}$) iznad koje materijal gubi magnetska svojstva i prelazi u paramagnetsko uređenje, a određuje se kao minimum derivirane magnetizacijske krivulje, tj. iz ovisnosti dM/dT o T (slika P5 u Prilogu 3) [167]. Važno je napomenuti da su u ovom radu $T_{\rm C}$ -vrijednosti određene iz magnetizacijskih krivulja snimljenih u primijenjenom polju od 10 Oe jer se pri nižim jakostima magnetskog polja može točnije odrediti temperatura faznog prijelaza zbog strmijih krivulja. Primjerice, na slikama 54(e, f) vidljivo je da za najjače primijenjeno polje od 1000 Oe razdvajanje ZFC- i FC-krivulja za dopirane LSMOuzorke postaje gotovo neprimjetno što onemogućuje određivanje temperatura važnih za praktičnu primjenu pripremljenih materijala. Određene vrijednosti $T_{\rm C}$ i $T_{\rm B}$ prikazane su u Tablici 12.

Tablica 12. Curiejeve temperature (T_C) LSMO-uzoraka pripremljenih limunskim i koprecipitacijskim postupkom sinteze određene u polju od 10 Oe i temperature ukočivanja (T_B) određene u svim primjenjenim poljima od 10, 100 i 1000 Oe.

Uzorci	<i>T</i> _C (10 Oe), K	T _B (10 Oe), K	T _B (100 Oe), K	<i>T</i> _в (1000 Oe), К
LL_Sr0	152,22	150,3	/	66,4
LL_Sr0,1	220,29	205,2	185,7	/
LL_Sr0,2	316,17	310,7	285,7	/
LL_Sr0,3	367,09	365,6	346,4	/
LC_Sr0	180,26	146,5	/	66,7
LC_Sr0,1	266,93	197,9	196,9	/
LC_Sr0,2	323,32	276,2	272,9	/
LC_Sr0,3	371,37	352,3	311,9	/

Iz prikazanih rezultata uočeno je da $T_{\rm C}$ -vrijednosti rastu s porastom udjela Sr-dopiranja što je u skladu s prethodnim istraživanjima LSMO-materijala [168–170]. Također, uočeno je da su $T_{\rm C}$ -vrijednosti više kod materijala pripremljenih koprecipitacijom za isti udio Sr-dopiranja. Razlog tome je veća nestehiometrija kisika (δ u Tablici 3.) u nizu LC-uzoraka čime je dodatno povećan omjer iona Mn³⁺/Mn⁴⁺ u strukturi. $T_{\rm B}$ -vrijednosti dobivene iz krivulja snimljenih u polju od 10 Oe također rastu s porastom udjela Sr-dopiranja, ali su njihove vrijednosti niže za uzorke pripremljene koprecipitacijskim postupkom sinteze. Uspoređujući $T_{\rm B}$ -vrijednosti pri 10 i 100 Oe, uočeno je da one padaju s porastom jakosti magnetskog polja budući da jače primijenjeno polje rezultira boljom orijentacijom magnetskih momenata u smjeru polja [166]. Zbog već spomenutog potpunog

preklapanja ZFC- i FC-krivulja u polju od 1000 Oe, podatke o temperaturi $T_{\rm B}$ nije bilo moguće odrediti.

Osim krivulja magnetizacije u ovisnosti o temperaturi, snimljene su i krivulje ovisnosti magnetizacije o polju, tzv. *M-H* krivulje ili magnetske histereze. Za sve pripremljene LSMOuzorke krivulje su snimljene pri temperaturama od 4 K i 300 K, a za dopirane uzorke pripremljene koprecipitacijom dodatno su snimljene i na 400 K budući da su Curiejeve temperature za LC_Sr0,2 i LC_Sr0,3 vrlo blizu 400 K. Rezultati su prikazani na slikama 46. i 47.

Slika 46. Magnetske histereze LSMO-uzoraka pripremljenih limunskim postupkom sinteze snimljene pri temperaturama od (a) 4 K i (b) 300 K.

Slika 47. Magnetske histereze LSMO-uzoraka pripremljenih koprecipitacijskim postupkom sinteze snimljene pri temperaturama od (a) 4 K, (b) 300 K i (c) 400 K.

Magnetske histereze prikazane na slikama 46(a) i 47(a) snimljene su pri temperaturi od 4 K što je ispod Curiejeve temperature za sve pripremljene LSMO-uzorke. Iz dobivenih rezultata može se vidjeti da magnetizacija zasićenja, tj. maksimalna magnetizacija feromagnetskog materijala u vanjskom magnetskom polju raste s porastom udjela Sr-dopiranja. Histereza uzorka LL_Sr0 na temperaturi od 4 K je široka i pokazuje najsporiji početni rast magnetizacije. Svi ostali LSMO-uzorci pokazuju vrlo strm početni rast magnetizacije u polju manjem od 5 kOe i postižu zasićenje u polju od 10 kOe, što je karakteristično ponašanje feromagnetskih materijala [171]. Uzorak LL_Sr0 ima znatno širu histerezu od nedopiranog uzorka LC_Sr0 pripremljenog koprecipitacijskim postupkom. Na temperaturi od 300 K [slike 46(b) i 47(b)] magnetske histereze uočene su samo za uzorke s višim udjelom dopiranja, a to su redom LL_Sr0,2, LL_Sr0,3, LC_Sr0,2 i LC_Sr0,3. Histereze tih uzoraka vrlo su uske i strme, a zasićenje je postignuto u polju jačem od

50 kOe. Za nedopirane uzorke i uzorke s udjelom Sr-dopiranja od 0,1 histereze nisu uočene jer su njihove Curiejeve temperature niže od 300 K te su oni na toj temperaturi u paramagnetskom stanju. Za uzorke LC_Sr0,2 i LC_Sr0,3 s najvišim vrijednostima Curiejevih temperatura blizu 400 K snimljene su dodatne histereze prikazane na slici 47(c). Dobivene histereze su uske, izdužene, a magnetizacija sporo raste i primijenjeno polje od 70 kOe nije bilo dovoljno da materijali postignu zasićenje. Iz snimljenih histereza očitani su važni parametri za praktičnu primjenu uzoraka, a to su koercitivno polje (H_c) i zaostala (remanentna) magnetizacija (M_r).

Tablica 13. Koercitivna polja (H_c) i zaostale magnetizacije (M_r) LSMO-uzoraka pripremljenih limunskim i koprecipitacijskim postupkom određene iz magnetskih histereza snimljenih na temperaturama od 4 K i 300 K.

	<i>T</i> =	= 4 K	T =	300 K
Uzorci	H _c , Oe	$M_{ m r}$, emu g ⁻¹	H _c , Oe	$M_{ m r}$, emu g $^{-1}$
LL_Sr0	1603,96	13,42	/	/
LL_Sr0,1	36,54	10,51	/	/
LL_Sr0,2	12,33	4,19	7,37	1,77
LL_Sr0,3	8,10	2,11	4,27	1,08
LC_Sr0	68,74	4,20	/	/
LC_Sr0,1	3,77	0,45	/	/
LC_Sr0,2	10,03	0,80	25,58	1,71
LC_Sr0,3	9,38	1,56	25,58	3,44

Iz brojčanih rezultata danih u Tablici 13. vidljivo je da porast udjela Sr-dopiranja u uzorcima pripremljenim limunskim postupkom dovodi do smanjenja vrijednosti koercitivnog polja i zaostale magnetizacije što znači da se magnetske histereze s porastom udjela dopiranja sve više sužavaju. Osim toga, na temelju podataka za uzorke za koje je uspješno snimljena histereza i na 300 K može se vidjeti da koercitivno polje i zaostala magnetizacija imaju niže vrijednosti što znači da je otpornost prema demagnetizaciji smanjena. Uočena pojava može se objasniti toplinskom aktivacijom blokiranih magnetskih momenata, tj. na višim temperaturama dovoljno je primijeniti magnetsko polje niže jakosti da bi došlo do reorijentacije magnetskih momenata. To je direktno povezano uz zaostalu magnetizaciju koja se također smanjuje s porastom temperature jer pri višoj temperaturi veći broj magnetskih momenata ima dovoljnu energiju da preskoči anizotropnu barijeru što rezultira smanjenom ukupnom magnetizacijom [172]. Kako bi se izbjegli efekti

ukočivanja tijekom mjerenja magnetskih histereza, svi su uzorci ugrijani iznad temperature T_B bez primjene vanjskog magnetskog polja prije početka mjerenja.

Prethodno opisani trendovi za niz LL-uzoraka nisu uočeni kod niza LC-uzoraka čemu je uzrok promjenjiva nestehiometrija kisika (δ u Tablici 3.). Budući da nestehiometrija kisika uzrokuje dodatno nastajanje miješanih valencija Mn, ona direktno utječe na orijentaciju magnetskih momenata i dovodi do devijacija koje nisu uočene kod LSMO-uzoraka pripremljenih limunskim postupkom sinteze čiji je sadržaj kisika bio ujednačen i gotovo stehiometrijski u svim uzorcima (Tablica 2.).

LSMO-uzorci pokazuju još jedno interesantno svojstvo, a to je magnetokalorični učinak, tj. reverzibilna promjena temperature feromagnetskog materijala kao odgovor na uključivanje i isključivanje vanjskog magnetskog polja [173]. Da bi se proučio magnetokalorični učinak pripremljenih LSMO-uzoraka snimljene su *M-H* krivulje u temperaturnom intervalu od 150 K s korakom od 2 K, tj. snimljeno je ukupno 75 krivulja za svaki pripremljeni LSMO-uzorak. Iz tih podataka izračunate su promjene specifične magnetske entropije (Δs_M) pomoću Maxwellova izraza [174]:

$$\Delta s_{\rm M}(0 \to H_0) = \int_0^{H_0} \left(\frac{\partial M}{\partial T}\right)_H dH \tag{28}$$

Kako bi se izračunala promjena entropije prema izrazu (28), podaci ovisnosti magnetizacije o polju najprije su interpolirani radi dobivanja magnetizacije za iste jakosti polja pri svim temperaturama na kojima su mjerenja provedena. Nakon toga izračunate su derivacije magnetizacije po temperaturi za konstantu vrijednost H (u oba smjera primijenjenog polja) te je uzeta prosječna vrijednost koja je integrirana po H s korakom od 10 Oe. Ovisnosti apsolutne promjene magnetske entropije o temperaturi za sve pripremljene LSMO-materijale prikazane su na slikama 48. i 49.

Slika 48. Ovisnosti apsolutne promjene magnetske entropije (Δs_M) o temperaturi i primijenjenom magnetskom polju za LSMO-uzorke pripremljene limunskim postupkom sinteze: (a) LL_Sr0, (b) LL_Sr0,1, (c) LL_Sr0,2 i (d) LL_Sr0,3.

Na temelju rezultata prikazanih na slici 48. vidljivo je da promjena magnetske entropije raste s jakosti primijenjenog magnetskog polja, što je direktno povezano s povećanjem broja magnetskih momenata koji se orijentiraju u smjeru magnetskog polja [175] i postiže svoj maksimum na temperaturi bliskoj $T_{\rm C}$ (Tablica 12.) što je karakteristično svojstvo feromagnetskih materijala [173]. Opisani trend uočen je i za LSMO-uzorke pripremljene postupkom koprecipitacije (slika 49.), ali su njihove izračunate promjene magnetske entropije (Tablica 14.) znatno više u odnosu na uzorke pripremljene limunskim postupkom sinteze. Razlog tome je ponovno nestehiometrija kisika koja je izraženija u uzorcima pripremljenima koprecipitacijskim postupkom (Tablica 3.). To je u skladu s opažanjima objavljenima u radu Guoa i sur. [176] koji su pokazali da je magnetokalorični učinak posljedica snažne sprege spina i rešetke na koji pak utječu promjene u duljini veza Mn–O i kutova veza Mn–O–Mn s temperaturom i promjenom volumena jedinične ćelije. Budući da
nestehiometrija kisika dovodi do dodatnog povećanja omjera miješanih valencija Mn³⁺/Mn⁴⁺, bilo je za očekivati da će LSMO-uzorci pripremljeni koprecipitacijom imati veću entropiju kristalne rešetke, a time i veću promjenu magnetske entropije [173,176].

Slika 49. Ovisnosti apsolutne promjene magnetske entropije (Δs_M) o temperaturi i primijenjenom magnetskom polju za LSMO-uzorke pripremljene koprecipitacijskim postupkom sinteze: (a) LC_Sr0, (b) LC_Sr0,1, (c) LC_Sr0,2 i (d) LC_Sr0,3.

Rezultati određenih maksimalnih vrijednosti magnetskih entropija LSMO-uzoraka uspoređeni su prvenstveno s rezultatima za čisti gadolinij (Gd) koji je još uvijek najvažniji materijal za potencijalnu komercijalizaciju magnetskih hladnjaka. Osim toga, rezultati su uspoređeni i s ostalim rezultatima za LSMO-materijale koji su objavljeni tijekom posljednih dvadeset godina kako je prikazano u Tablici 14. Budući da se u postojećim magnetskim hladnjacima s Gd kao aktivnim materijalom primjenjuje magnetsko polje od 15 kOe [177], uspoređeni su rezultati dobiveni pri jakostima polja u rasponu od 10 do 15 kOe.

Uzorci	Postupak sinteze	<i>Т</i> с, К	H, kOe	Δs_{M} , J kg ⁻¹ K ⁻¹	Ref.	
Gd	/	294	15	4	[178]	
LaMnO ₃ (LL_Sr0)		124,19	- 10,8 / 14,4	0,82 / 1,03	ovaj rad	
La _{0,9} Sr _{0,1} MnO ₃ (LL_Sr0,1)	limunalai	220,29		0,45 / 0,58		
$La_{0,8}Sr_{0,2}MnO_3(LL_Sr0,2)$	Innunski	316,17		0,68 / 0,84		
La _{0,7} Sr _{0,3} MnO ₃ (LL_Sr0,3)		367,09	_	0,67 / 0,83		
LaMnO ₃ (LC_Sr0)		180,26		0,98 / 1,31	ovaj rad	
$La_{0,9}Sr_{0,1}MnO_3(LC_Sr0,1)$	koprecipitacijski	266,93	- 10,8 / 14,4	1,17 / 1,53		
$La_{0,8}Sr_{0,2}MnO_3(LC_Sr0,2)$		323,32		0,93 / 1,24		
$La_{0,7}Sr_{0,3}MnO_3(LC_Sr0,3)$		371,37	-	0,84 / 1,10		
$La_{0,7}Sr_{0,3}MnO_3$	limunski	280	10 0,2		[179]	
$La_{0,6}Sr_{0,4}MnO_3$	limunski	370	15	1,6	[180]	
La _{0,7} Sr _{0,3} Mn _{0,94} Co _{0,06} O ₃	reakcija u čvrstom stanju	310	10	1,44	[181]	
La _{0,67} Sr _{0,33} MnO ₃	limunski	370	10	1,55	[182]	
$La_{0,7}Sr_{0,3}V_{0,1}Mn_{,9}O_3$	reakcija u čvrstom stanju	342	15	1,41	[183]	

Tablica 14. Usporedba izračunatih promjena magnetskih entropija LSMO-uzoraka pripremljenih u ovom radu s rezultatima za čisti Gd i LSMO-materijale pripremljene u drugim radovima.

Iz rezultata prikazanih u Tablici 14. vidljivo je da Sr-dopirani lantanovi manganiti posjeduju više vrijednosti $T_{\rm C}$, ali niže vrijednosti promjene magnetskih entropija u usporedbi s Gd. Međutim, glavna prednost perovskita u usporedbi s Gd je njihova niska cijena. Uz to, perovskiti se mogu jednostavno sintetizirati te ih odlikuje fleksibilnost kemijskog sastava, otpornost prema koroziji i širok raspon primjene zbog visoke $T_{\rm C}$ -vrijednosti. U prilog LSMO-materijalima ide i činjenica da su Bahl i sur. [184] uspješno konstruirali magnetski hladnjak koji upotrebljava La_{0,67}(Ca,Sr)_{0,33}MnO₃ kao aktivni magnetski materijal te su izmjerili rashladnu snagu uređaja od čak 35 W kg⁻¹ na sobnoj temperaturi što je znatno više od 16 W kg⁻¹ koje su izmjerili kada su u isti uređaj stavili ploče Gd kao aktivni materijal.

4.5.2. Kalcijevi manganiti

Ovisnosti masenih magnetizacija o temperaturi snimljene su za sve pripremljene CSMO-uzorke u rasponu od 2 do 400 K pri konstantnoj jakosti primijenjenog magnetskog polja od 100 Oe zbog niskih detektiranih vrijednosti neto magnetizacije koje bi otežale mjerenje pri 10 Oe. Dobivene ZFC- i FC-krivulje prikazane su na slici 50.

Slika 50. Magnetizacijske krivulje CSMO-uzoraka pripremljenih limunskim (oznake CL, a i b) i koprecipitacijskim (oznake CC, c i d) postupkom sinteze izmjerene pri jakosti magnetskog polja od 100 Oe. Na slikama (b) i (d) dani su uvećani prikazi krivulja za dopirane uzorke. Prazni simboli predstavljaju ZFC-mjerenja, a ispunjeni FC-mjerenja.

Dobivene *M-T* krivulje za nedopirane CSMO-materijale kvantitativno odgovaraju prethodno objavljenim rezultatima i ukazuju na njihovo antiferomagnetsko ponašanje [185]. Detektirane

neto-magnetizacije veće su od 0 emu g⁻¹ što je rezultat naginjanja, tj. kantiranja spinova radi čega ne dolazi do njihova potpunog poništavanja, a takav se materijal još naziva i kantiranim antiferomagnetom [127]. Za praktičnu primjenu antiferomagnetskih materijala važna je Néelova temperatura na kojoj se događa prijelaz iz antiferomagnetskog u paramagnetsko uređenje kada materijal više ne posjeduje magnetska svojstva. Néelove temperature CSMO-materijala određene su na isti način kao i Curiejeve temperature kod LSMO-materijala, tj. određene su kao minimum derivacije krivulje magnetizacije po temperaturi (slika P6 u Prilogu 3). Literaturne vrijednosti Néelovih temperatura za materijale na osnovi CaMnO₃ kreću se oko 120 K [185,186] te su usporedive s T_N -vrijednosti nedopiranih uzoraka CaMnO₃ (CL_Sr0 i CC_Sr0) pripremljenih u ovom radu koja iznosi 122,79 K. T_N -vrijednosti određene su i za dopirane CSMO-uzorke te rastu s povećanjem udjela Sr-dopiranja (Tablica 15.).

Tablica 15. Vrijednosti Néelovih temperatura (T_N), koercitivnog polja (H_c) i zaostale magnetizacije (M_r) CSMO-uzoraka pripremljenih limunskim i koprecipitacijskim postupkom. Brojevi 1. i 2. u zagradama kod T_N -vrijednosti niza CC-uzoraka označavaju redni broj faznog prijelaza, a vrijednosti H_c i M_r određene su iz magnetske histereze snimljene pri 4 K.

Uzorci	<i>T</i> _N , K (100 Oe)	H _c , kOe	$M_{\rm r}$, emu g ⁻¹
CL_Sr0	122,79	1,51	1,31
CL_Sr0,3	152,48	0,63	0,19
CL_Sr0,5	176,22	1,09	0,05
CC_Sr0	122,79 (1.) / 262,64 (2.)	1,65	1,41
CC_Sr0,3	160,39 (1.) / 337,84 (2.)	1,41	0,15
CC_Sr0,5	176,16 (1.) / 312,68 (2.)	1,56	0,08

U slučaju CSMO-uzorka nije bilo moguće pouzdano odrediti maksimume na ZFC-krivuljama, tj. temperature ukočivanja (T_B). Razlozi su različiti. U slučaju CSMO-uzoraka pripremljenih limunskim postupkom ZFC-krivulje ustaljene su oko određene vrijednosti do temperature bliske T_N kada dolazi do naglog pada magnetizacije. S druge strane, kod dopiranih CSMO-uzoraka pripremljenih koprecipitacijom ZFC-krivulje rastu s porastom temperature i postižu maksimum na oko 157 K za CC_Sr0,3 i 174 K za CC_Sr0,5, ali nakon toga vrijednost magnetizacije ne pada na 0 emu g⁻¹ već se događa još jedan fazni prijelaz. U literaturi nisu pronađena prethodna istraživanja CSMO-materijala, već sličnog perovskitnog materijala Ca_{1-x}Sr_xRuO₃, no autori rada nisu prikazali

M-T krivulje pri temperaturama višim od 180 K te stoga nije moguće utvrditi jesu li zabilježili pojavu dodatnog faznog prijelaza [187]. Prema XRD-rezultatima prikazanima na slici 26(b) u odjeljku 4.2.2., jedina uočena sporedna faza u pripremljenim uzorcima je ortorompska marokitna faza CaMn₂O₄ koja je prema prethodnim istraživanjima antiferomagnetska s T_N-vrijednosti od oko 220 K [188]. Visina uočenog faznog prijelaza iznosi 8×10⁻³ emu g⁻¹ za CC Sr0,3 i 8.2×10⁻³ emu g⁻¹ za CC Sr0,5 što odgovara maloj razlici u udjelu marokitne faze u njima od 6,19 %, odnosno 7,02 % kako je navedeno u Tablici 4. Suprotno očekivanju, fazni prijelaz je znatno strmiji u uzorku CC Sr0,3 s manjim udjelom dopiranja što je navjerojatnije posljedica veće nestehiometrije kisika u odnosu na uzorak CC_Sr0,5. Budući da drugi fazni prijelaz nije uočen u CSMO-uzorcima pripremljenima limunskim postupkom, pojava dodatnog faznog prijelaza kod uzoraka pripremljenih koprecipitacijskim postupkom vjerojatna je posljedica više faktora, a to su dopiranje stroncijem, izraženija nestehiometrija kisika te veći sadržaj marokitne faze u odnosu na uzorke pripremljene limunskim postupkom sinteze. Sve navedeno utječe na strukturne distorzije kristalne rešetke uslijed čega dolazi do naginjanja oktaedara MnO₆ i antiferomagnetskog sparivanja spinova te pojave superizmjene između dvaju iona Mn4+ što je potvrđeno prethodnim istraživanjima [158,189].

Magnetske histereze svih pripremljenih CSMO-uzoraka prikazane su na slici 51. Pritom su histereze na slikama 51(a, c) snimljene pri temperaturi od 4 K što je ispod Néelove temperature za sve pripremljene uzorke. Postojanje histereza na 4 K dokaz je kantiranja spinova i postojanja neto magnetizacije u antiferomagnetskim materijalima [127]. Iz snimljenih krivulja očitane su vrijednosti H_c i M_r koje su brojčano dane u Tablici 15., a također se može vidjeti da magnetsko zasićenje nije postignuto ni za jedan CSMO-uzorak u cijelom rasponu mjerenja od –80 do 80 kOe. Nadalje, histereza nedopiranih CL_Sr0 i CC_Sr0 najšira je pa su i H_c -vrijednosti za te uzorke najveće. Dopiranje stroncijem od 0,3 dovodi do sužavanja magnetske histereze, što za direktnu posljedicu ima i smanjenje očitane H_c -vrijednosti koja onda opet poraste za udio dopiranja stroncijem od 0,5 jer je za uzorke CL_Sr0,5 i CC_Sr0,5 histereza nagnutija, tj. položenija s obzirom na *x*-os i gotovo iščezava, što govori u prilog tome da u visoko dopiranim uzorcima dolazi do smanjenja efekta kantiranja spinova [127]. S druge strane, M_r -vrijednosti padaju s porastom udjela dopiranja, što je u skladu s opažanjem da veći udio Sr dovodi do sužavanja pa i iščezavanja magnetske histereze.

Slika 51. Magnetske histereze CSMO-uzoraka pripremljenih limunskim (oznake CL, a i b) i koprecipitacijskim (oznake CC, c i d) postupkom sinteze snimljene pri temperaturama od (a, c) 4 K i (b, d) 300 K.

Iste krivulje snimljene su i pri temperaturi od 300 K [slike 51(b, d)] što je za sve uzorke iznad njihove T_N -vrijednosti te magnetske histereze očekivano nisu uočene, čak ni u uzorcima CC_Sr0,3 i CC_Sr0,5 čije su *M*-*T* krivulje imale dodatni fazni prijelaz na 337,84 K, odnosno na 312,68 K.

4.5.3. Barijevi manganiti

Za pripremljene BSMO-uzorke ovisnosti masenih magnetizacija o temperaturi snimljene su u rasponu temperatura od 2 do 400 K pri konstantnoj jakosti primijenjenog magnetskog polja od 100 Oe zbog niskih detektiranih vrijednosti neto magnetizacije koje bi otežale mjerenje pri 10 Oe. Dobivene ZFC- i FC-krivulje prikazane su na slici 52.

Slika 52. Magnetizacijske krivulje BSMO-uzoraka pripremljenih limunskim (oznake BL, a i b) i koprecipitacijskim (oznake BC, c i d) postupkom sinteze izmjerene pri jakosti magnetskog polja od 100 Oe. Na slikama (b) i (d) dani su uvećani prikazi krivulja za dopirane uzorke. Šuplji simboli predstavljaju ZFC-mjerenja, a ispunjeni FC-mjerenja.

Iz prikazanih *M*-*T* krivulja vidljivo je da su iznosi magnetizacija niski što je karakteristično za kantirane antiferomagnetske materijale [127]. Iz deriviranih *M*-*T* krivulja (slika P7 u Prilogu 3)

također su određene i Néelove temperature (T_N , Tablica 16.) čije su vrijednosti znatno niže u odnosu na CSMO-materijale i za sve pripremljene BSMO-uzorke u skladu su s literaturnim podacima [127,190]. Iz brojčanih vrijednosti T_N uočava se da nije došlo do porasta temperature faznog prijelaza s povećanjem udjela Sr-dopiranja kao što je bio slučaj kod LSMO- i CSMO-materijala, što je također u skladu s prethodnim istraživanjem materijala na osnovi BaMnO₃ i Ba_{0,5}Sr_{0,5}MnO₃ [190]. Osim prvog faznog prijelaza, u svim pripremljenim BSMO-uzorcima uočen je i znatno blaži prijelaz na oko 230 K za nedopirane uzorke i na oko 265 K za dopirane uzorke. Temperature tih prijelaza očitane su i brojčano prikazane u Tablici 16. te su u skladu sa zapažanjima objavljenima u radu Adkina i sur. [127] koji su na temelju niskih vrijednosti magnetizacije u drugom faznom prijelazu zaključili da se radi o početku uspostave trodimenzionalnog antiferomagnetskog uređenja magnetskih momenata.

Tablica 16. Vrijednosti Néelovih temperatura (T_N), temperatura ukočivanja (T_B), koercitivnih polja (H_c) i zaostale magnetizacije (M_r) BSMO-uzoraka pripremljenih limunskim i koprecipitacijskim postupkom. Brojevi u zagradama kod T_N -vrijednosti označavaju redni broj faznog prijelaza, a vrijednosti H_c i M_r određene su iz magnetske histereze snimljene pri 4 K.

Uzorci	<i>T</i> _N , K (100 Oe)	Т в, К (100 Oe)	Hc, kOe	<i>M</i> _r , emu g ⁻¹
BL_Sr0	43,96 (1.) / 229,59 (2.)	42,22	7,26	0,97
BL_Sr0,3	44,12 (1.) / 265,27 (2.)	43,24	7,88	8,77
BL_Sr0,5	43,62 (1.) / 266,51 (2.)	41,71	7,83	6,82
BC_Sr0	42,63 (1.) / 229,53 (2.)	35,40	3,78	0,03
BC_Sr0,3	43,94 (1.) / 265,67 (2.)	41,42	7,07	0,34
BC_Sr0,5	42,62 (1.) / 267,01 (2.)	41,39	/	/

Za heksagonski SrMnO₃ isto su zaključili Battle i sur. [189] te opaženo objasnili modelom superizmjene na vezi Mn⁴⁺–O–Mn⁴⁺. Pri tome su interakcije znatno jače u plošno spojenim oktaedrima gdje je kut veze oko 90°, nego u vršno spojenim oktaedrima u kojima je kut veze dvostruko veći, tj. oko 180°. Zbog razlika u jačini interakcija, pri temperaturama od 300 K i više ne može se uspostaviti trodimenzionalno magnetsko uređenje. Međutim, hlađenjem na temperaturu od oko 280 K za SrMnO₃, odnosno na 260 K za BaMnO₃ dolazi do uspostave trodimenzionalnog antiferomagnetskog uređenja, a daljnjim hlađenjem zatim dolazi do izraženijeg faznog prijelaza uzrokovanog kantiranjem uređenih magnetskih momenata. Dakle, fazni prijelaz na oko 260 K

može se smatrati početkom uspostave trodimenzionalnog magnetskog uređenja. Snimljene ZFC-krivulje svih pripremljenih BSMO-uzoraka imaju očekivani oblik, tj. imaju karakterističan maksimum iz kojeg su određene temperature ukočivanja (T_B) prikazane u Tablici 16. T_B vrijednosti su niže, ali bliske vrijednostima T_N i također ne prate trend porasta s povećanjem udjela Sr-dopiranja.

Slika 53. Magnetske histereze BSMO-uzoraka pripremljenih limunskim (oznake BL, a i b) i koprecipitacijskim (oznake BC, c i d) postupkom sinteze snimljene pri temperaturama od (a, c) 4 K i (b, d) 300 K.

Na slikama 53(a, c) prikazane su magnetske histereze svih pripremljenih BSMO-uzoraka snimljene pri 4 K što je ispod njihove Néelove temperature. Postojanje histereze na 4 K dokaz je kantiranja spinova i postojanja neto magnetizacije. Histereza nije uočena jedino u uzorku BC_Sr0,5, kod

kojeg je efekt kantiranja najslabije izražen i kod kojeg je izmjeren najniži iznos masene magnetizacije od samo 5×10^{-3} emu g⁻¹. Iz snimljenih krivulja očitane su vrijednosti H_c i M_r koje su brojčano dane u Tablici 16. Kao i u slučaju CSMO-uzoraka, ni kod BSMO-uzoraka zasićenje nije postignuto u cijelom rasponu mjerenja od –80 do 80 kOe. Prema H_c -vrijednostima u Tablici 16. vidljivo je da su magnetske histereze BSMO-uzoraka pripremljenih limunskim postupkom sinteze podjednako široke po *x*-osi, no histereza uzorka BL_Sr0 spljoštena je te je iznos M_r za taj uzorak najmanji. Kod BSMO-uzoraka pripremljenih koprecipitacijskim postupkom, nedopirani uzorak BC_Sr0 ima znatno užu histerezu od uzorka BC_Sr0,3 koji je po koercitivnosti usporediv s nizom BL-uzoraka uz znatno nižu remanentnu magnetizaciju (M_r). Za uzorak BC_Sr0,5 na 4 K nije utvrđeno postojanje histereze te za taj uzorak nije bilo moguće odrediti parametre H_c i M_r . Za sve uzorke snimljene su histereze i na 300 K što je iznad njihove Néelove temperature te postojanje histereza nije uočeno, tj. sve M-H krivulje linearne su i prolaze ishodištem koordinatnog sustava. Iz dobivenih rezultata može se zaključiti da su BSMO-materijali kantirani antiferomagneti s velikim potencijalom za primjenu u spintronici i memorijskim uređajima s velikom brzinom čitanja podataka [165].

4.6. Katalitička aktivnost manganita

Ispitivanje katalitičke aktivnosti pripremljenih uzoraka manganita provedeno je na reakciji oksidacije BTEX-smjese prema postupku opisanom u odjeljku 3.3.9.

4.6.1. Lantanovi manganiti

Katalitička aktivnost LSMO-uzoraka testirana je u rasponu od 100 do 450 °C, a ovisnosti konverzije o temperaturi za svaku pojedinu komponentu dani su na slici 54. Prikazane temperaturne ovisnosti konverzija imaju karakterističan S-oblik za sve komponente i testirane LSMO-katalizatore što ukazuje na to da je katalitička oksidacija BTEX-smjese reakcija prvog reda [105,191]. Iz dobivenih rezultata također je vidljivo da katalitička oksidacija etilbenzena i *o*-ksilena počinje već pri 100 °C, dok oksidacija benzena i toluena počinje pri znatno višoj temperaturi od 200 °C. Razlog tome je veća stabilnost benzena i toluena u usporedbi s etilbenzenom i *o*-ksilenom čiji se supstituenti mogu lako ukloniti cijepanjem veze. Nadalje, uočava se da rastući udio Sr-dopiranja povećava aktivnost LSMO-katalizatora budući da uslijed dopiranja dolazi do promjene oksidacijskog stanja Mn i veće reducibilnosti katalizatora što je u skladu s

literaturom [192]. Karakteristične temperature T_{10} , T_{50} i T_{90} pri kojima se postiže 10, 50 i 90 % konverzije pojedine komponente prikazane su u Tablici 17.

Slika 54. Prikaz konverzija (a) benzena, (b) toluena, (c) etilbenzena i (d) *o*-ksilena u ovisnosti o reakcijskoj temperaturi za pripremljene LSMO-katalizatore.

Iz grafičkih prikaza na slici 54. i iz brojčanih vrijednosti danih u Tablici 17. vidljivo je da je za postizanje iste konverzije primjenom LSMO-uzoraka pripravljenih koprecipitacijom potrebna 10 – 50 °C viša temperatura u odnosu na LSMO-uzorke pripremljene limunskim postupkom. Pritom za uzorke LC_Sr0 i LC_Sr0,1 nije postignuta 90 %-tna konverzija niti za jednu BTEX-komponentu u cijelom ispitivanom području temperatura.

τ	J zorak	LL_Sr0	LL_Sr0,1	LL_Sr0,2	LL_Sr0,3	LC_Sr0	LC_Sr0,1	LC_Sr0,2	LC_Sr0,3
В	<i>T</i> ₁₀ , °C	339	357	277	317	375	367	364	362
	<i>T</i> ₅₀ , °C	450	450	377	375	>450	>450	>450	>450
	<i>T</i> ₉₀ , °C	>450	>450	> 450	>450	> 450	>450	>450	>450
	<i>T</i> ₁₀ , °C	275	295	217	250	307	302	297	270
Т	<i>T</i> ₅₀ , °C	325	342	272	297	377	377	367	359
	<i>T</i> ₉₀ , °C	377	397	367	327	> 450	>450	>450	> 450
E	<i>T</i> ₁₀ , °C	252	264	202	209	287	277	264	232
	<i>T</i> ₅₀ , °C	307	322	237	277	342	337	334	329
	<i>T</i> ₉₀ , °C	364	379	347	322	> 450	> 450	> 450	407
	<i>T</i> ₁₀ , °C	245	246	205	212	277	272	253	227
X	<i>T</i> ₅₀ , °C	297	307	242	279	335	327	327	317
	<i>T</i> ₉₀ , °C	342	359	317	319	> 450	> 450	397	395
XAG	B, 450) , %	49,32	49,39	72,53	80,24	18,44	22,68	28,48	42,15
XAG	T, 450) , %	96,80	95,96	96,88	100,00	65,40	69,07	75,65	88,06
XAG	E, 450), %	99,25	100,00	100,00	100,00	74,32	82,94	88,56	97,32
XA	X, 450), %	100,00	100,00	100,00	100,00	87,25	89,10	93,63	99,01

Tablica 17. Temperature pri kojima se postižu konverzije benzena (B), toluena (T), etilbenzena (E) i *o*-ksilena (X) od 10, 50 i 90 % i konačne konverzije (X_A) pri 450 °C postignute uz LSMO-katalizatore.

Uzorak LL_Sr0,2 pokazao je najveću početnu aktivnost te stoga ima najniže T_{50} -vrijednosti, a slijede ga uzorci LL_Sr0,3 i LL_Sr0. Uzorak LL_Sr0,1 je unatoč dopiranju pokazao manju početnu aktivnost u odnosu na nedopirani uzorak LL_Sr0. Navedene varijabilnosti u početnim katalitičkim aktivnostima LSMO-uzoraka pripremljenih limunskim postupkom posljedica su nehomogene raspodjele veličine pora (slika 32.) koja utječe na difuziju reaktanata i produkata do katalitički aktivnih centara. Budući da je u uzorcima pripremljenim koprecipitacijskim postupkom raspodjela veličina pora homogenija (slika 32.), karakteristične vrijednosti T_{10} , T_{50} i T_{90} opadaju s porastom udjela Sr-dopiranja.

Iz vrijednosti postignutih konačnih konverzija pri 450 °C (Tablica 17.), vidljivo je da rastu s porastom udjela Sr-dopiranja pri čemu se etilbenzen i *o*-ksilen u potpunosti razgrađuju, osim u slučaju slabije aktivnih LC_Sr0, LC_Sr0,1 i LC_Sr0,2 katalizatora. Pri konačnoj temperaturi

ispitivanja, potpuna razgradnja toluena postignuta je uz LSMO-katalizatore pripremljene limunskim postupkom, dok je konverzija uz katalizator na nazi LC_Sr0,3 iznosila 88,06 %. Budući da je benzen najstabilniji od svih komponenata u smjesi, njegova maksimalna konverzija od svega 80,24 % postignuta je uz LL_Sr0,3. Potpuna razgradnja benzena uz LSMO-katalizatore zahtijevala bi temperature više od 450 °C što u realnim sustavima nije ekonomski prihvatljivo jer zahtjeva puno energije.

Katalitička aktivnost LSMO-uzoraka raste s porastom temperature i udjela Sr-dopiranja te je veća za uzorke pripremljene limunskim postupkom u odnosu na one pripremljene koprecipitacijom. Prvi razlog tome su morfološke razlike prikazane na slici 30. Iako su vrijednosti specifičnih površina i prosječnih promjera pora (Tablica 6.) podjednake za iste udjele dopiranja neovisno o sintetskom postupku, porozna morfologija LSMO-uzoraka pripremljenih limunskim postupkom dovela je do šire raspodjele mezopora čime je olakšana unutarfazna difuzija reaktanata i/ili produkata, odnosno povećana brzina prijenosa tvari koja često određuje ukupnu brzinu heterogeno-katalitičkih sustava. Drugi razlog je taj što LSMO-uzorci pripremljeni koprecipitacijskim postupkom imaju veću nestehiometriju kisika i posljedično prosječno oksidacijsko stanje Mn između +2 i +3, dok uzorci pripremljeni limunskim postupkom imaju prosječno oksidacijsko stanje Mn između +3 i +4 (Tablice 2. i 3.). Vrieland [193] je eksperimentalno potvrdio da miješane valencije Mn³⁺/Mn⁴⁺ imaju značajan utjecaj na katalitičku aktivnost dopiranih lantanovih manganita jer se ne ponašaju kao individualni ioni, već su dio skupine koja može biti elektron-donor ili akceptor. Nadalje, više neovisnih istraživanja [105,194-196] utvrdilo je da se redukcija Mn u manganovim oksidima provodi u nekoliko koraka, pri čemu se redukcija Mn⁴⁺/Mn³⁺ provodi pri nižim temperaturama u odnosu na redukciju Mn³⁺/Mn²⁺. Važnost oksidacijskog stanja Mn i morfologije najbolje se vidi na uzorcima LL_Sr0,3 (Mn AOS = +3,30, engl. average oxidation state) i LC_Sr0,3 (Mn AOS = +3,38). Iako oba uzorka imaju podjednake vrijednosti prosječnog oksidacijskog stanja Mn, uzorak LL Sr0,3 ima veću katalitičku aktivnost zbog većeg udjela mezopora koje omogućuju olakšanu difuziju reaktanata i produkata.

Rezultati dobiveni u ovom ispitivanju usporedivi su s literaturom [197,198]. Spinicci i sur. [197] pripremili su LaMnO₃ limunskim postupkom i testirali njegovu aktivnost u oksidaciji acetona, benzena i izopropanola. Potpuna razgradnja acetona i izopropanola postignuta je na 240 °C, dok je razgradnja stabilnijeg benzena zahtijevala veću temperaturu i nije dostigla vrijednost od 100 % u

ispitivanom temperaturnom području do 360 °C. Rezultati katalitičke aktivnosti LaMnO₃ uspoređeni su s rezultatima za LaCoO₃ te je utvrđeno da su manganiti bolji katalizatori zbog visoke reducibilnosti manganovih iona. Isto su utvrdili Yarbay Şahin i sur. [198] koji su limunskim postupkom pripremili LaMnO₃ i LaFeO₃ te ispitali njihovu aktivnost u katalitičkoj oksidaciji toluena. Potpuna razgradnja toluena postignuta je u rasponu temperatura od 200 do 220 °C za katalizator na osnovi LaMnO₃ te na temperaturi iznad 270 °C za katalizator na bazi LaFeO₃. Time je dokazana važna uloga kationa B u strukturi perovskita i njegov doprinos postizanju zadovoljavajuće katalitičke aktivnosti.

4.6.2. Kalcijevi manganiti

Katalitička svojstva pripremljenih CSMO-uzoraka ispitana su također u temperaturnom rasponu od 100 do 450 °C te su dobivene ovisnosti konverzija BTEX-komponenata o temperaturi prikazane na slici 55.

Slika 55. Prikaz konverzija (a) benzena, (b) toluena, (c) etilbenzena i (d) *o*-ksilena u ovisnosti o reakcijskoj temperaturi za pripremljene CSMO-katalizatore.

Iz prikaza na slici 55. vidljivo je da ovisnosti konverzija o temperaturi imaju S-oblik karakterističan za reakcije prvog reda [105,191]. Osim toga, vidljiv je porast katalitičke aktivnosti s porastom udjela Sr-dopiranja što je jasnije iz brojčanih vrijednosti karakterističnih temperatura T_{10} , T_{50} i T_{90} prikazanih u Tablici 18.

Tablica 18. Temperature pri kojima se postižu konverzije benzena (B), toluena (T), etilbenzena (E) i *o*-ksilena (X) od 10, 50 i 90 % i konačne konverzije (X_A) pri 450 °C postignute uz CSMO-katalizatore.

I	U zorci	CL_Sr0	CL_Sr0,3	CL_Sr0,5	CC_Sr0	CC_Sr0,3	CC_Sr0,5
	<i>T</i> ₁₀ , °C	300	323	285	307	272	287
B	<i>T</i> ₅₀ , °C	395	389	388	425	370	350
	<i>T</i> ₉₀ , °C	>450	> 450	> 450	> 450	> 450	> 450
	<i>T</i> ₁₀ , °C	209	239	207	209	202	205
Т	<i>T</i> ₅₀ , °C	274	287	251	274	305	265
	<i>T</i> ₉₀ , °C	339	350	285	327	309	310
	<i>T</i> ¹⁰ , °C	202	209	206	200	157	203
Е	<i>T</i> ₅₀ , °C	237	274	227	235	207	237
	<i>T</i> ₉₀ , °C	299	325	275	299	298	300
	<i>T</i> ₁₀ , °C	202	207	201	202	150	205
X	<i>T</i> ₅₀ , °C	235	272	223	235	225	237
	<i>T</i> ₉₀ , °C	285	315	269	285	300	300
XA	(B, 450) , %	70,77	70,49	65,96	62,33	78,34	77,25
XA	(T, 450) , %	99,03	100,00	100,00	98,90	100,00	100,00
XA	(E, 450) , %	100,00	100,00	100,00	100,00	100,00	100,00
XA	(X, 450), %	100,00	100,00	100,00	100,00	100,00	100,00

Prema rezultatima prikazanima u Tablici 18., ponovno nije uočen jasan trend između karakterističnih temperatura T_{10} , T_{50} i T_{90} i udjela Sr-dopiranja. Nedostatak trenda posljedica je morfoloških značajki uzoraka koje dovođe do različite početne katalitičke aktivnosti katalizatora uvjetovane ponajviše difuzijom reaktanata do katalitički aktivnih centara. Na konačnoj temperaturi

od 450 °C potpuno su razgrađeni etilbenzen i *o*-ksilen primjenom svih CSMO-katalizatora. Toluen je također u potpunosti razgrađen primjenom dopiranih uzoraka CL_Sr0,3, CL_Sr0,5, CC_Sr0,3 i CC_Sr0,5, a vrlo visoke konverzije od 99 % postignute su i primjenom nedopiranih CL_Sr0 i CC_Sr0 uzoraka. Konverzije benzena su i u ovom slučaju najmanje zbog njegove visoke stabilnosti, a najviša postignuta konverzija iznosila je 78,34 % uz katalizator CC_Sr0,3, što je usporedivo s maksimalnom konverzijom benzena koja je postignuta uz LSMO-katalizator LL_Sr0,3.

Za razliku od LSMO-uzoraka, CSMO-uzorci pripremljeni koprecipitacijskim postupkom pokazali su veću katalitičku aktivnost u odnosu na uzorke pripremljene limunskim postupkom. Prvi razlog tome je veća nestehiometrija kisika (Tablica 4.) koja je dovela do nastajanja miješanih valencija Mn³⁺/Mn⁴⁺ u CSMO-strukturi, što nije postignuto dopiranjem kationom iste valencije. Drugi razlog je veći prosječni promjer pora (Tablica 7.) CSMO-uzoraka pripremljenih koprecipitacijom koji olakšava unutarfaznu difuziju reaktanata i kisika do katalitički aktivnih centara i time izravno utječe na ukupnu brzinu oksidacije.

Pregledom literature utvrđeno je da su u ovom istraživanju CSMO-uzorci prvi put testirani kao katalizatori za oksidaciju BTEX-smjese pa će se rezultati usporediti s rezultatima katalitičke aktivnosti BSMO na kraju sljedećeg odjeljka.

4.6.3. Barijevi manganiti

Ovisnosti konverzije BTEX-komponenata o temperaturi prikazane su na slici 56. za temperaturni raspon od 100 do 450 °C. Prikazane krivulje ponovno imaju karakteristični S-oblik što ukazuje na to da se i u tom slučaju radi o reakciji prvog reda [105,190]. Kako bi utjecaj dopiranja na katalitičku aktivnost bio jasniji, karakteristične temperature T_{10} , T_{50} i T_{90} te konačne konverzije prikazane su u Tablici 19. Jasan trend između karakterističnih temperatura T_{10} , T_{50} i T_{90} ponovno nije uočen zbog morfoloških značajki koje dovode do razlika u početnoj katalitičkoj aktivnosti neovisno o udjelu Sr-dopiranja. Međutim, ako se usporede vrijednosti karakterističnih temperatura za BSMO (Tablica 19.) s onima za CSMO (Tablica 18.), vidljivo je da su temperature niže za BSMO-uzorke zbog njihove veće nestehiometrije kisika (Tablica 5.) koja je važna za oksidacijske reakcije. Naime, prema Mars – van Krevelenovu mehanizmu [100] pored kisika koji dolazi izravno iz plinske faze i adsorbira se na različite aktivne centre katalizatora, važnu ulogu imaju i vakancije kisika unutar

kristalne rešetke katalizatora koje također sudjeluju u katalitičkoj oksidaciji aromatskih ugljikovodika.

Slika 56. Prikaz konverzija (a) benzena, (b) toluena, (c) etilbenzena i (d) *o*-ksilena u ovisnosti o reakcijskoj temperaturi za pripremljene BSMO-katalizatore.

Na konačnoj temperaturi od 450 °C uspješno su razgrađeni etilbenzen i *o*-ksilen, a potpuna razgradnja toluena postignuta je za katalizatore BL_Sr0,3 i BL_Sr0,5. Maksimalna konverzija benzena od 86,43 % postignuta je primjenom katalizatora BL_Sr0,3, što je 6 % više u odnosu na LSMO-katalizator (LL_Sr0,3) i čini BSMO dobrom i ekonomičnijom alternativom LSMO-katalizatorima. Budući da su svi BSMO-katalizatori, neovisno o postupku sinteze, omogućili potpunu ili gotovo potpunu razgradnju toluena, etilbenzena i *o*-ksilena, utjecaj dopiranja i postupka sinteze promotrit će se iz konačnih konverzija benzena.

I	U zorci	BL_Sr0	BL_Sr0,3	BL_Sr0,5	BC_Sr0	BC_Sr0,3	BC_Sr0,5
	<i>T</i> ₁₀ , °C	279	229	265	235	235	235
B	<i>T</i> ₅₀ , °C	387	312	312	385	385	385
	<i>T</i> ₉₀ , °C	>450	>450	>450	> 450	>450	>450
	<i>T</i> ¹⁰ , °C	203	203	204	205	162	201
Т	<i>T</i> ₅₀ , °C	250	224	223	262	229	235
	<i>T</i> ₉₀ , °C	350	265	265	350	375	351
	<i>T</i> ¹⁰ , °C	181	157	202	179	154	172
E	<i>T</i> ₅₀ , °C	225	212	215	235	207	225
	<i>T</i> ₉₀ , °C	305	242	240	329	319	329
	<i>T</i> ¹⁰ , °C	187	162	203	182	155	172
X	<i>T</i> ₅₀ , °C	223	207	214	235	203	223
	<i>T</i> ₉₀ , °C	300	237	237	314	300	337
XA	(B, 450) , %	71,69	86,43	79,98	76,89	68,46	65,32
XA	(T, 450) , %	97,93	100,00	100,00	99,39	97,89	99,28
XA	(E, 450) , %	100,00	100,00	100,00	100,00	100,00	100,00
XA	(X, 450), %	100,00	100,00	100,00	100,00	100,00	100,00

Tablica 19. Temperature pri kojima se postižu konverzije benzena (B), toluena (T), etilbenzena (E) i *o*-ksilena (X) od 10, 50 i 90 % i konačne konverzije (X_A) pri 450 °C postignute uz BSMO-katalizatore.

Iz rezultata danih u Tablici 19. vidljivo je da nema pravilnog trenda promjene konverzije benzena ovisno o udjelu Sr-dopiranja. Nadalje, vidljivo je da uzorci pripremljeni limunskim postupkom pokazuju veće konverzije u odnosu na one pripremljene koprecipitacijom, uz iznimku nedopiranih uzoraka kod kojih je konverzija benzena veća za BC_Sr0. Budući da se nestehiometrija kisika (Tablica 5.) i prosječni promjer pora (Tablica 8.) ne razlikuju značajno za isti udio dopiranja ovisno o postupku sinteze, nešto veća aktivnost uzoraka pripremljenih limunskim postupkom može se pripisati većim specifičnim površinama (Tablica 8.) i samim time većem broju aktivnih centara u odnosu na uzorke pripremljene koprecipitacijom.

Pregledom literature također je utvrđeno da BSMO-materijali nisu dosad istraživani kao katalizatori. Međutim, Mishra i sur. [199] istraživali su katalitičku aktivnost CaMnO₃ i BaMnO₃ u postupku reformiranja metana. Katalizatori na osnovi BaMnO₃ pokazali su bolju selektivnost i veću otpornost prema koksiranju u odnosu na CaMnO₃ katalizatore, što je objašnjeno većim brojem slabo vezanih kisikovih iona u strukturi CaMnO₃ koji rezultiraju smanjenom selektivnošću. Tim istraživanjem pokazano je da CSMO i BSMO mogu konkurirati LSMO-materijalima po pitanju katalitičke aktivnosti za oksidaciju BTEX-a. Pritom je maksimalna konverzija benzena ostvarena upravo primjenom uzorka BL_Sr0,3.

5. ZAKLJUČAK

Nedopirani i stroncijem dopirani lantanovi, kalcijevi i barijevi manganiti uspješno su pripremljeni limunskim i koprecipitacijskim postupkom sinteze iz otopine metalnih nitrata. Toplinskom analizom utvrđeno je da je za kristalizaciju manganita potrebno žariti praške prekursora na temperaturi iznad 1000 °C, no u praksi su čiste manganitne faze dobivene žarenjem pri 1200 °C tijekom 2 h. Pokazano je da postupak sinteze utječe na strukturne značajke materijala, njihovu električnu vodljivost, magnetska svojstva i katalitičku aktivnost kako slijedi:

1. Strukturne karakteristike

Svi pripremljeni uzorci lantanovih manganita (LSMO) kristalizirali su u romboedarskom kristalnom sustavu prostorne grupe $R\overline{3}c$, a Rietveldovom metodom utočnjavanja utvrđeno je da veći udio Sr-dopiranja dovodi do smanjenja volumena jedinične ćelije. Naime, supstitucija lantana stroncijem dovodi do oksidacije proporcionalnog dijela manganovih kationa iz stanja +3 u +4 kako bi se očuvala elektroneutralnost materijala. Budući da je radijus kationa Mn^{4+} manji u odnosu na Mn^{3+} , ukupni efekt očituje se kao smanjenje volumena jedinične ćelije. LSMO-uzorci pripremljeni koprecipitacijskim postupkom sinteze imaju izraženiju nestehiometriju kisika u odnosu na uzorke pripremljene limunskim postupkom, a najveći deficit kisika utvrđen je u uzorku LC_Sr0,2 i iznosi -0,17.

Kalcijevi manganiti (CSMO) kristalizirali su u ortorompskom sustavu prostorne grupe *Pnma*, a XRD-analizom utvrđeno je da je u svim CSMO-uzorcima prisutna i sporedna marokitna faza. U uvjetima sinteze u ovom radu kristalizacija marokitne faze ne može se izbjeći budući da je određena ravnotežom u sustavu Ca–Mn–O. Udio marokitne faze raste s porastom udjela Sr-dopiranja, a veći je za uzorke pripremljene koprecipitacijskim postupkom. Osim toga, nestehiometrija kisika također je veća u uzorcima pripremljenima koprecipitacijom te se smanjuje s povećanjem udjela Sr-dopiranja.

Za razliku od LSMO- i CSMO-materijala, kod barijevih manganita (BSMO) uočeno je da udio Sr-dopiranja ima utjecaj na kristalni sustav u kojem materijal kristalizira. Nedopirani uzorci kristalizirali su u romboedarskom sustavu prostorne grupe $R\overline{3}m$, za udio Sr-dopiranja od 0,3 uzorci su kristalizirali u heksagonskom sustavu iste prostorne grupe, dok su pri najvećem udjelu Sr-dopiranja od 0,5 uzorci kristalizirali u heksagonskom sustavu prostorne grupe P63/mmc.

BSMO-uzorci imaju najveću nestehiometriju kisika u usporedbi s LSMO- i CSMO-materijalima koja također pada s porastom udjela Sr-dopiranja.

Morfologija pripremljenih uzoraka istražena je SEM-analizom pri čemu je uočeno da uzorci pripremljeni limunskim postupkom imaju karakterističnu spužvastu morfologiju koja je posljedica oslobađanja velike količine plinova u postupku reakcije samozapaljenja. S druge strane, uzorci pripremljeni koprecipitacijom imaju poroznu morfologiju koja se u praškastim uzorcima očituje kao prisutnost nepravilnih sfernih agregata. Budući da je za kristalizaciju manganitne faze potrebna vrlo visoka temperatura od oko 1200 °C, svi pripremljeni uzorci imaju malu specifičnu površinu te poroznost koja je pretežno posljedica postojanja pora između sinteriranih kristalnih zrna.

2. Električna provodnost

LSMO-uzorci pokazali su frekvencijski neovisnu provodnost u cijelom mjernom području od 0.01 Hz do 1 MHz što govori o tome da je transport elektrona brz te da nema blokirajućih efekata na granicama zrna. Istosmjerna provodnost određena iz Arrheniusove ovisnosti raste s porastom udjela Sr-dopiranja, dok energija aktivacije očekivano pada. Budući da su uzorci pripremljeni koprecipitacijskim postupkom sinteze imali veću nestehiometriju kisika, u njima je omjer Mn³⁺/Mn⁴⁺ veći te je istosmjerna provodnost time veća u odnosu na uzorke pripremljene limunskim postupkom sinteze. Vrijednosti istosmjernih provodnosti reda SU veličine $10^{-1} (\Omega \text{ cm})^{-1}$ što je usporedivo s provodnosti silicija i čini LSMO potencijalnim materijalom za SOFC-primjene.

CSMO-uzorci su također kao i LSMO pokazali frekvencijski neovisnu provodnost u cijelom mjernom području što također ide u prilog pretpostavci o brzom transportu elektrona. Istosmjerne provodnosti rastu s porastom udjela Sr-dopiranja, a veće su za uzorke pripremljene limunskim postupkom sinteze. To je suprotno očekivanju budući da uzorci pripremljeni koprecipitacijom imaju veću nestehiometriju kisika te bi se očekivalo da će ona povećati omjer miješanih valencija mangana i pridonijeti provodnosti. Međutim, SEM-analiza pokazala je da su peleti dobiveni iz praha prekursora pripremljenog limunskim postupkom sinteze bolje sinterirani što doprinosi njihovoj električnoj provodnosti.

Frekvencijska ovisnost provodnosti BSMO-uzoraka sastojala se od frekvencijski neovisne i frekvencijski ovisne domene. Frekvencijski ovisna domena povećavala se s porastom udjela

Sr-dopiranja zbog toga što je dopiranje dovelo do kristalizacije materijala u heksagonskom kristalnom sustavu u kojem je kut Mn–O–Mn veze manji od 18° te dolazi do preklapanja 3*d*-orbitale mangana s 2*p*-orbitalom kisika i smanjene mobilnosti elektrona u Zenerovu mehanizmu dvostruke izmjene. Iz navedenog razloga, najbolja istosmjerna provodnost pri 20 °C dobivena je za nedopirane materijale pri čemu veće provodnosti imaju materijali pripremljeni limunskim postupkom sinteze. Budući da su najveće postignute vrijednosti provodnosti reda veličine $10^{-6} (\Omega \text{ cm})^{-1}$, ti materijali nisu prikladni za namjene u SOFC-u, ali su interesantni kao poluvodički materijali u uređajima za pohranu podataka.

3. <u>Magnetska svojstva</u>

Magnetska mjerenja pokazala su da LSMO-materijali posjeduju feromagnetska svojstva te da povećanje udjela Sr-dopiranja rezultira povećanjem njihove Curiejeve temperature, pri čemu su materijali s udjelom Sr-dopiranja od 0,2 i 0,3 prikladni za primjenu pri sobnoj temperaturi. Navedeno je potvrđeno mjerenjem magnetskih histereza ispod i iznad sobne temperature, a iz dobivenih krivulja izračunate su i promjene magnetskih entropija. Pritom su LSMO-materijali pripremljeni koprecipitacijom imali i do tri puta veću promjenu magnetske entropije u odnosu na materijale pripremljene limunskim postupkom. Dobiveni rezultati dvostruko su manji u usporedbi s magnetskom entropijom čistog gadolinija koji se upotrebljava u magnetskim hladnjacima za laboratorijske namjene, ali uspoređujući cijenu i dostupnost materijala, može se zaključiti da su LSMO-materijali potencijalna alternativa za buduću širu komercijalizaciju magnetskih hladnjaka.

CSMO-materijali pokazali su antiferomagnetska svojstva i znatno niže iznose magnetizacije u odnosu na LSMO-materijale. Detektirane neto magnetizacije rezultat su naginjanja, tj. kantiranja spinova koji je svojstven za manganite i pritom se spinovi ne poništavaju potpuno, već postoji određena neto magnetizacija. Néelove temperature svih CSMO-materijala rasle su s porastom udjela Sr-dopiranja, ali su znatno niže od sobne što ograničava njihovu praktičnu primjenu. U dopiranim materijalima pripremljenima koprecipitacijskom postupkom bio je vidljiv dodatni fazni prijelaz na temperaturama iznad sobne koji je posljedica distorzije kristalne rešetke uslijed dopiranja te pojave superizmjene između dvaju susjednih iona Mn⁴⁺.

Iste pojave također su uočene u BSMO-materijalima. Néelove temperature BSMO-materijala nisu se značajno mijenjale s udjelom Sr-dopiranja i bile su u rasponu 42 – 44 K što također ograničava

njihovu primjenu pri sobnoj temperaturi. U svim materijalima uočen je dodatni fazni prijelaz, na oko 230 K za nedopirane i na oko 270 K za dopirane materijale, što je također posljedica superizmjene između dvaju susjednih iona Mn⁴⁺.

4. Katalitička aktivnost

LSMO-materijali pripremljeni limunskim postupkom sinteze pokazali su veću katalitičku aktivnost od materijala pripremljenih koprecipitacijskim postupkom. Prvi razlog tome su morfološke razlike, tj. porozna morfologija uzoraka pripremljenih limunskim postupkom dovela je do šire raspodjele mezopora čime je olakšana unutarfazna difuzija reaktanata i/ili produkata, odnosno povećana brzina prijenosa tvari koja često određuje ukupnu brzinu heterogeno-katalitičkih sustava. Drugi razlog je taj što LSMO-uzorci pripremljeni koprecipitacijskim postupkom imaju veću nestehiometriju kisika i posljedično prosječno oksidacijsko stanje Mn između +2 i +3, dok uzorci pripremljeni limunskim postupkom imaju prosječno oksidacijsko stanje Mn između +3 i +4 što je izuzetno važno za njihovu katalitičku aktivnost pri nižim temperaturama jer se redukcija Mn⁴⁺/Mn³⁺ provodi pri nižim temperaturama u odnosu na redukciju Mn³⁺/Mn²⁺. Etilbenzen i *o*-ksilen potpuno su se razgradili uz sve LSMO-katalizatore pripremljene limunskim postupkom, dok se toluen potpuno razgradio samo uz katalizator s najvećim udjelom Sr-dopiranja od 0,3. Najviša konverzija benzena iznosila je 80,24 % i postignuta je također s uzorkom pripravljenim limunskim postupkom s najvećim udjelom Sr-dopiranja.

Za razliku od LSMO-uzoraka, CSMO-uzorci pripremljeni koprecipitacijskim postupkom pokazali su veću katalitičku aktivnost u odnosu na uzorke pripremljene limunskim postupkom. Prvi razlog tome je veća nestehiometrija kisika koja je dovela do nastajanja miješanih valencija Mn³⁺/Mn⁴⁺ u CSMO-strukturi, budući da to nije postignuto dopiranjem jer se u tom slučaju Ca²⁺ dopira sa kationom Sr²⁺ iste valencije. Drugi razlog je veći prosječni promjer pora CSMO-uzoraka pripremljenih koprecipitacijom koji omogućuje lakšu difuziju reaktanata i kisika do katalitički aktivnih centara. U tom su se slučaju etilebenzen i *o*-ksilen potpuno razgradili uza sve CSMO-katalizatore, neovisno o postupku njihove sinteze, a sa svim dopiranim katalizatorima potpuno se razgradio i toluen. Najviše konverzije benzena od 78,34 % i 77,25 % postignute su uz dopirane materijale pripremljene koprecipitacijskim postupkom sinteze.

Svi pripremljeni BSMO-katalizatori pokazali su se kao katalitički najaktivniji od svih istraživanih manganita pri istim uvjetima ispitivanja. Budući da su svi BSMO-katalizatori, neovisno o postupku sinteze, pokazali potpunu ili gotovo potpunu razgradnju toluena, etilbenzena i *o*-ksilena, utjecaj dopiranja i postupka sinteze istražen je na temelju postignutih konverzija benzena. Uzorci pripremljeni limunskim postupkom rezultirali su višim konverzijama u odnosu na one pripremljene koprecipitacijom, uz iznimku nedopiranih uzoraka kod kojih je konverzija benzena bila veća za uzorak dobiven koprecipitacijskim postupkom u odnosu na onaj dobiven limunskim postupkom. Budući da se nestehiometrija kisika i prosječni promjer pora ne razlikuju značajno za isti udio dopiranja ovisno o postupku sinteze, nešto veća aktivnost uzoraka pripremljenih limunskim postupkom može se pripisati većim specifičnim površinama u odnosu na koprecipitirane uzorke. Najviša postignuta konverzija benzena iznosila je 86,43 % za uzorak Ba_{0,7}Sr_{0,3}MnO₃ dobiven limunskim postupkom.

Na temelju svega navedenog, može se zaključiti da se praktična primjena ovog istraživanja očituje u potencijalu manganita, jeftinih i netoksičnih materijala, za komercijalizaciju novih tehnologija (SOFC, memorijski uređaji, magnetski hladnjaci) te za pojeftinjenje katalitičkih procesa, naročito za industrijsku primjenu.

6. LITERATURA

[1] K. Dong, X. Dong, Q. Jiang, How renewable energy consumption lower global CO₂ emissions? Evidence from countries with different income levels, World Econ. 43 (2020) 1665–1698.

[2] URL: https://www.iea.org/reports/key-world-energy-statistics-2020 (pristup 5.5.2024.)

[3] J. Costa, D. Cancela, J. Reis, Neverland or tomorrow land? Addressing (in)compatibility among the SDG pillars in Europe, Int. J. Environ. Res. Public Health 18 (2021) 11858.

[4] T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far, Energy Rep. 6 (2020) 1973–1991.

[5] J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO₃, Phys. Rev. 100 (1955) 564–573.

[6] A. Capitaine, B. Sciacca, Monocrystalline methylammonium lead halide perovskite materials for photovoltaics, Adv. Mater. 33 (2021) 2102588.

[7] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti Jr., J. Rödel, BaTiO₃-based piezoelectrics: Fundamentals, current status, and perspectives, Appl. Phys. Rev. 4 (2017) 041305.

[8] C. Raj Sankar, P. A. Joy, Magnetic properties of the self-doped lanthanum manganites La_{1-x}MnO₃, Phys. Rev. B 72 (2005) 024405.

[9] S. Hussain, L. Yangping, Review of solid oxide fuel cell materials: cathode, and electrolyte, Energy Transit. 4 (2020) 113–126.

[10] B. Ji, H. He, W. Yao, Y. Tang, Recent advances and perspectives on calcium-ion storage: key materials and devices, Adv. Mater. (2020) 2005501.

[11] J. H. Belo, Magnetocaloric materials: from micro- to nanoscale, J. Mater. Res. 34 (2019) 134–157.

[12] J. Puebla, J. Kim, K. Kondou, Y. Otani, Spintronics devices for energy-efficient data storage and energy harvesting, Commun. Mater. 1 (2020) 24.

[13] A. Žužić, A. Ressler, J. Macan, Perovskite oxides as active materials in novel alternatives to well-known technologies: A review, Ceram. Int. 48 (2022) 27240–27261.

[14] U. Krishnan, M. Kaur, M. Kumar, A. Kumar, Factors affecting the stability of perovskite solar cells: a comprehensive review, J. Photonics Energy 9 (2019) 021001.

[15] J. M. D. Coey, M. Viret, S. von Molnár, Mixed-valence manganites, Adv. Phys. 48 (1999) 167–293.

[16] H. Wu, F. Li, Oxygen vacancy-assisted high ionic conductivity in perovskite LaCoO_{3- δ} (δ = 1/3) thin film: A first-principles-based study, Phys. Lett. A 383 (2019) 210–214.

[17] C. Zener, Interaction between the *d*-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure, Phys. Rev. 82 (1951) 403–405.

[18] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet,
A. Friedrich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,
Phys. Rev. Lett. 61 (1988) 2472–2475.

[19] J. P. Attfield, P. Lightfoot, R. E. Morris, Perovskites, Dalton Trans. 44 (2015) 10541–10542.

[20] A. S. Bhalla, R. Guo, R. Roy, The perovskite structure – a review of its role in ceramic science and technology, Mat. Res. Innovat. 4 (2000) 3–26.

[21] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst. 44 (2011) 1272–1276.

[22] K. V. Galloway, N. M. Sammes, Fuel Cells – Solid Oxide Fuel Cells – Anodes, u J. Garche (ur.), Encyclopedia of Electrochemical Power Sources, Elsevier, 2009, str. 17–24.

[23] M. Johnsson, P. Lemmens, Crystallography and Chemistry of Perovskites, u H. Kronmüller,
S. Parkin (ur.), Handbook of Magnetism and Advanced Magnetic Materials, John Wiley & Sons,
2007, str. 1–9.

[24] J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, M. A. G. Aranda, M. T. Fernández-Díaz, Metal-insulator transitions, structural and microstructural evolution of RNiO₃ (R = Sm, Eu, Gd, Dy, Ho, Y) perovskites: Evidence for room-temperature charge disproportionation in monoclinic HoNiO₃ and YNiO₃, J. Am. Chem. Soc. 121 (1999) 4754–4762.

[25] S. Aleksovska, S. Dimitrovska, I. Kuzmanovski, Crystal structure prediction in orthorhombic ABO₃ perovskites by multiple linear regression and artificial neural networks, Acta Chim. Slov. 54 (2007) 574–582.

[26] H. Han, Z. Wei, A. S. Filatov, J. C. Carozza, M. Alkan, A. Yu. Rogachev, A. Shevtsov, A. M. Abakumov, C. Pal, M. Shatruk, Y. S. Chen, E. V. Dikarev, Three to tango requires a site-specific substitution: heterotrimetallic molecular precursors for high-voltage rechargeable batteries, Chem. Sci. 10 (2019) 524–534.

[27] N. Torino, P. F. Henry, C. S. Knee, T. S. Bjørheim, S. M. H. Rahman, E. Suard, C. Giacobbe, S. G. Eriksson, The influence of cation ordering, oxygen vacancy distribution and proton siting on observed properties in ceramic electrolytes: the case of scandium substituted barium titanate, Dalton Trans. 46 (2017) 8387–8398.

[28] S. Kurth, M. A. L. Marques, E. K. U. Gross, Density-Functional Theory, u F. Bassani,G. L. Liedl, P. Wyder (ur.), Encyclopedia of Condensed Matter Physics, Elsevier, 2005,str. 395–402.

[29] F. H. Taylor, J. Buckeridge, C. R. A. Catlow, Defects and oxide ion migration in the solid oxide fuel cell cathode material LaFeO₃, Chem. Mater. 28 (2016) 8210–8220.

[30] S. M. Alay-e-Abbas, S. Nazir, S. Cottenier, A. Shaukat, Evaluation of thermodynamics, formation energetics and electronic properties of vacancy defects in CaZrO₃, Sci. Rep. 7 (2017) 8439.

[31] R. Freitag, J. Conradie, Understanding the Jahn-Teller effect in octahedral transition-metal complexes: a molecular orbital view of the $Mn(\beta$ -diketonato)₃ complex, J. Chem. Educ. 90 (2013) 1692–1696.

[32] D. Kumar, R. S. Yadav, Monika, A. Kumar Singh, S. B. Rai, Synthesis Techniques and Applications of Perovskite Materials, u H. Tian (ur.), Perovskite Materials, Devices and Integration, IntechOpen, 2020, str. 1–19.

[33] W. Zhang, C. Li, Z. Ma, L. Yang, H. He, Effects of calcination temperature on properties of 0.5% Al-3% In-TiO₂ photocatalyst prepared using sol-gel method, J. Adv. Oxid. Technol. 19 (2016) 119–124.

[34] E. A. R. Assirey, Perovskite synthesis, properties and their related biochemical and industrial application, Saudi Pharm. J. 27 (2019) 817–829.

[35] R. Oka, T. Masui, Synthesis and characterization of black pigments based on calcium manganese oxides for high near-infrared (NIR) reflectance, RSC Adv. 93 (2016) 89984–91076.

[36] X. Han, T. Zhang, J. Du, F. Cheng, J. Chen, Porous calcium-manganese oxide microspheres for electrocatalytic oxygen reduction with high acitivity, Chem. Sci. 4 (2013) 368–376.

[37] A. P. Amrute, J. De Bellis, M. Felderhoff, F. Schüth, Mechanochemical synthesis of catalytic materials, Chem. Eur. J. 27 (2021) 6819-6847.

[38] L. A. Isupova, S. V. Tsybulya, G. N. Kryukova, G. M. Alikina, N. N. Boldyreva, I. S. Yakovleva, V. P. Ivanov, V. A. Sadykov, Real structure and catalytic activity of $La_{1-x}Ca_xMnO_{3+\delta}$ perovskites, Solid State Ion. 141-142 (2001) 417–425.

[39] I. A. Lira-Hernández, F. Sánches-De Jesús, C. A. Cortés-Escobedo, A. M. Bolarín-Miró, Crystal structure analysis of calcium-doped lanthanum manganites prepared by mechanosynthesis, J. Am. Ceram. Soc. 93 (2010) 3474–3477.

[40] C. A. Cortés Escobedo, F. Sánchez de Jesús, A. M. Bolarín Miró, Mechanosynthesis of LaMnO₃ from different manganese oxides, Phys. Status Solidi C 4 (2007) 4054–4063.

[41] A. E. Danks, S. R. Hall, Z. Schnepp, The evolution of 'sol-gel' chemistry as a technique for materials synthesis, Mater. Horiz. 3 (2016) 91–112.

[42] M. P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Pat. 3 330 697, 11 Jul 1967.

[43] A. Abreu Jr., S. M. Zanetti, M. A. S. Oliveira, G. P. Thim, Effect of urea on lead zirconate titanate-Pb(Zr_{0.52}Ti_{0.48})O₃-nanopowders synthesized by the Pechini method, J. Eur. Ceram. Soc. 25 (2005) 743–748.

[44] M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, A. Rousset, Preparation and characterization of $La_{1-x}Sr_xMnO_{3+\delta}$ ($0 \le x \le 0.6$) powder by sol-gel processing, Solid State Sci. 4 (2002) 125–133.

[45] X. Meng, S. Hao, J. Li, Q. Fu, D. Fu, Preparation of Ca_{0.8}Sm_{0.2}MnO₃ powders and effects of calcination temperature on structure and electrical property, Powder Technol. 224 (2012) 96–100.

[46] Z. Zeng, M. Greenblatt, Large magnetoresistance in antiferromagnetic CaMnO_{3- δ}, Phys. Rev. B 59 (1999) 8784–8788.

[47] R. Epherre, E. Duguet, S. Mornet, E. Pollert, S. Louguet, S. Lecommandoux, C. Schatz, G. Goglio, Manganite perovskite nanoparticles for self-controlled magnetic fluid hypertermia: about the suitability of an aqueous combustion synthesis route, J. Mater. Chem. 21 (2011) 4393–4401.

[48] P. H. Isasi, M. E. Lopes, M. R. Nunes, M. E. Melo Jorge, Low-temperature synthesis of nanocrystalline $Ca_{1-x}Ho_xMnO_{3-\delta}$ ($0 \le x \le 0.3$) powders, J. Phys. Chem. Solids 70 (2009) 405–411.

[49] M. E. Melo Jorge, A. Correia dos Santos, M. R. Nunes, Effects of synthesis method on stoichiometry, structure and electrical conductivity of CaMnO_{3- δ}, Int. J. Inorg. Mater. 3 (2001) 915–921.

[50] C. Silveira, M. E. Lopes, M. R. Nunes, M. E. Melo Jorge, Synthesis and electrical properties of nanocrystalline $Ca_{1-x}Eu_xMnO_{3\pm\delta}$ (0.1 $\le x \le 0.4$) powders prepared at low temperature using citrate gel method, Solid State Ion. 180 (2010) 1702–1709.

[51] D. Sousa, M. R. Nunes, C. Silveira, I. Matos, A. B. Lopes, M. E. Melo Jorge, Ca-site substitution induced a metal-insulator transition in manganite CaMnO₃, Mater. Chem. Phys. 109 (2008) 311–319.

[52] D. P. Tarragó, C. de Fraga Malfatti, V. Caldas de Sousa, Influence of fuel on morphology of LSM powders obtained by solution combustion synthesis, Powder Technol. 269 (2015) 481–487.

[53] F. P. Zhang, Q. M. Lu, X. Zhang, J. X. Zhang, Preparation and improved electrical performance of the Pr-doped CaMnO_{3- δ}, Phys. Scr. 88 (2013) 035705.

[54] M. Mouyane, B. Itaalit, J. Bernard, D. Houviet, J. G. Noudem, Flash combustion synthesis of electron doped-CaMnO₃ thermoelectric oxides, Powder Technol. 264 (2014) 71–77.

[55] F. Deganello, G. Marcì, G. Deganello, Citrate-nitrate auto-combustion synthesis of perovskitetype nanopowders: A systematic approach, J. Eur. Ceram. Soc. 29 (2009) 439–450.

[56] V. D. Sudheesh, N. Thomas, N. Roona, H. Choudhary, B. Sahoo, N. Lakshmi, V. Sebastian, Synthesis of nanocrystalline spinel ferrite (MFe₂O₄, M = Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratio, J. Alloys Compd. 742 (2018) 577–586.

[57] S. R. Jain, K. C. Adiga, V. R. Pai Verneker, A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame 40 (1981) 71–79.

[58] A. Sutka, G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci. 6 (2012) 128–141.

[59] F. A. Fabian, P. P. Pedra, J. L. S. Filho, J. G. S. Duque, C. T. Meneses, Synthesis and characterization of La(Cr,Fe,Mn)O₃ nanoparticles obtained by co-precipitation method, J. Magn. Magn. Mater. 379 (2015) 80–83.

[60] C. Li, Q. Chen, Y. Yan, Effects of Pr and Yb dual doping on the thermoelectric properties of CaMnO₃, Materials 11 (2018) 1807.

[61] S. Quetel-Weben, R. Retoux, J. G. Noudem, Thermoelectric Ca_{0.9}Yb_{0.1}MnO_{3- δ} grain growth controlled by spark plasma sintering, J. Eur. Ceram. Soc. 33 (2013) 1755–1762.

[62] M. Marinšek, K. Zupan, T. Razpotnik, J. Maček, A co-precipitation procedure for the synthesis of LSM material, Mater. Technol. 41 (2007) 85–90.

[63] A. Žužić, A. Ressler, J. Macan, Evaluation of carbonate precursors in manganite coprecipitation synthesis by Fourier transform infrared (FTIR) spectroscopy, Solid State Commun. 341 (2022) 114594.

[64] R. E. Riman, W. L. Suchanek, M. M. Lencka, Hydrothermal crystallization of ceramics, Ann. Chim. Sci. Mat. 27 (2002) 15–36. [65] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, 2nd Edition, Elsevier, 2013, str. 1–49.

[66] M. J. Pitkethly, Nanomaterials – the driving force, Mater. Today 7 (2004) 20–29.

[67] D. Aman, T. Zaki, S. Mikhail, S. Selim, Synthesis of a perovskite LaNiO₃ nanocatalyst at low temperature using single reverse microemulsion, Catal. Today 164 (2011) 209–213.

[68] Y. Hao, B. Li, R. H. Liu, F. T. Li, Synthesis of NdFeO₃ perovskites in a reverse microemulsion and its visible light photocatalytic activity, Adv. Mat. Res. 282-283 (2011) 593–596.

[69] M. Soleymani, M. Edrissi, Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: biomedical applications, Bull. Mater. Sci. 39 (2016) 487–490.

[70] G. George, S. Rao Ede, Z. Luo, Perovskite Oxides: Synthesis, Structure, Properties and Applications, CRC Press, 2020, str. 22–40.

[71] T. Jurkin, M. Gotić, Mikroemulzijska sinteza nanočestica, Kem. Ind. 62 (2013) 401-415.

[72] N. Nuraje, K. Su, Perovskite ferroelectric nanomaterials, Nanoscale 5 (2013) 8752-8780.

[73] R. E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature 358 (1992) 136–138.

[74] T. Yao, Y. Jiang, C. Chen, X. Yan, A. Tao, L. Yang, C. Li, K. Sugo, H. Ohta, H. Ye, Y. Ikuhara, X. Ma, Ferroelectric oxide thin film with an out-of-plane electrical conductivity, Nano Lett. 20 (2020) 1047–1053.

[75] P. Gao, J. Britson, J. R. Jokisarri, C. T. Nelson, S. H. Baek, Y. Wang, C. B. Eom, L. Q. Chen, X. Pan, Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching, Nat. Commun. 4 (2013) 2791.

[76] L. Gao, H. Guo, S. Zhang, C. A. Randall, A perovskite lead-free antiferroelectric xCaHfO₃-(1–x)NaNbO₃ with induced double hysteresis loops at room temperature, J. Appl. Phys. 120 (2016) 204102.

[77] D. Fang, F. Li, B. Liu, Y. Zhang, J. Hong, X. Guo, Advances in developing electromechanically coupled computational methods for piezoelectrics/ferroelectrics at multiscale, Appl. Mech. Rev. 65 (2013) 060802.

[78] M. Telychko, J. Lu, Recent advances in atomic imaging of organic-inorganic hybrid perovskites, Nano Materials Science 1 (2019) 260–267.

[79] H. Si, S. Zhang, S. Ma, Z. Xiong, A. Kausar, Q. Liao, Z. Zhang, A. Sattar, Z. Kang, Y. Zhang, Emerging conductive atomic force microscopy for metal halide perovskite materials and solar cells, Adv. Energy Mater. (2020) 1903922.

[80] B. A. Boukamp, Electrochemical impedance spectroscopy in solid state ionics: recent advances, Solid State Ion. 169 (2004) 65–73.

[81] A. Mayeen, N. Kalarikkal, Development of Ceramic-Controlled Piezoelectric Devices for Biomedical Applications, u: S. Thomas, P. Balakrishnan, M. S. Sreekala (ur.), Fundamental Biomaterials: Ceramics, 1st ed., Elsevier, 2018.

[82] L. Q. Cheng, J. F. Li, A review on one dimensional perovskite nanocrystals for piezoelectric applications, J. Materiomics 2 (2016) 25–36.

[83] R. Whatmore, Characterization of Pyroelectric Materials, u M. G. Cain (ur.), Characterization of Ferroelectric Bulk Materials and Thin Films, Springer, 2014, str. 65–86.

[84] R. W. Whatmore, R. Watton, Pyroelectric Materials and Devices, u: P. Capper, C. T. Elliott (ur.), Infrared Detectors and Emitters: Materials and Devices, Springer, 2001, str. 99–147.

[85] S. Jachalke, E. Mehner, H. Stöcker, J. Hanzig, M. Sonntag, T. Weigel, T. Leisegang,D. C. Meyer, How to measure the pyroelectric coefficient?, Appl. Phys. Rev. 4 (2017) 021303.

[86] C. N. R. Rao, World of perovskite oxides: from dielectrics to superconductors, Phys. C 153-155 (1988) 1762–1768.

[87] G. Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai, C. L. Chien, High-temperature superconductivity in tetragonal perovskite structures: is oxygen-vacancy order important?, Phys. Rev. Lett. 60 (1988) 1446–1449.

[88] F. Baiutti, G. Logvenov, G. Gregori, G. Cristiani, Y. Wang, W. Sigle, P. A. van Aken, J. Maier, High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping, Nat. Commun. 6 (2015) 8586.

[89] B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials, Second Edition, The Institute of Electrical and Electronics Engineers, Inc., Wiley Online Library, 2008, str. 1–357.

[90] V. Bhatt, Essentials of Coordination Chemistry, A simplified Approach with 3D Visuals, Elsevier, 2016.

[91] V. Markovich, A. Wisniewski, H. Szymczak, Magnetic Properties of Perovskite Manganites and Their Modifications, u K. H. J. Buschow (ur.), Handbook of Magnetic Materials, Elsevier, 2014, str. 1–201.

[92] C. W. Searle, S. T. Wang, Studies of the ionic ferromagnet (LaPb)MnO₃ III. Ferromagnetic resonance studies, Can. J. Phys. 47 (1969) 2703–2708.

[93] M. Baldini, T. Muramatsu, M. Sherafati, H.-K. Mao, L. Malavasi, P. Postorino, S. Satpathy,
V. V. Struzhkin, Origin of colossal magnetoresistance in LaMnO₃ manganite, Proc. Natl. Acad.
Sci. U.S.A. 112 (2015) 10869–10872.

[94] T. Thomson, Magnetic Properties of Metallic Thin Films, u: K. Barmak, K. Coffey (ur.), Metallic Films for Electronic, Optical and Magnetic Applications, Woodhead Publishing, 2014, str. 454–546.

[95] M. Faraji, Y. Yamini, N. Salehi, Characterization of Magnetic Nanomaterials, u: M. Ahmadi,
A. Afkhami, T. Madrakian (ur.), Magnetic Nanomaterials in Analytical Chemistry, Elsevier, 2021,
str. 39–60.

[96] M. Buchner, K. Höfler, B. Henne, V. Ney, A. Ney, Basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics, J. Appl. Phys. 124 (2018) 161101.

[97] W. Burgei, M. J. Pechan, H. Jaeger, A simple vibrating sample magnetometer for use in a materials physics course, Am. J. Phys. 71 (2003) 825–828.

[98] J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Perovskites in catalysis and electrocatalysis, Science 358 (2017) 751–756.

[99] J. A. Onrubia-Calvo, B. Pereda-Ayo, J. R. González-Velasco, Perovskite-based catalysts as efficient, durable, and economical NO_x storage and reduction systems, Catalysts 10 (2020) 208.

[100] P. Mars, D. W. van Krevelen, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci. 3 (1954) 41–59.

[101] W. F. Libby, Promising catalyst for auto exhaust, Science 171 (1971) 499-500.

[102] R. J. H. Voorhoeve, D. W. Johnson Jr., J. P. Remeika, P. K. Gallagher, Perovskite oxides: materials science in catalysis, Science 195 (1977) 827–833.

[103] R. J. H. Voorhoeve, J. P. Remeika, L. E. Trimble, Defect chemistry and catalysis in oxidation and reduction over perovskite-type oxides, Ann. N. Y. Acad. Sci. 272 (2006) 3–21.

[104] O. Padilla, J. Munera, J. Gallego, A. Santamaria, Approach to the characterization of monolithic catalysts based on La perovskite-like oxides and their application for VOC oxidation under simulated indoor environment conditions, Catalysts 12 (2022) 168.

[105] M. Duplančić, V. Gomzi, A. Pintar, S. Kurajica, V. Tomašić, Experimental and theoretical (ReaxFF) study of manganese-based catalysts for low-temperature toluene oxidation, Ceram. Int. 47 (2021) 3108–3121.

[106] B. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Ltd, New Jersey, 2004.

[107] URL: https://www.newport.com/n/introduction-to-ftir-spectroscopy (pristup: 4.7.2022.)

[108] A. Gajović, Istraživanje sustava TiO₂ / ZrO₂ između mikro- i nanočestica, Doktorski rad, Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, Zagreb, 2003.

[109] S. Kurajica, Rendgenska difrakcija na prahu, HDKI/FKIT, Zagreb, 2020.

[110] T. Runčevski, C. M. Brown, The Rietveld refinement method: Half of a century anniversary, Cryst. Growth Des. 21 (2021) 4821–4822. [111] B. H. Toby, *R* factors in Rietveld analysis: How good is good enough?, Powder Diffr. 21 (2006) 67–70.

[112] URL: https://www.eng-atoms.msm.cam.ac.uk/RoyalSocDemos/SEM (pristup: 4.7.2022.)

[113] J. B. Bindell, SEM: Scanning Electron Microscopy, u C. R. Brundle, C. A. Evans Jr.,S. Wilson (ur.), Encyclopedia of Materials Characterization: Surfaces, Interfaces, Thin Films,Butterworth-Heinemann, Stoneham, 1992, str. 70–135.

[114] D. Titus, E. J. J. Samuel, S. M. Roopan, Nanoparticle Characterization Techniques, u A. K. Shukla, S. Iravani (ur.), Green Synthesis, Characterization and Application of Nanoparticles, Elsevier, 2019, str. 303–319.

[115] L. Pavić, Utjecaj kristalizacije na električne procese i magnetske interakcije u željeznom fosfatnom staklu, Doktorski rad, Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, Zagreb, 2014.

[116] A. Šantić, A. Moguš-Milanković, Charge carrier dynamics in materials with disordered structures: a case study of iron phosphate glasses, Croat. Chem. Acta 85 (2012) 245–254.

[117] M. Adamu, G. M. Kale, Novel sol-gel synthesis of $MgZr_4P_6O_{24}$ composite solid electrolyte and newer insight into the Mg^{2+} -ion conducting properties using impedance spectroscopy, J. Phys. Chem. C 120 (2016) 17909–17915.

[118] D. Pajić, Klasična i kvantna magnetska relaksacija u izabranim nanomagnetima, Doktorski rad, Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet, Zagreb, 2008.

[119] T. Thomson, Magnetic Properties of Metallic Thin Films, u K. Barmak, K. Coffey (ur.), Metallic Films for Electronic, Optical and Magnetic Applications, Structure, Processing and Properties, Woodhead Publishing, 2014, str. 467–472.

[120] C. P. Poole, H. A. Farach, R. J. Creswick, R. Prozorov, Superconductivity, 2nd ed., Academic Press, 2007, str. 433-487.

[121] E. Forgács, T. Cserháti, Gas Chromatography, u M. Lees (ur.), Food Authenticity and Traceability, Woodhead Publishing, 2003, str. 197–217.

[122] URL: https://sisu.ut.ee/heritage-analysis/51-chromatography (pristup: 7.7.2022.)

[123] A. Žužić, J. Macan, Permanganometric determination of oxygen nonstoichiometry in manganites, Open Ceramics 5 (2021) 100063.

[124] Y. Guo, X. Zhang, R. Wäppling, Crystal structure of $La_{1-x}Sr_xMnO_{3-2x+\delta}F_{2x}$, J. Alloys Compd. 306 (2000) 133–140.

[125] S. J. Hibble, S. P. Cooper, A. C. Hannon, I. D. Fawcett, M. Greenblatt, Local distortions in the colossal magnetoresistive manganates $La_{0.70}Ca_{0.30}MnO_3$, $La_{0.80}Ca_{0.20}MnO_3$ and $La_{0.70}Sr_{0.30}MnO_3$ revealed by total neutron diffraction, J. Phys. Condens. Matter 11 (1999) 9221–9238.

[126] J. J. Adkin, M. A. Hayward, Ba MnO_{3-x} revisited: a structural and magnetic study, Chem. Mater. 19 (2007) 755–762.

[127] J. J. Adkin, M. A. Hayward, Structure and magnetism of 4H-BaMnO_{3-x} ($0 \le x \le 0.35$) and 4H-Ba_{0.5}Sr_{0.5}MnO_{3-x} ($0 \le x \le 0.21$), J. Solid State Chem. 179 (2006) 70–76.

[128] B. Plavšić, S. Kobe, B. Orel, Identification of crystallization forms of CaCO₃ with FTIR spectroscopy, Kovine Zlitine Tehnol. 33 (1999) 517–521.

[129] R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric Identification of Organic Compounds, 7th ed., John Wiley & Sons Inc., New York, 2005.

[130] L. V. Volod'ko, L. T. Huoah, The vibrational spectra of aqueous nitrate solution, J. Appl. Spectrosc. 9 (1968) 1100–1104.

[131] B. Banov, A. Momchilov, M. Massot, C. Julien, Lattice vibrations of materials for lithium rechargeable batteries V. Local structure of Li_{0.3}MnO₂, Mater. Sci. Eng. B 100 (2003) 87–92.

[132] C. Julien, M. Massot, Lattice vibrations of materials for lithium rechargeable batteriesI. Lithium manganese oxide spinel, Mater. Sci. Eng. B 97 (2003) 217–230.

[133] M. Kharroubi, B. Gillot, R. Legros, R. Metz, A. C. Vajpei, A. Rousset, An IR spectroscopic investigation of copper manganite $Cu_xMn_{3-x}O_4$ (0 < x < 1) spinels and their oxidation products, J. Less Common Met. 175 (1991) 279–287.
[134] A. Mishra, S. Bhattacharjee, Effect of A- or B-site doping of perovskite calcium manganite on structure, resistivity, and thermoelectric properties, J. Am. Ceram. Soc. 100 (2017) 4945–4953.

[135] N. Thenmozhi, S. Saikumar, S. Sonai, R. Saravanan, Electronic structure and chemical bonding in $La_{1-x}Sr_xMnO_3$ perovskite ceramics, Mater. Res. Express 4 (2017) 046103.

[136] C. H. Yoder, Ionic Compounds: Applications of Chemistry to Mineralogy, John Wiley & Sons, Hoboken, New Jersey, 2006.

[137] H. S. Horowitz, J. M. Longo, Phase relations in the Ca-Mn-O system, Mat. Res. Bull. 13 (1978) 1359–1369.

[138] J. Macan, F. Brleković, S. Kralj, A. Supina, D. Gracin, A. Šantić, Soft chemistry synthesis of CaMnO₃ powders and films, Ceram. Int. 46 (2020) 18200–18207.

[139] S. Torres, D. Thomazini, G. P. Balthazar, M. V. Gelfuso, Microstructural influence on thermoelectric properties of CaMnO₃ ceramics, Mater. Res. 23 (2020) 20200169.

[140] D. P. Kozlenko, N. T. Dang, T. L. Phan, S. E. Kichanov, L. H. Khiem, S. G. Jabarov, T. A. Tran, T. V. Manh, A. T. Le, T. K. Nguyen, B. N. Savenko, The structural, magnetic and vibrational properties of Ti-doped BaMnO₃, J. Alloys Compd. 695 (2017) 2539–2548.

[141] S. Daengsakul, C. Thomas, C. Mongkolkachit, S. Maensiri, Synthesis and structural characterization of the $La_{0.7}A_{0.3}MnO_3$ (A = Sr, Ca, Ba and Na) nanocrystalline powders prepared by simple thermal decomposition route, J. Supercond. Nov. Magn. 25 (2012) 2507–2518.

[142] T. Athar, Smart Precursors for Smart Nanoparticles, u W. Ahmad, M. J. Jackson (ur.), Emerging Nanotechnologies for Manufacturing, William Andrew Applied Science Publishers, New York, 2015, str. 444–538.

[143] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl. 1918 (1918) 98–100.

[144] P. Koralli, S. F. Varol, G. Mousdis, D. E. Mouzakis, Z. Merdan, M. Kompitsas, Comparative studies of undoped/Al-doped/In-doped ZnO transparent conducting oxide thin films in optoelectronic applications, Chemosensors 10 (2022) 162.

[145] A. A. Rabelo, M. C. de Macedo, D. M. de Araújo Melo, C. A. Paskocimas, A. E. Martinelli, R. M. do Nascimento, Synthesis and characterization of $La_{1-x}Sr_xMnO_{3\pm\delta}$ powders obtained by the polymeric precursor route, Mater. Res. 14 (2011) 91–96.

[146] Z. Sihaib, F. Puelo, G. Pantaleo, The effect of citric acid concentration on the properties of LaMnO₃ as a catalyst for hydrocarbon oxidation, Catalysts 9 (2019) 226.

[147] D. Berger, C. Matei, F. Papa, D. Macovei, V. Fruth, J. P. Deloumne, Pure and doped lanthanum manganites obtained by combustion method, J. Eur. Ceram. Soc. 27 (2007) 4395–4398.

[148] Y. Liu, H. Zheng, J. Liu, T. Zhang, Preparation of high surface area $La_{1-x}A_xMnO_3$ (A = Ba, Sr or Ca) ultra-fine particles used for CH₄ oxidation, Chem. Eng. J. 89 (2002) 213–221.

[149] D. Mutavdžić Pavlović, L. Ćurković, J. Macan, K. Žižek, Eggshell as a new biosorbent for the removal of pharmaceuticals from aqueous solutions, Clean – Soil Air Water 45 (2017) 1700082.

[150] V. Berbenni, C. Milanese, G. Bruni, P. Cofrancesco, A. Marini, Solid state synthesis of CaMnO₃ from CaCO₃-MnCO₃ mixtures by mechanical energy, Z. Naturforsch. 61 (2006) 281–286.

[151] A. Gagrani, S. Sousa, O. C. Monteiro, T. Tsuzuki, Solid state synthesis and photocatalytic activity of bio-inspired calcium manganese oxide catalysts, J. Solid State Chem. 288 (2020) 121390.

[152] N. Rezlescu, E. Rezlescu, P. D. Popa, C. Doroftei, M. Ignat, Characterization and catalytic properties of some perovskites, Compos. B Eng. 60 (2014) 515–522.

[153] A. Hammouche, E. J. L. Schouler, M. Henault, Electrical and thermal properties of Sr-doped lanthanum manganites, Solid State Ion. 28-30 (1988) 1205–1207.

[154] I. S. Debbebi, S. Megdiche-Borchani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Study of complex impedance spectroscopic properties of La_{0.7-x}Dy_xSr_{0.3}MnO₃ perovskite oxides, R. Soc. Open Sci. 5 (2018) 172201.

[155] R. J. Wiglusz, A. Gaki, G. Kakali, A. Chuchmała, W. Stręk, Conductivity and electrical properties of La_{1-x}Sr_xMnO₃ nanopowders, J. Rare Earths 24 (2009) 651–654.

[156] URL: https://www.mksinst.com/n/electrical-conduction-semiconductors (pristup 9.8.2022.)

[157] E. Ekström, A. le Febvrier, D. Fournier, J. Lu, V.L. Ene, N. Van Nong, F. Eriksson, P. Eklund, B. Paul, Formation mechanism and thermoelectric properties of CaMnO₃ thin films synthesized by annealing of Ca_{0.5}Mn_{0.5}O films, J. Mater. Sci. 54 (2019) 8482–8491.

[158] Q. Zhou, B. J. Kennedy, Thermal expansion and structure of orthorombic CaMnO₃, J. Phys. Chem. Solids 67 (2006) 1595–1598.

[159] D. S. Alfaruq, E. H. Otal, M. H. Aguirre, S. Populoh, A. Weidenkaff, Thermoelectric properties of CaMnO₃ films obtained by soft chemistry synthesis, J. Mater. Res. 27 (2012) 985–990.

[160] B. Zahn, J. Lan, Y. Liu, Y. Lin, Y. Shen, C. Nan, High temperature thermoelectric properties of Dy-doped CaMnO₃ ceramics, J. Mater. Sci. Technol. 30 (2014) 821–825.

[161] H. Kozuka, K. Ohbayashi, K. Koumoto, Electronic conduction in La-based perovskite-type oxides, Sci. Technol. Adv. Mater. 16 (2015) 026001.

[162] K. Hayat, M. Nadeem, M. J. Iqbal, M. A. Rafiq, M. M. Hasan, Analysis of electro-active regions and conductivity of BaMnO₃ ceramic by impedance spectroscopy, Appl. Phys. A 115 (2014) 1281–1289.

[163] K. Hayat, S. Ali, A. Rahman, S. Khan, S. K. Shan, Y. Iqbal, Effect of B-site dopants on the electrical properties of $BaMn_{1-x}A_xO_3$ ceramics via low temperature impedance spectroscopy, Mater. Res. Express 5 (2018) 086304.

[164] E. Markiewicz, R. Bujakiewicz-Koronska, A. Budziak, A. Kalvane, D. M. Nalecz, Impedance spectroscopy studies of SrMnO₃, BaMnO₃ and Ba_{0.5}Sr_{0.5}MnO₃ ceramics, Ph. Transit. 87 (2014) 1060–1072.

[165] N. Li, K.L. Yao, Z. Y. Sun, L. Zhu, G.Y. Gao, The half-metallic properties and geometrical structures of cubic BaMnO₃ and BaTiO₃/BaMnO₃ superlattice, J. Appl. Phys. 109 (2011) 083715.

[166] B. Issa, I. M. Obaidat, B. A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications, Int. J. Mol. Sci. 14 (2013) 21266–21305.

[167] G. Bayreuther, F. Bensch, V. Kottler, Quantum oscillations of properties in magnetic multilayers, J. Appl. Phys. 79 (1996) 4509–4514.

[168] L. V. Khoa Bao, G. Z. Tang, X. X. Ma, Effect of Sr-doping concentration on structure and phase-separation between ferromagnetic and paramagnetic phases in lanthanum manganite oxide, Adv. Mat. Res. 624 (2012) 127–133.

[169] S. Sankarrajan, K. Sakthipandi, P. Manivasakan, K. Thyagarjan, V. Rajendran, On-line phase transition in $La_{1-x}Sr_xMnO_3$ ($0.28 \le x \le 0.36$) perovskites through ultrasonic studies, Phase Transit. 84 (2011) 657–672.

[170] Y. Li, H. Zhang, X. Liu, Q. Chen, Q. Chen, Electrical and magnetic properties of $La_{1-x}Sr_xMnO_3$ ($0.1 \le x \le 0.25$) ceramics prepared by sol–gel technique, Ceram. Int. 45 (2019) 16323–16330.

[171] S. Kumari, N. Mottaghi, C.-Y. Huang, R. Trappen, G. Bhandari, S. Yousefi, G. Cabrera, M. S. Seehra, M. B. Holcomb, Effects of oxygen modification on the structural and magnetic properties of highly epitaxial La_{0.7}Sr_{0.3}MnO₃ (LSMO) thin films, Sci. Rep. 10 (2020) 3659.

[172] J. J. M. Franse, F. E. Kayzel, N. P. Thuy, Exchange and anisotropy in 3d-4f compounds,J. Magn. Magn. Mater. 129 (1994) 26–38.

[173] B. Arayedh, S. Kallel, N. Kallel, O. Peña, Influence of non-magnetic and magnetic ions on the magnetocaloric properties of $La_{0.7}Sr_{0.3}Mn_{0.9}M_{0.1}O_3$ doped in the Mn sites by M = Cr, Sn, Ti, J. Magn. Mater. 361 (2014) 68–73.

[174] J. Sannigrahi, S. Giri, S. Majumdar, Observation of weak ferromagnetism and the sizable magnetocaloric effect in $Co_2V_2O_7$, J. Phys. Chem. Solids 101 (2017) 1–4.

[175] X. Bohigas, J. Tejada, E. del Barco, X. X. Zhang, M. Sales, Tunable magnetocaloric effect in ceramic perovskites, Appl. Phys. Lett. 73 (1998) 390–392.

[176] Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, D. Feng, Large magnetic entropy change in perovskite-type manganese oxides, Phys. Rev. Lett. 78 (1997) 1142–1145.

[177] A. Alahmer, M. Al-Amayreh, A. O. Mostafa, M. Al-Dabbas, H. Rezk, Magnetic refrigeration design technologies: state of the art and general perspectives, Energies 14 (2021) 4662.

[178] K. A. Gschneider Jr, V. K. Pecharsky, A. O. Tsokol, Recent developments in magnetocaloric materials, Rep. Prog. Phys. 68 (2005) 1479–1539.

[179] K. P. Shinde, S. S. Pawar, N. G. Deshpande, J. M. Kim, Y. P. Lee, S. H. Pawar, Magnetocaloric effect in LSMO synthesized by combustion route, Mater. Chem. Phys. 129 (2011) 180–182.

[180] M. H. Ehsani, P. Kameli, M. E. Ghazi, F. S. Razavi, M. Taheri, Tunable magnetic and magnetocaloric properties of La_{0.6}Sr_{0.4}MnO₃ nanoparticles, J. Appl. Phys. 114 (2013) 223907.

[181] T. D. Thanh, L. V. Bau, T. L. Phan, S. C. Yu, Room temperature magnetocaloric effect in La_{0.7}Sr_{0.3}Mn_{1-x}Co_xO₃, IEEE Trans. Magn. 50 (2014) 2278869.

[182] A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, J. M. D. Coey, Magnetocaloric effect in La_{0.67}Sr_{0.33}MnO₃ manganite above room temperature, J. Magn. Magn. Mater. 323 (2011) 2214–2218.

[183] J. K. Galivarapu, A. Jose, E. P. Jinu, T. T. Saravanan, E. S. Kumar, M. Navaneethan, H. Sreemoolanadhan, K. K. Bharathi, Observation of Griffiths phase, critical exponent analysis and high magnetocaloric effect near room temperature at low magnetic field in V-doped La_{0.7}Sr_{0.3}MnO₃, J. Phys. D: Appl. Phys. 55 (2022) 215001.

[184] C. R. H. Bahl, D. Velázquez, K. K. Nielsen, K. Engelbrecht, K. B. Andersen, R. Bulatova, N. Pryds, High performance magnetocaloric perovskites for magnetic refrigeration, Appl. Phys. Lett. 100 (2012) 121905.

[185] A. Trokiner, S. Verkhovskii, A. Yakubovskii, A. Gerashenko, P. Monod, K. Kumagai, K. Mikhalev, A. Buzlukov, Z. Litvinova, O. Gorbenko, A. Kaul, M. Kartavtzeva, Magnetic polarons in antiferromagnetic CaMnO_{3-x} (x < 0.01) probed by ¹⁷O NMR, Phys. Rev. B 79 (2009) 214414.

[186] C. Chiorescu, J. J. Neumeier, J. L. Cohn, Magnetic inhomogeneity and magnetotransport in electron-doped Ca_{1-x}La_xMnO₃ ($0 \le x \le 0.10$), Phys. Rev. B 73 (2006) 014406.

[187] A. Quiroz, E. Chavira, J. E. Espinosa, R. Palomino-Merino, E. E. Marinero, M. Nishioka, V. García-Vázquez, Study of the $(Ca_{1-x}Sr_x)RuO_3$ system with nano-crystals prepared by the solid-state reaction method, Mater. Sci. Appl. 6 (2015) 16–22.

[188] B. D. White, J. A. Souza, C. Chiorescu, J. J. Neumeier, J. L. Cohn, Magnetic, transport, and thermodynamic properties of CaMn₂O₄ single crystals, Phys. Rev. B 79 (2009) 104427.

[189] P. D. Battle, T. C. Gibb, C. W. Jones, The structural and magnetic properties of SrMnO₃: A reinvestigation, J. Solid State Chem. 74 (1988) 60–66.

[190] S. Kumail Abbas, M. Adnan Aslam, M. Amir, S. Atiq, Z. Ahmed, S. A. Siddiqi, S. Naseem, Electrical impedance functionality and spin orientation transformation of nanostructured Sr-substituted BaMnO₃ hexagonal perovskites, J. Alloys Compd. 712 (2017) 720–731.

[191] F. Duprat, Light-off curve of catalytic reaction and kinetics, Chem. Eng. Sci. 57 (2002) 901–911.

[192] Y. Tian, W. Liu, Y. Lu, Molten salt synthesis of strontium-doped lanthanum manganite nanoparticles with enhanced catalytic performance for toluene combustion, Nano 11 (2016) 1650059.

[193] E. G. Vrieland, The activity and selectivity of Mn^{3+} and Mn^{4+} in lanthanum calcium manganites for the oxidation of ammonia, J. Catal. 32 (1974) 415–428.

[194] A. Khan, P. G. Smirniotis, Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction, J. Mol. Catal. A Chem. 280 (2008) 43–51.

[195] B. Jiang, B. Deng, Z. Zhang, Z. Wu, X. Tang, S. Yao, H. Lu, Effect of Zr addition on the low-temperature SCR activity and SO₂ tolerance of Fe–Mn/Ti catalysts, J. Phys. Chem. C 118 (2014) 14866–14875.

[196] J. R. Tsybukh, A comparative study of platinum nanodeposits on HOPG (0001), MnO(100) and MnO_x/MnO(100) surfaces by STM and AFM after heat treatment in UHV, O_2 , CO and H_2 , Doktorski rad, Leiden University, Leiden, 2010.

[197] R. Spinicci, A. Delmastro, S. Ronchetti, A. Tofanari, Catalytic behaviour of stoichiometric and non-stoichiometric LaMnO₃ perovskite towards methane combustion, Mater. Chem. Phys. 78 (2003) 393–399.

[198] R. Z. Yarbay Şahin, M. Duplančić, V. Tomašić, J. H. Badia i Córcoles, S. Kurajica, Essential role of B metal species in perovskite type catalyst structure and activity on toluene oxidation, Int. J. Environ. Sci. Technol. 19 (2022) 553–564.

[199] A. Mishra, N. Galinsky, F. He, E. E. Santiso, F. Li, Perovskite-structured $AMn_xB_{1-x}O_3$ (A = Ca or Ba; B = Fe or Ni) redox catalysts for partial oxidation of methane, Catal. Sci. Technol. 6 (2016) 4535–4544.

7. PRILOZI

Prilog 1

Slika P1. Derivirane krivulje termogravimetrijske analize (TGA) čistih CaMnO₃, SrMnO₃, LaMnO₃ i BaMnO₃ uzoraka pripremljenih (a) limunskim i (b) koprecipitacijskim postupkom sinteze.

Slika P2. Frekvencijske ovisnosti električne provodnosti LSMO-uzoraka pripremljenih limunskim (oznake LL) i koprecipitacijskim (oznake LC) postupkom sinteze.

Slika P3. Frekvencijske ovisnosti električne provodnosti CSMO-uzoraka pripremljenih limunskim (oznake CL) i koprecipitacijskim (oznake CC) postupkom sinteze.

Slika P4. Frekvencijske ovisnosti električne provodnosti BSMO-uzoraka pripremljenih limunskim (oznake BL) i koprecipitacijskim (oznake BC) postupkom sinteze.

Prilog 3

Slika P5. Derivirane magnetizacijske krivulje (dM/dT) u ovisnosti o temperaturi za LSMO-uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Minimumi krivulja predstavljaju Curiejeve temperature (T_C) LSMO-uzoraka brojčano prikazane u Tablici 12.

Slika P6. Derivirane magnetizacijske krivulje (dM/dT) u ovisnosti o temperaturi za CSMO-uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Minimumi krivulja predstavljaju Néelove temperature (T_N) CSMO-uzoraka brojčano prikazane u Tablici 15.

Slika P7. Derivirane magnetizacijske krivulje (dM/dT) u ovisnosti o temperaturi za BSMO-uzorke pripremljene (a) limunskim i (b) koprecipitacijskim postupkom sinteze. Minimumi krivulja predstavljaju Néelove temperature (T_N) BSMO-uzoraka brojčano prikazane u Tablici 16.

8. POPIS KRATICA I OZNAKA

Kratice:

AFM	mikroskopija atomskih sila (engl. atomic force microscopy)
AOS	prosječno oksidacijsko stanje (engl. average oxidation state)
ATR	totalna prigušena refleksija (engl. attenuated total reflectance)
BC	barijev manganit pripremljen koprecipitacijskim postupkom
BET	Brunauer-Emmett-Tellerov model
BJH	Barret-Joyner-Halendin model
BL	barijev manganit pripremljen limunskim postupkom
BSMO	Sr-dopirani barijev manganit
BTEX	smjesa benzena, toluena, etilbenzena i o-ksilena (engl. benzene-toluene-
	ethylbenzene-xylene)
C-AFM	mikroskopija atomskih sila s mjerenjem struje (engl. conductive atomic force
	microscopy)
CC	kalcijev manganit pripremljen koprecipitacijskim postupkom
CIF	datoteka s kristalografskim informacijama (engl. cystallographic information
	file)
CL	kalcijev manganit pripremljen limunskim postupkom
CMR	kolosalni magnetootpor (engl. colossal magnetoresistance)
COD	otvorena baza kristalografskih podataka (engl. crystallography open database)
CSMO	Sr-dopirani kalcijev manganit
DC	istosmjerna struja (engl. direct current)
DFT	teorija funkcionala gustoće (engl. density functional theory)
DSC	diferencijalna pretražna kalorimetrija (engl. differential scanning calorimetry)
EDTA	etilendiamintetraoctena kiselina
EDXS	energijski razlučujuća rendgenska spektroskopija (engl. energy dispersive X-ray
	spectroscopy)

FC	način mjerenja magnetizacije u ovisnosti o temperaturi u kojem se uzorak na
	početnu temperaturu hladi uz primjenu magnetskog polja (engl. field-cooled)
FID	plameno-ionizacijski detektor (engl. flame-ionisation detector)
FTIR	infracrvena spektroskopija s Fourierovom transformacijom (engl. Fourier-
	transform infrared spectroscopy)
GC	plinska kromatografija (engl. gas chromatography)
ICDD	Međunarodni centar za difrakcijske podatke (engl. International Centre for
	Diffraction Data)
IR	infracrveno (engl. infrared)
IS	impedancijska spektroskopija (engl. impedance spectroscopy)
LC	lantanov manganit pripremljen koprecipitacijskim postupkom
LL	lantanov manganit pripremljen limunskim postupkom
LSMO	Sr-dopirani lantanov manganit
MFC	maseni regulator protoka (engl. mass flow controller)
SEM	pretražna elektronska mikroskopija (engl. scanning electron microscopy)
SOFC	gorivne ćelije s čvrstim oksidom kao elektrolitom (engl. solid oxide fuel cells)
SQUID	supravodljivi kvantni interferometar (engl. superconducting quantum
	interferometer device)
STM	pretražna tunelirajuća mikroskopija (engl. scanning tunneling microscopy)
TEM	transmisijska elektronska mikroskopija (engl. transmission electron microscopy)
TGA	termogravimetrijska analiza (engl. thermogravimetric analysis)
VOC	hlapljivi organski spojevi (engl. volatile organic compounds)
VSM	magnetometar s vibrirajućim uzorkom (engl. vibrating sample magnetometer)
XRD	rendgenska difrakcijska analiza (engl. X-ray diffraction analysis)
YSZ	itrijem stabilizirani cirkonijev oksid (engl. yttria-stabilized zirconia)
ZFC	način mjerenja magnetizacije u ovisnosti o temperaturi u kojem se uzorak na
	početnu temperaturu hladi bez primjene magnetskog polja (engl. zero-field-
	cooled)

Oznake:

a, b, c	parametri kristalne rešetke, Å
<i>a</i> , <i>b</i>	faktori goriva i oksidansa
CA	koncentracija modelne komponente A, mol dm ⁻³
D	prosječna veličina kristalita, nm
$d_{ m p}$	prosječni promjer pora, nm
$E_{\rm DC}$	energija aktivacije za istosmjernu provodnost, eV
G_0	promjena Gibbsove slobodne energije, J
Н	magnetsko polje, T
H _c	koercitivno polje, Oe
Ι	rezultantna struja, A
Ι	intenzitet difraktiranog rendgenskog zračenja, cps (counts per second)
I _{JC}	kritična struja, A
Is	rezultantna struja kod SQUID-magnetometra, A
k _B	Boltzmannova konstanta, 1,38×10 ⁻²³ J K ⁻¹
KD	konstanta raspodjele
М	masena magnetizacija, emu g^{-1}
М	molna masa, g mol ⁻¹
$M_{ m r}$	zaostala (remanentna) magnetizacija, emu g ⁻¹
n	valencija mangana
n_1	ukupna množina Mohrove soli, mol
n_2	množina Mohrove soli koja je izreagirala s kalijevim permanganatom, mol
<i>n</i> ₃	ukupna množina odvaganog manganita, mol
Ν	broj stupnjeva slobode kod Rietveldova utočnjavanja
r	ionski radijus, m
R	opća plinska konstanta, 8,314 J mol^{-1} K $^{-1}$
Rexp	očekivani <i>R</i> -faktor u Rietveldovoj metodi utočnjavanja
$R_{ m wp}$	težinska vrijednost slaganja profila u Rietveldovoj metodi utočnjavanja
$S_{ m A}$	specifična površina, m $^2 g^{-1}$
SM	specifična magnetska entropija, J kg ⁻¹ K ⁻¹

t	Goldschmidtov faktor tolerancije
Т	termodinamička temperatura, K
<i>T</i> ₁₀ , <i>T</i> ₅₀ , <i>T</i> ₉₀	temperature pri kojima se postiže 10, 50 i 90 % konverzije, °C
t _R	vrijeme zadržavanja, s
$T_{\rm B}$	temperatura ukočivanja, K
T _C	Curiejeva temperatura, K
$T_{\rm N}$	Neélova temperatura, K
U	pobudni napon, V
V	volumen jedinične ćelije, Å ³
w	maseni udio, %
Wi	težinski faktor
x	udio dopiranja stroncijem
$X_{ m A}$	konverzija modelne komponente A, %
УС,i	izračunati intenzitet na vrijednosti difrakcijskog kuta $2\theta_i$
YO,i	eksperimentalno određeni intenzitet na vrijednosti difrakcijskog kuta $2\theta_i$
Ζ	električna impedancija, Ω
$\delta_{ m calc}$	nestehiometrija kisika izračunata Rietveldovom metodom utočnjavanja
$\delta_{ m exp}$	nestehiometrija kisika određena eksperimentalno metodom permanganatne
	titracije
θ	difrakcijski kut, °
λ	valna duljina, m
v	frekvencija, Hz
v	valni broj, cm ⁻¹
σ	standardna nesigurnost
σ	izmjenična provodnost, (Ω cm) ⁻¹
σ_0	Arrheniusov faktor za energiju aktivacije istosmjerne provodnosti, (Ω cm) ⁻¹
$\sigma_{ m DC}$	istosmjerna provodnost, (Ω cm) ⁻¹
Φ	tok magnetskog polja, T m ²
$arPhi_0$	elementarni tok magnetskog polja, 2,07·10 ⁻¹⁵ T m ²
$arPsi_e$	omjer goriva i oksidansa u limunskom postupku sinteze

 χ^2 pokazatelj slaganja eksperimentalnih podataka i modela u Rietveldovoj metodi utočnjavanja ω kutna frekvencija, s⁻¹

ŽIVOTOPIS

Andreja Žužić Osnovnoškolsko obrazovanje završila je 2008., a srednjoškolsko 2012. kada upisuje prijediplomski studij Kemijsko inženjerstvo na Fakultetu kemijskog inženjerstva i tehnologije u Zagrebu. Završni rad pod naslovom "Apsorpcijski rashladni uređaji s primjenom LiBr i H₂O kao radne tvari" obranila je 2015. i stekla akademski naziv sveučilišne prvostupnice kemijskog inženjerstva, univ. bacc. ing. cheming. Godine 2015. nagrađena je Dekanovom nagradom za najbolju studenticu prijediplomskog studija te iste godine upisuje diplomski studij Kemijsko inženjerstvo. Interes za znanstvena istraživanja pokazuje rano te sklopu projekta ADRIACOLD izrađuje diplomski rad "Modeliranje apsorpcijskog rashladnog procesa pokretanog solarnom energijom" kojeg je obranila 2017. i stekla akademski naziv magistre inženjerske kemijskog inženjerstva, mag. ing. cheming. Iste godine nagrađena je s trima prestižnim nagradama: Rektorovom nagradom za rad "Analiza i optimiranje rada postrojenja", nagradom Vjera Marjanović Krajovan za najuspješniju studenticu diplomskog studija u generaciji 2016./17. i nagradom "Hrvoje Požar" za posebno zapažen diplomski rad na području energetike. Nakon toga bila je zaposlena u tvrtkama Ireks Aroma d.o.o. i Pliva Hrvatska d.o.o., a u siječnju 2020. zapošljava se na Fakultetu kemijskog inženjerstva i tehnologije kao asistentica i upisuje doktorski studij. Godine 2021. od časopisa Open Ceramics dobila je priznanje "2021 Excellent Reviewer Award". U radu Fakulteta aktivno sudjeluje kao predstavnik suradničkih radnih mjesta u Fakultetskom vijeću, a također je doprinijela unaprjeđenju vježbi iz kolegija Fizikalna kemija I te vježbi i seminara iz kolegija Kompozitni materijali. Godine 2023. izabrana je za organizacijsku tajnicu XV. susreta mladih kemijskih inženjera.

Znanstveni radovi u časopisima:

- A. Žužić, F. Car, J. Macan, V. Tomašić, A. Gajović, Sr-doped calcium and barium manganites as catalysts in heterogeneous oxidation of volatile organic compounds, Catal. Commun. 178 (2023) 106677 (8 str.)
- A. Ressler, R. Ohlsbom, A. Žužić, A. Gebraad, E. J. Frankberg, T.-K. Pakarinen, H. Ivanković, S. Miettinen, M. Ivanković, Chitosan/collagen/Mg, Se, Sr, Zn-substituted calcium phosphate scaffolds for bone tissue engineering applications: A growth factor free approach, Eur. Poly. J. 194 (2023) 112129 (14 str.)

- A. Žužić, D. Gracin, M. Zubak, J. Macan, K. Salamon, K. Juraić, N. Krstulović, R. Radičić, I. Lukačević, M. Mužević, A. Gajović, The optical properties of strontium manganite thin films prepared by novel phototreatment technique, J. Alloys Compd. 951 (2023) 169972 (8 str.)
- M. Mužević, I. Lukačević, I. Kovač, D. Gracin, A. Žužić, J. Macan, M. Varga Pajtler, Potential of AMnO₃ (A = Ca, Sr, Ba, La) as active layer in inorganic perovskite solar cells, ChemPhysChem 9 (2023) 202200837 (9 str.)
- 5. A. Žužić, J. Macan, Adsorption of dye from aqueous solution using Sr- doped lanthanum, calcium and barium manganites, Bull. Mater. Sci. 46 (2023) 107 (15 str.)
- A. Žužić, L. Pavić, A. Bafti, S. Marijan, J. Macan, A. Gajović, The role of the A-site cation and crystal structure on the electrical conductivity of strontium-doped calcium and barium manganites, J. Alloys Compd. 935 (2023) 167949 (11 str.)
- A. Žužić, A. Ressler, J. Macan, Evaluation of carbonate precursors in manganite coprecipitation synthesis by Fourier transform infrared (FTIR) spectroscopy, Solid State Commun. 341 (2022) 114594 (9 str.)
- A. Žužić, A. Ressler, A. Šantić, J. Macan, A. Gajović, The effect of synthesis method on oxygen nonstoichiometry and electrical conductivity of Sr-doped lanthanum manganites, J. Alloys Compd. 907 (2022) 164456 (10 str.)
- 9. **A. Žužić**, J. Macan, Razdvajanje faza u sustavu La_{0,5}Sr_{0,5}MnO₃, Kemija u industriji: časopis kemičara i tehnologa Hrvatske 71 (2022) 685–689.
- A. Žužić, F. Car, J. Macan, V. Tomašić, A. Gajović, Simultaneous oxidation of aromatic compounds using Sr-doped lanthanum manganites as catalysts, Int. J. Appl. Ceram. 19 (2022) 2891–2904.
- A. Žužić, J. Macan, Permanganometric determination of oxygen nonstoichiometry in manganites, Open Ceram. 5 (2021) 100063 (15 str.)
- A. Žužić, V. Filipan, Absorption cooling devices with LiBr/H₂O as working media, Chem. Eng. Trans. 52 (2016) 61–66.

Pregledni radovi:

- A. Žužić, A. Ressler, J. Macan, Perovskite oxides as active materials in novel alternatives to well-known technologies: A review, Ceram. Int. 48 (2022) 27240–27261.
- 14. A. Ressler, I. Ivanišević, **A. Žužić**, N. Somers, The ionic substituted octacalcium phosphate for biomedical applications: A new pathway to follow?, Ceram. Int. 48 (2022) 8838–8851.
- A. Žužić, V. Filipan, I. Sutlović, J. Macan, Perovskite oxides for energy applications, Tehnički vjesnik: znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 29 (2022) 1419–1425.
- 16. A. Ressler, A. Žužić, I. Ivanišević, N. Kamboj, H. Ivanković, Ionic substituted hydroxyapatite for bone regeneration applications: A review, Open. Ceram. 6 (2021) 100122 (16 str.)