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SUMMARY 

 

The choice of the chelating fragment of bifunctional ligand depends on the nature and 

oxidation state of the radiometal. There are numerous examples in the literature, which show 

that the nature of a bifunctional metal complex such as geometry, lipophilicity, overall charge 

plays a crucial role in determining the biodistribution of targeted radiopharmaceuticals. 

Furthermore, in designing of novel radiopharmaceuticals energy of the radionuclide should be 

taken into account. 

Cyclen and cyclam based macrocycles are known to form kinetically inert and 

thermodynamically stable complexes with a wide range of metal ions. Several classes of 

structurally different phosphonate ligands labeled with β
 
emitting radionuclides such as   

166
Ho-DOTMP complex are being used clinically for the treatment of painful bone metastases.  

The choice of used cyclic chelating agents is also based on the more pronounced 

thermodynamic stability and kinetic inertness of their lanthanide complexes when compared 

to that of their acyclic analog. The physical, magnetic and nuclear properties of the lanthanide 

ions have made them ideal for use in both diagnostic and therapeutic radiopharmaceuticals. 

The aim of this work was to prepare bifunctional ligands based on cyclen and cyclam 

structures, test their labelling conditions with europium as a model radionuclide, in order to 

develop potential new radiopharmaceuticals. 

Through this aim, cyclen and selected tetraphosphonate derivative of cyclam (TETP) 

were synthesized. Obtained data show that all used ligands, DOTA, TETP, NOTA and    

TRAP-Pr, form complexes with Eu(III) at 95 ºC and in the pH range from 2 to 6. They also 

show excellent kinetic stability at pH 4. 

 

 

 

 

Key words: radiopharmaceuticals, chelating agents, DOTA, TETP, europium 
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SAŽETAK RADA 

 

Izbor kelatnog fragmenta bifunkcionalnog liganda ovisi o prirodi te oksidacijskom stanju 

radiometala. Postoje brojni primjeri u literaturi, koji pokazuju da priroda bifunkicionalnog 

metalnog kompleksa kao što je geometrija, lipofilnost, ukupni naboj, ima ključnu ulogu u 

određivanju biodistribucije ciljanih radiofarmaceutika. Nadalje, u razvoju  novih 

radiofarmaceutika također se treba uzeti u obzir i energija radionuklida. 

Poznato je da makrociklički spojevi temeljeni na strukturi ciklena i ciklama tvore 

kinetički inertne i termodinamički stabilne komplekse sa širokim rasponom metalnih iona. 

Nekoliko klasa strukturno različitih fosfonatnih liganada obilježenih s β-emitirajućim 

radionuklidima kao što je 
166

Ho-DOTMP kompleks se koriste klinički za liječenje bolnih 

koštanih metastaza. 

Izbor korištenih cikličkih kelatnih agensa se također temelji na naglašenoj 

termodinamičkoj stabilnosti i kinetičkoj inertnosti njihovih kompleksa s lantanidima u odnosu 

na koje njihove acikličke analoge. Fizikalna i magnetska svojstva iona lantanida čine ih 

idealnim za primjenu u dijagnostičke i terapijske svrhe radiofarmaceutika. 

Cilj ovog rada bio je pripraviti bifunkcionalne ligande temeljene na strukturi ciklena i 

ciklama, testirati njihove uvjete obilježavanja s europijem kao modelnim radionuklidom, u 

cilju razvoja novih potencijalnih radiofarmaceutika. 

Imajući to na umu, ciklen i odabrani tetrafosfonatni derivat ciklama (TETP) su 

pripravljeni. Dobiveni podaci pokazuju da svi korišteni ligandi, DOTA, TETP, NOTA i 

TRAP-Pr, tvore komplekse s Eu(III) pri 95 °C u rasponu pH vrijednosti od 2 do 6, te također 

pokazuju odličnu kinetičku stabilnost pri pH 4. 

 

 

 

 

Ključne riječi: radiofarmaceutici, kelatni agensi, DOTA, TETP, europij 
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ABBREVIATIONS 

 

BFC    bifunctional chelating agents 

PET   positron emission tomography 

SPECT   single photon emission computed tomography 

MIRD   medical internal radiation dosimetry  

LET    linear energy transfer  

MRI    magnetic resonance imaging 

CT   computed tomography  

NMR    nuclear magnetic resonance 

Cyclen   1,4,7,10-tetraazacyclododecane 

Cyclam  1,4,8,11-tetraazacyclotetradecane  

DOTA   1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 

DOTP  1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylphosphonic 

acid) 

H2DO2A 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid 

H4DO2P 1,4,7,10-tetraazacyclododecane-1,7-bis(methylphosphonic acid) 

TETA 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid 

TETP  1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrakis(methylphosphonic 

                                    acid) 

NODASA  1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid 

NODAGA  1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid 

H4TE2P  1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) 

Tacn   1,4,7-triazacyclononane 

NOTA  1,4,7-triazacyclononane-1,4,7-triacetic acid 

TRAP-Pr l,4,7-triazacyclononane-l,4,7-tris[methyl(2-carboxyethyl)phosphinic                                      

acid 

DTPA   diethylenetriaminepentaacetic acid 
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TLC   thin layer chromatography 

CAs   chelating agents  

UV  ultraviolet light 

ESI-MS  electro spray ionization mass spectroscopy  

FT-IR  Fourier transform infrared spectroscopy 
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Cancer is a generic term for a large group of diseases that can affect any part of the body. 

Other terms used are malignant tumors and neoplasms. One defining feature of cancer is the 

rapid creation of abnormal cells that grow beyond their usual boundaries, and which can then 

invade adjoining parts of the body and spread to other organs, the latter process is referred to 

as metastasizing. Cancer is a leading cause of death worldwide and accounted for 8,2 million 

deaths in 2012. Metastases are the major cause of death from cancer [1]. 

Nuclear medicine is a medical modality that is used to diagnose and treat diseases in a 

safe and painless way. Nuclear medicine procedures permit the determination of medical 

information that may otherwise be unavailable, require surgery or expensive and invasive 

diagnostic tests. The procedures often identify abnormalities very early in the progression of 

the disease – long before medical problems are apparent with other diagnostic tests. This early 

detection allows a disease to be treated sooner in its course, when a more successful prognosis 

may be possible [2]. 

The history of radionuclide therapy can be traced back to the early 1900s, after the 

discovery of radioactivity by Henri Becquerel and Marie Curie. In 1903, Alexander Graham 

Bell suggested placing sources containing radium in or near tumors, and in 1913, Frederick 

Proescher published the first study on the intravenous injection of radium for therapy of 

various types of diseases. In the last twenty years, radionuclide therapy has been widely used 

in various clinical malignant and pain management applications. Radionuclide therapy has the 

advantage of delivering a highly concentrated absorbed dose to the targeted tumor while 

sparing the surrounding normal tissues. In addition, the selective ability of radionuclide 

therapy is advantageous in the treatment of systemic malignancy, such as in bone metastases 

where whole body irradiation using external beam radiotherapy is impossible. Since the 

administration of radionuclides is minimally invasive and the duration of treatment is shorter 

than chemotherapy, targeted radionuclide therapy has become one of the most preferred types 

of cancer therapy [3]. 
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2.1.  Radiopharmaceuticals  

 

The use of specific radiotracers called radiopharmaceuticals for diagnosis or therapy of 

diseases is a unique capability of nuclear medicine. Radiopharmaceuticals are drugs 

containing a radionuclide. They are mostly small organic or inorganic compounds with 

definite composition. Radiopharmaceuticals can also be macromolecules such as monoclonal 

antibodies and antibody fragments that are not stoichiometrically labeled with a radionuclide. 

Depending on their medical applications there are two primary classes: diagnostic and 

therapeutic radiopharmaceuticals.  

Receptor-based radiopharmaceuticals are of great interest in molecular imaging and 

radiotherapy of cancers, and provide a unique tool for specific delivery of radionuclides to the 

targeted tissues. In general, a target-specific radiopharmaceutical can be divided into four 

parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional 

coupling or chelating agent (BFC), and radionuclide.  

Almost all radiopharmaceuticals are administered via intravenous injection [4].   

 

 

 

Figure 1. Targeting individual receptors with specific radiopharmaceuticals 
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2.2.  Radionuclides 

 

A radionuclide is a source of radiation [4]. Nature has provided a vast array of radionuclides 

with emission properties that make them valuable reagents for investigating basic problems in 

chemistry, biology, and medicine. These properties include α, β, γ, and Auger emissions 

which are useful for medical diagnostic (γ–scintigraphy, SPECT, PET) and therapeutic 

applications [5]. 

Both physical and biochemical characteristics are important for a therapeutic 

radionuclide. The considerations for physical characteristics include the physical half-life, 

type of emissions, energy of the radiation(s), daughter product(s), method of production, and 

radionuclide purity. The biochemical characteristics include tissue targeting, retention of 

radioactivity in the tumor, in vivo stability, and toxicity. The most important factor to be 

considered when choosing a therapeutical radionuclide is the effective half-life, which is the 

net half-life considering both physical half-life (Tp) and biological half-life (Tb) within the 

patient’s body or organs. The determination of effective half-life (Te) is explained in the 

medical internal radiation dosimetry (MIRD) calculation method, which is summarized as: 

 

                                                   Te =  
     

(       )
                       (1) 

 

A suitable range of the physical half-life for therapeutic radionuclides is between 6 h and 7 d. 

A very short physical half-life limits the delivery flexibility and is very impractical, while a 

long half-life will retain the radiation dose and expose the patient for a longer period. On the 

other hand, the biological half-life depends on the used tracer. In addition, the tracer should 

have sufficient retention so that radiation can be delivered to the tumor efficiently. If the 

biological half-life is too short, the radionuclide will be discharged with a significantly high 

activity, resulting in the need for extensive radioactive waste management. Therefore, for an 

efficient radiation delivery, a balanced optimal biological and physical half-life should be 

chosen, which results in an optimal effective half-life.  

For therapeutic purposes, radiations with high linear energy transfer (LET), such as α 

and β particles, are preferred. These types allow very high ionization per range. Some            

β-emitting radionuclides decay with γ-radiation. This associated γ-radiation could be 

advantageous if the energy and intensity are within the diagnostic range, as it provides the 

ability to visualize distribution of the radiopharmaceutical within the patient’s body using 

gamma scintigraphy methods. Depending on the type of tumor, the energy and intensity of the  
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emitted radiation should be chosen so that the energy and intensity of non-penetrating 

radiation (i.e., α and β particles) are high enough compared with the penetrating radiation 

(i.e., γ radiation, X-rays, or Auger electrons), if present. The other factor to be considered is 

the daughter product of the radionuclide. If the daughter nuclide is not stable, it may 

contribute to the total amount of absorbed dose. An ideal radiopharmaceutical should be able 

to decay into a stable daughter product, such as 
153

Sm, which fully decays into stable 
153

Eu.  

Table 1 shows a summary of physical characteristics of the commonly available therapeutic 

radionuclides [3]. 

   Table 1. Physical characteristics of commonly available therapeutic radionuclides 

Radio-

nuclide 

Physical 

half-life 

Decay 

mode 

Max Eβ- (keV)  

[% intensity] 

β
- 
range in soft 

tissue (mm) 

min            max 

Daughter 

nuclide 
Clinical indication 

32
P 14,26 d β 1710 2,6 7,9 

32
S 

Polycythemia vera, 

cystic 

craniopharyngioma 

89
Sr 50,53 d β 1496 [100,0] 2,4 8,0 

89
Y Painful bone metastasis 

90
Y 64,10 h β 2280,1 [100,0] 3,6 11,0 

90
Zr 

Hepatic metastasis, 

PVNS, RIT for NHL 

117m
Sn 13,60 d IT 130

*
,150

* 
0,22 0,27 

117
Sn Bone tumor treatment 

131
I 8,02 d β 606 [89,3] 0,4 2,4 

131
Xe 

Hyperthyroidism, 

thyroid cancer, RIT for 

NHL and 

neuroblastoma 

153
Sm 46,50 h β 808,2 [100,0] 0,7 3,1 

153
Eu 

Painful bone 

metastasis, 

synovitis 

169
Er 9,40 d β 350 0,3 1,0 

169
Tm Synovitis 

177
Lu 6,73 d β 497,8 [100.0] 0,28 1,7 

177
Hf 

Synovitis, RIT for 

various cancer 

treatments 

186
Re 3,72 d EC, β 1069,5 [92,5] 1,2 3,6 

86
Os 

(unstable) 

186V Painful bone 

metastasis, painful 

arthritis 

223
Ra 11,44 d α 5979,2

α 
 <10µ

α
 

219
Rn 

(unstable) 

Palliative treatment of 

bone metastasis 

 

The use of these metallic radionuclides has necessitated the development of metal chelating 

agents to effectively provide a handle over their behavior. These chelating agents have been 

termed “bifunctional chelating agents” since they have a metal binding moiety function and a 

chemically reactive functional group. 
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There are a number of fundamental criteria that have to be taken into account in the design of 

bifunctional chelating agents for such applications, for example stability of the metal 

complex. Clearly, the consequences of loss or dissociation of the radionuclide are associated 

with toxicity in the case of therapeutics and poor image qualities for diagnostics. Fundamental 

coordination chemistry criteria such as: charge, matching cavity size of the chelating agent 

with the ionic radius of the radionuclide, providing the appropriate chelate denticity or 

number of donor binding groups and providing donor binding groups of appropriate chemical 

character are all key elements. Two additional properties are also critical to consider: the rate 

at which the metal complex forms and the rate of dissociation. All of these criteria are 

interrelated [5]. 

 

2.3.  Positron emission tomography (PET) 

 

In recent years, Positron Emission Tomography (PET) has become a practical, high 

performance clinical imaging modality for visualization of biological process within the living 

system. The growth in PET imaging over the past decades has mainly been fueled by the 

success of [
18

F]fluorodeoxyglucose (FDG), which has become an indispensable tool for 

cancer diagnosis as well as for monitoring response to therapy in various types of 

malignancies  [6].   

PET is a non-invasive, in vivo imaging technique that uses relatively short-lived 

positron-emitting radioisotopes either in their pure form or as part of a larger molecule 

designed and synthesized with the isotope either incorporated within or appended onto the 

structure. The phenomenon of emitting a positron, which is defined as the antimatter particle 

to an electron, allows the unstable isotope to shed some of its unnecessary positive charge 

transforming the atom into a more stable atomic form. Once a positron has been emitted, it 

will travel a small distance, dictated by the amount of energy the particle was emitted with, 

from its origin and then encounter an electron, which are plentiful in comparison to the 

number of positrons. Once this occurs, the two particles will come together and destroy each 

other in an event termed annihilation. This process converts the total mass of both the positron 

and electron to pure energy in the form of two 511 keV photons of light traveling 180º away 

from each other. 
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Figure 2. Schematic showing positron emission and subsequent   

annihilation with an electron 

 

 

Detection of these photons is traditionally accomplished by placing the subject into a ring of 

detectors that have been programmed to differentiate between actual positron decay, i.e. two 

photons striking detectors on opposite sides of the ring, and background radiation that may be 

coming from a variety of sources. In an effort to probe the physiological processes occurring 

within an organism, radioisotope-containing drugs are injected into the organism of interest 

and then given time to localize in the areas for which it was designed to target. Once 

localization has occurred, the amount of radiation within the targeted type of tissue or the 

tissue containing a greater amount of the molecular species of interest will be much larger 

than the surrounding tissue; this is referred to as contrast [7]. 

 

 

Figure 3. Schematic showing a PET scanner detecting divergent γ rays 
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The use of traditional short-lived isotopes is restricted to probing rapid biological processes 

and events occurring over the duration of several hours or days. Due to the ongoing 

development of novel biological targeting vectors such as antibodies, peptides and proteins, 

which are characterized by a wide range of biological half-lives ranging from hours to days, 

nonstandard PET radioisotopes have recently been produced and investigated as they provide 

a wide range of physical half-lives that are more compatible with the biological half-life of 

particular targeting vectors for the design of novel and more beneficial radiopharmaceuticals. 

Among those nonstandard isotopes, radiometals such as zirconium, yttrium, indium, gallium 

and copper have received increased attention [6]. 

 

Table 2. Commonly used PET radionuclides, their half-lives, range, positron energy,                                 

and production source 

Isotope Half-life (min) 
Positron 

Energy (MeV) 
Positron range 

Production 

Source 

82
Rb 1,26 3,15 1,7 generator 

15
O 2,03 1,70 1,5 cyclotron 

13
N 9,97 1,19 1,4 cyclotron 

11
C 20,3 0,96 1,1 cyclotron 

18
F 109,8 0,64 1,0 cyclotron 

64
Cu 768 0,66 n/a cyclotron 

68
Ga 67,72 1,90 2,9 generator 

 

PET has been widely used in both basic research and clinical settings for imaging tissue 

pharmacokinetics, tumor response, cell proliferation, gene expression and the status of 

receptors or tumors along with the diagnoses of heart disease, epilepsy, and stroke [7]. 
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2.4.  Magnetic resonance imaging (MRI) 

 

Tomography of magnetic resonance (Magnetic Resonance Imaging, MRI) has gained great 

importance in the last three decades in medicinal diagnostics as an imaging technique with a 

superior spatial resolution and contrast. The most important advantage of MRI         over the 

competing radio-diagnostic methods such as X-Ray Computed Tomography (CT),           

Single-Photon Emission Computed Tomography (SPECT) or Positron Emission Tomography 

(PET) is definitely no use of harmful high-energy radiation. MRI is a diagnostic medical 

technique used to identify pathological regions within the body. Physical principles of MRI 

rely on monitoring different distribution and properties of water in the examined tissue and 

also on a spatial variation of its proton longitudinal (T1) and transversal (T2) magnetic 

relaxation times [8]. 

In the absence of a magnetic field, the magnetic moments of proton nuclei are randomly 

oriented, but on application of a strong external magnetic field, they precess around an axis 

which is aligned parallel or antiparallel with the direction of the applied field. This creates 

two states, a low energy state which is aligned with the field and a high energy state opposed 

to the field, where the energy difference between the two states is given by: 

   

                                                              ΔE = hν      (2) 

 

Where h is Planck's constant, 6,626 × 10
–34

 Js, and ν is Larmor or resonance frequency. This 

frequency is unique for protons and proportional to the applied magnetic field. The lower 

energy state is more populated than the higher one. A pulse of electromagnetic radiation at the 

Larmor frequency is then used to excite nuclei from the lower to the higher energy state. 

Subsequently, these protons relax back to the lower state by emission of a pulse of 

electromagnetic radiation, and it is this pulse that can be detected, measured and converted 

into a signal. More accurately, it is the difference in the total absorbed (nuclei excited) and 

emitted (nuclei relaxing) electromagnetic radiation that is measured, so the signal intensity is 

proportional to the population of the two energy states. The macroscopic property being 

visualised on a magnetic resonance image is the distribution and concentration of water in 

body tissues. This gives a contrast between tissue of different types, such as bone and skin, 

but also differentiates between healthy and malignant tissues [9]. The contrast obtained in 

images is commonly due to different relaxation rates of protons found in different tissues. 

Contrast enhancement can be achieved via the use of so-called contrast agents, which have the  
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ability to shorten either T1 or T2 relaxation times [7]. An example of an image generated in 

this way is shown in Figure 4. 

 

 

Figure 4. A regular MRI brain scan 

 

2.5.  Bifunctional chelating agents 

 

The use of metal or radiometal complexes in medicine as therapeutic or diagnostic agents is 

an area of growing interest and commonly requires bifunctional chelators (BFC). Bifunctional 

chelating agents are small molecules containing a chelating unit, able to strongly coordinate a 

metal ion, and a reactive functional group, devised to form a stable covalent bond with a 

suitable biomolecule. For this reason, BFC are used in diagnostic imaging, molecular 

imaging, and radiotherapy of cancer [10].
 

The choice of BFC is largely determined by the nature and oxidation state of the 

radiometal. Different radiometals require BFC with different donor atoms and chelator 

frameworks. An ideal BFC is able to form a stable radiometal chelate with high 

thermodynamic stability and kinetic inertness [4]. 

 

The optimal BFC should ideally fulfill the following requirements: 

 Stability/inertness: The BFC should form thermodynamically stable and kinetically 

inert complexes to prevent any ligand exchange reactions or hydrolysis in vivo. 

 Rapid complexation kinetics: Radiolabelling of the BFC should be efficient and rapid at 

low temperatures and low concentration at a pH that is suitable for biological targeting 

vectors. 
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 Selectivity: The BFC should selectively bind the radiometal of interest to avoid low 

specific activities during radiolabelling, e.g. due to the presence of other trace metals 

(decay products). 

 Versatile conjugation chemistry: Flexibility in the conjugation of the BFC to functional 

groups of targeting vectors allows optimization of pharmacokinetics by adjusting the 

polarity of the overall conjugate. 

 Accessibility: The preparation of the BFC should be straight-forward, quick and cost-

effective, and be scalable to the preparation of multigram quantities of product with as 

few reaction steps as possible [6]. 

 

All of these properties provide some information that can be used to suggest potential in vivo 

suitability. Serum stability can be a very useful tool and model that serves to predict and 

eliminate from contention the bifunctional chelating agents that are unsuitable for in vivo 

applications. None of these properties or models is predictive of actual in vivo stability of the 

metal complex. To assess real in vivo stability of the metal complex, evaluation in an 

appropriate animal model is necessary. The definition of appropriate animal model is variable, 

however it should clearly reflect the ultimate intended biological application. As yet, no in 

vitro model system replicates all of the ongoing processes and components of a living 

organism so the therapeutic efficacy of a macromolecule cannot be predicted from in vitro 

results [5]. 

However, the success of a BFC is not guaranteed even when all above listed 

requirements are completely fulfilled because the nature of a BFC can have a profound impact 

on the pharmacokinetics of a radiopharmaceutical such as receptor binding and clearance 

from non-target tissues. The two most important parameters of a BFC that influence the in 

vivo properties of radiopharmaceuticals are the overall charge and the lipophilicity of the 

corresponding BFC metal complex. Obviously, the nature of the BFC metal complex can play 

a crucial role in determining the biodistribution of targeted radiopharmaceuticals, and thus, 

further research in the field of BFCs is warranted for a better understanding of these     

findings [6]. 
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 Figure 5. Common chelating agents and bifunctional derivatives 

 

2.6.  Polyazamacrocycles 

 

Polyazamacrocycles have become a large and variable group of important organic substances 

because they represent irreplaceable ligands in complexes with transition metals, lanthanides 

and actinides, or they are chemical and structural bases of different anion receptors. One 

common group are tetraazamacrocycles, namely cyclam 6 (1,4,8,11-tetraazacyclotetradecane) 

and cyclen 7 (1,4,7,10-tetraazacyclododecane). Another important group are 

triazamacrocycles based on structure of tacn 8 (1,4,7-triazacyclononane). They have all found 

many applications as contrast agents for Magnetic Resonance Imaging (MRI), in optical 

imaging, Positron Emission Tomography (PET), Single-Photon Emission Computed 

Tomography (SPECT) and as radiotherapeutics [11].              

 

NH HN

NH HN

Cyclam 6           

NHHN

HN NH

Cyclen 7           

HN NH

NH

Tacn 8  

Figure 6. Structures of cyclam 6, cyclen 7 and tacn 8 
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2.6.1.  Factors for strong binding of metal ions 

 

The two major areas of molecular organization, as related to coordination chemistry, are 

complementarity and constraint factors. To construct the ultimately stable metal/ligand 

complex, both of these factors should be maximized. 

Complementarity may be described as a ‘first-order’ factor for complex stability; it is 

a requirement of stable complexes, but can only be improved to a finite level. Constraint, on 

the other hand, might be described as a ‘second-order’ factor. Constraint is concerned with 

ligand rigidity and complexity, factors of seemingly infinite variability.  

These parameters can be manipulated to produce large jumps in complex stability 

compared with ligand systems that lack them, if care is taken to maintain the difficultly 

achieved complementarity relationships. The components of constraint are topology (here 

meaning the interconnectedness of ligand donor atoms) and rigidity (how fixed in space those 

donor atoms are with respect to each other). Among the two, topology is the most well 

studied, variously described in the chelate, macrocyclic, and cryptate effects. 

The linking of two donor atoms together results in a chelate. Surprisingly, such a 

linkage results in a large increase in the binding constants with metal ions as compared with 

the separate donor groups. The common thermodynamic rationalization for the chelate effect 

points out the increase in entropy associated with chelate binding as compared with the 

binding of separate monodentate donors. Cyclam and cyclen each contain four nitrogen 

donors, and form metal ion complexes which are more thermodynamically stable than 

complexes comprising four monodentate ligands [12]. This can be explained by an increase in 

entropy of a system such as that shown in Figure 7. As the four monodentate ligands are 

displaced from the metal ion by the polyamine ligand, there is an increase in disorder; there 

are two molecules on the left hand side of the reaction but five on the right, giving a favorable 

entropic increase in stability [9]. 

M

L

LL
H2N

N
H

H
N

NH2

NH2N

H NH2

M 4L

5 molecules2 molecules

Increase in entropy

L

 

Figure 7. Entropy in the chelate effect 
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A second explanation of the chelate effect is the increased effective concentration of the 

second donor, because its distance from the metal ion is fixed by the link to the bound first 

donor. This distance is short compared with an unlinked second donor, whose average 

distance from the metal ion will depend primarily on its concentration (Figure 8). A variation 

of this rationalization of the chelate effect is that the formation of the second M-N bond is 

abnormally fast, compared with an unlinked second donor. 

 

M NH2

NH2

Chelate

M NH3

NH3

Monodentat  

Figure 8. Tethering effect leading to increased effective concentration of the ligand 

 

As might be expected, tying successive donor atoms together produces tri- or tetradentate 

chelates and further increases the metal complex stability as a function of the number of 

chelate rings. But, an impressively large additional stabilization occurs from linking the 

terminal donor atoms into a ring; this phenomenon was termed the macrocyclic effect [12]. 

The cyclam and cyclen macrocycles provide four nitrogen donor atoms for complexation of a 

host metal cation, however, substitution of the secondary amines can be undertaken to 

increase the number of donor atoms. This gives these macrocycles and their derivatives the 

ability to act as ligands for a range of metal cations which require coordination numbers 

between four and eight, including transition metals and lanthanoids [9]. 
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2.6.2.   Ligands based on cyclam and cyclen  

 

Functionalized macrocycles are interesting in many respects. On the one hand, they are ideal 

ligands for studying changes in structures and stability when donor groups are introduced as 

pendant side chains. On the other hand, these compounds allow studying of metal-promoted 

reactions since the substrate, covalently attached through the side chain of the macrocycle, 

can be brought in close vicinity of the metal ion so that the formation of pseudo metal-

substrate complex takes place [13]. 

Polyazamacrocycles with coordinating pendant arms form very stable complexes with 

a wide range of metal ions. The ligands encapsulate metal ions in the macrocyclic cavity and 

the complexes often exhibit both thermodynamic and kinetic stability. Convenient properties 

of the complexes have been explored for use in applications such as contrast agents in 

magnetic resonance imaging or for labelling of biological substances with metal radioisotopes 

for diagnostic and therapeutic purposes. For the latter of these uses, a metal ion is coordinated 

by a suitable bifunctional ligand, ensuring, as a result of strong metal binding, no deposition 

of harmful radioisotopes in the body, while also allowing conjugation of the complex to a 

biomolecule by means of another reactive group. Biomolecules such as small peptides, 

monoclonal antibodies or their fragments, and biotin can be labelled through a reactive group 

placed on the macrocycle rim or on a carbon atom of a pendant arm, as well as directly 

through an acetate pendant group with the formation of an amide functionality [14]. 

The study of the polyazamacrocycles with pendant arms has been focused mainly on 

acetates, phosphonates, phosphinates or carboxamides. Besides these groups, the ligands 

could contain also other pendant groups, for example, alcohol, phenol, or esters of 

carboxylate, phosphinate or phosphonate. Many structurally modified analogues have been 

prepared (Figure 9) such as the well-known N-substituted derivatives with a different number 

of pendant arms [15]. 
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Figure 9. Structural representations and abbreviations of selected macrocycles 

derived from cyclen 7 (left) and cyclam  6 (right) 

 

 

Numerous analogues of DOTA 1 and TETA 12 have been developed over the past few 

decades for the efficient chelation of transition-metal ions, including those for potential 

medical applications [16]. 

 

2.7. Azamacrocycles in Positron emission tomography (PET) and     

Magnetic resonance imaging (MRI) 

 

Among the various available PET radioisotopes, 
64/67

Cu and 
68

Ga offer many advantages over 

other traditionally used isotopes. With a half-life of 12,7 hours, 
64

Cu is compatible with in 

vivo kinetics to investigate biodistribution and metabolism of compounds of interest using 

PET imaging. Additionally, this long half-life radioisotope has been shown to be useful for 

tracking cell migration and their cellular fate in vivo. 
 

The challenge in the implementation of metal radioisotopes lies in the design of 

chelating agents that have the ability to not only retain the metal in vivo, but either become the 

targeting agent or be attached to a known targeting agent without adversely affecting the 

targeting properties or kinetics [7]. A range of such bifunctional ligands has been investigated 

for 
64/67

Cu
2+

. Typically they are comprised of complexing agents based on the open-chain 

polyaminocarboxylate, tetraaza-, polyaminocarboxylate and polyaminophosphonate 

macrocycles and the hexaza-cage class.  
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The second radiometal that holds great promise for the design of novel radiopharmaceuticals 

for PET is gallium-68 (t1/2 = 68 min).  Gallium(III) strongly binds to highly ionic, 

nonpolarizable hard Lewis bases such as oxygen and nitrogen donors and forms 

thermodynamically stable complexes with carboxylate, phosphonate, hydroxamate, and amine 

functionalities  [6]. 

Chelating agents for carrying 
68

Ga radionuclide can be designed for therapeutic and 

targeted applications. The coordination position of Ga in the periodic table is such that it can 

bind strongly with macrocyclic/cyclic systems similar to lanthanides [17]. This is a direct 

consequence of the increased kinetic inertness of macrocycles compared to acyclic ligands 

due to the macrocyclic effect minimizing transchelation or loss of metal in vivo, which is 

favorable for radiopharmaceutical applications. The most prominent representatives of this 

category are ligands based on polyaza-macrocycles such as tacn 8 and cyclen 7, specially their 

bisphosphonate ligands. These ligands improved bone imaging and diagnosis and some of 

them were published as novel bone-seeking agents [6]. 
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Figure 10. Macrocyclic ligands commonly used for 
68

Ga
 
radiolabeling 

 

From the physical point of view, there are two major families of chelating agents classified 

according to the relaxation process they predominantly accelerate, T1-CAs (paramagnetic) and 

T2-CAs (superparamagnetic). Whereas T1-CAs induce a positive contrast, i.e. a 
1
H NMR 

signal of the affected tissue increases, compounds affecting the T2 relaxation cause lowering 

of a local proton signal and, thus, they show a “negative enhancement” pattern. 
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At present, the most widespread family of the T1-CAs consists of complexes with the Gd(III) 

ion. Although there are other candidates in the lanthanide series [europium(III) or 

terbium(III)] that have a high magnetic moment, the intrinsic relaxation time of the      

electron-spin state of the cation has to be long enough for efficient transfer of magnetic 

information to the bulk water. Thus, the prominent position of the Gd(III) ion relies not only 

on the high magnetic moment (7,9 BM) given by seven unpaired f-electrons, but also on the 

totally symmetric electronic state, which makes the electronic relaxation time much longer 

than for other Ln(III) ions. However, the main problem of the medical utilizations of heavy 

metal ions like the Gd(III) ion is a significant toxicity of their “free” (aqua-ion) form [18]. 

Therefore they need to be chelated to a ligand in order to be used in vivo. Common chelating 

agent designs that have been exploited are based on incorporating a cyclen macrocycle unit, 

DOTA 1 and a linear chelator diethylenetriaminepentaacetatic acid DTPA 2. They are both 

known to form lanthanide ion complexes of high stability. Gadolinium contrast agents are by 

far the most popular choice of contrast agent, with greater than 10 million MRI studies done 

each year [19]. Clinically used contrast gadolinium agents are shown in Figure 11. 
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Figure 11. Clinically used gadolinium contrast agents 
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2.8.  Lanthanide azamacrocycle complexes  

 

The lanthanides are a family of highly electropositive metals in period 6, composed of a series 

of fifteen elements in the f-block that correspond to filling of seven 4f orbitals (Table 3).  

  Table 3. Lanthanide metals 

57La 58Ce 59Pr 60Nd 61Pm 62Sm 63Eu 64Gd 65Tb 66Dy 67Ho 68Er 69Tm 70Yb 71Lu 

  

The chemistry of the lanthanides is dominated by their +3 oxidation state. Lanthanides have 

low charge densities, which leads to their compounds being predominantly ionic in character 

[19]. 

They form complexes of higher coordination numbers ranging from 7 to 12. This is 

attributed to the large size of these metal ions together with the ionic nature of the metal-

ligand bonding. Macrocyclic ligands form stable complexes with lanthanides and actinides 

and hence they enable to explore the coordination chemistry of these metal ions. 

Azamacrocyclic complexes of lanthanides are currently attracting a lot of attention as 

radiopharmaceuticals, in radioimmunotherapy, in other medical applications, such as 

radioimmunoscintigraphy (𝛾-scintigraphy) and positron emission tomography, and as 

contrast-agents in magnetic resonance imaging [20].   

Macrocyclic complexes with gadolinium(III), europium(III) and terbium(III) are being 

investigated as luminescent biological probes and are extensively used for studying metal ion 

sites in macrocyclic complexes and in biological systems. Some of them have been suggested 

as markers in cytology and immunology [19].  

 

2.8.1.  Europium azamacrocycle complexes 

   

Europium is a silvery-white metal. It is the softest, least dense, and most volatile member of 

the lanthanide series. 

Of the fourteen major radioactive isotopes, only four have half-lives long enough to be of 

potential interest. Three of these four long-lived isotopes, (europium-152, europium-154, and 

europium-155) have half-lives ranging from 5 to 13 years, and they decay by emitting a β 

particle. Europium-152 also decays by electron capture. A significant amount of energy in the 

form of 𝛾 rays accompanies the decays of europium-152 and europium-154. The half-lives of 

all other europium isotopes are less than four months. 
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         Table 3. Radioactive properties of key europium isotopes 

Isotope 
Half-life 

(yr) 

Specific activity 

(Ci/g) 
Decay mode 

Radiation energy (MeV) 

Alpha 

 (α) 

Beta 

(β) 

Gamma 

(𝛾) 

Eu-150 34 70 EC - 0,044 1,5 

Eu-152 13 180 β, EC - 0,140 1,2 

Eu-154 8,8 270 β - 0,290 1,2 

Eu-155 5 470 β - 0,063 0,061 

 

Europium-152, europium-154, and europium-155 are produced primarily as fission products. 

Europium-152 can also be produced by neutron activation. When a fissile nuclide such as an 

atom of uranium-235 fissions, it asymmetrically splits into two large fragments which can 

include the three europium isotopes and two or three neutrons. The fission yield of europium-

155 is about 0,03 %. That means about 3 atoms of europium-155 are produced per 10,000 

fissions. The yields of the other two isotopes are much lower. In order to control this fission 

reaction, isotopes that can absorb excess neutrons are used in a nuclear reactor control rods. 

Europium-151 is a very good neutron absorber and neutron activation of this stable isotope 

produces europium-152 [21]. 

The 𝛾 -ray spectrum of the activated europium sample is shown in Figure 12. 

Downward and upward arrows indicate the respective 
152

Eu and 
154

Eu decay lines [22]. 

 

 

Figure 12. The 𝛾-ray spectrum of the activated europium sample 

 

The primary use of europium is in nuclear reactor control rods, because of its effectiveness in 

absorbing neutrons. Other uses have been limited because it is rare and thus very expensive.  
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Europium-doped plastics have been used as laser materials, and europium oxide serves as a 

phosphor activator [21]. 

Europium is toxic and needs to be chelated to a ligand in order to be used in vivo. Common 

chelator designs that have been exploited are based on a cyclen macrocycle DOTA 1, TETP 

13 and a linear chelator DTPA 2. They all form high stability complexes with europium. [19].  

 

2.9.  Current issues and future prospects of therapeutic radionuclides 

 

Drug delivery is an important part of targeted radionuclide therapy because merely 

developing an effective anticancer agent is not sufficient unless it is delivered to the site of 

action with an adequate dose. Conventional drug development has focused different routes of 

administration, mostly oral or injectable, but this is no longer an effective strategy. 

Nanotechnology, advanced polymer chemistry, and biomedical engineering have contributed 

to the development of novel methods of drug delivery that target specific tissues without 

causing too much collateral damage. Innovative methods of cancer treatment, e.g., cell and 

gene therapies, require innovative drug delivery concepts. 
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3. EXPERIMENTAL PART



24 

 

 

3.1.  General procedure  

Ligands Cyclen and TETP were synthesized according to published procedures [23] [24]. 

Other three ligands used in this work (DOTA, NOTA, and TRAP-Pr) were obtained from the 

Department of Inorganic Chemistry, Faculty of Science Charles University in Prague. 

TLC analysis of the ligands and intermediates during their synthesis were performed 

on Merck silica gel 60 TLC plates F254 and visualized by using UV light (365 nm) and 

iodine. Solvent system used for TLC was: CHCl3:MeOH = 10:5. 

Measurments of radiochemical yields were also performed on silica gel 60 TLC plates 

F254. Radioactivity was measured on Bioscan AR-2000 Radio-TLC Imaging Scanner 

(Canberra Packard). 

Products were dried by lyophilization on a vacuum line with an internal branch 

connected to a low-temperature cooler Huber TC50E with rotary oil pump LAVAT NRA 

04/21 classic, dual-chamber vacuum pump. For cooling, a Dewar flask containing liquid 

nitrogen was used. 

For identification of synthesized compounds, NMR spectra were recorded on Bruker 

Avance II 300 (
1
H at 300,13 MHz and 

13
C at 75,45 MHz) in 

2
H2O. Chemical shifts are 

expressed in parts per million (ppm, δ) relative to an internal standard. For 
1
H NMR, dioxane 

was used as an internal standard, while chemical shifts of 
13

C NMR spectra were referenced 

relative to δ (dioxane) = 66,66 ppm.  

Samples were measured using FT-IR spectrometer iS50, on a diamond crystal with 

ATR technique. The spectra were measured at a resolution of 2 cm
-1 

in the mid-IR spectral 

region (MIR) from 4000 to 400 cm
-1

, and further evaluated in the program Omnic 9.1. 

Electro spray ionization mass spectroscopy (ESI-MS) analysis was carried out using Finnigan 

MAT SSQ 7000 in MeOH or H2O. Results are shown as M
+
, M

-
 ions, and possible few 

fragments. 
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Chemicals and solvents were obtained from commercial sources and directly used without 

further purification:  

 

 triethylenetetramine (60 % aqueous solution), 1,2-dibromoethane (purity 98 %), 

hydrazine hydrate (78-82 %  aqueous solution) glyoxal (40% aqueous solution),    

N,N-dimethylformamide (purity 99,8 %), diethoxymethane (purity 99,7 %),     

1,4,8,11-tetraazacyclotetradecane (purity 98 %), phosphorous acid (purity 99 %)   

 ethyl alcohol (purity 96 %),  methyl alcohol (purity 99,8 %), potassium hydroxide, 

ammonium hydroxide (25 % aqueous solution), paraformaldehyde (36-38 % aqueous 

solution), citric acid anhydrous and pure (Lachner)   

 conc. hydrochloric acid (37 % aqueous solution) (Acros Organics) 

 Dowex 50 WX 8 (Serva)  

 iodine, sodium citrate (Lachema) 

 activated carbon (20-40 mesh) 

 

Ultrapure water (Milli-Q, 18,2 MΩ∙cm at 25 °C) was produced by Direct-Q3 water 

purification system MILLIPORE and used in all radiolabelling experiments. 

 

Stock solutions of the ligands were prepared by dissolving the solids (1 mg) in a 1 mL of 

ultrapure water (𝛶 = 1 mg/mL). The buffer solutions were freshly prepared. 

 

3.1.1.  Hydrochloric acid/Potassium chloride buffer 

 

Stock solutions: 

     A: 0,2 M solution of hydrochloric acid ( 83,3 µL conc. HCl in 4,92 mL of ultrapure water) 

     B: 0,2 M solution of potassium chloride (74,5 mg in 5 mL of ultrapure water) 

 

    Table 5. x mL of A + y mL of  B, diluted to a total of 5 mL 

x y pH 

0,265 0,05 2 
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3.1.2.  Citrate buffer 

 

Stock solutions: 

     A: 0,1 M solution of citric acid (4,80 g in 250 mL of ultrapure water) 

     B: 0,1 M solution of sodium citrate (7,35 g in 250 mL of ultrapure water) 

 

                  Table 6. x mL of A + y mL of  B, diluted to a total of 5 mL 

x y pH 

2,330 0,175 3 

1,650 0,850 4 

1,025 1,475 5 

0,475 2,075 6 

 

3.2.  Preparation of the compounds  

 

1,4,7,10-tetraazacyclododecane (Cyclen 7) 

10 g of triethylenetetramine (0,068 mol) was dissolved in 200 mL of ethanol and mixed with 

8 mL of 40% glyoxal in water (0,068 mol) at room temperature. After 24 hours of stirring, the 

solvent was distilled off in a vacuum, and an orange colored oil, which was taken up in 80 mL 

of dimethylformamide and mixed with 18 mL (39,2 g = 0,209 mol) of 1,2-dibromoethane, 

was obtained. After 24 hours of stirring at 40 °C, it was concentrated by evaporation in a 

vacuum; the residue was taken up in 80 mL of ethanol and acidified to about     pH 3-4 with 

37 % aqueous hydrochloric acid. 41 mL (41,9 g = 1,31 mol) of hydrazine hydrate was added 

to this reaction solution at room temperature, and it was heated under reflux for 30 hours. The 

reaction solution was set at pH 13 with solid potassium hydroxide and was subsequently 

concentrated by evaporation in a vacuum, taken up once more in 20 mL of ethanol, and the 

solvent was removed. The residue was mixed with 1 g of activated carbon and 25 mL of 

formaldehyde diethylacetal. It was heated under reflux for some time before the hot solution 

is filtered through a membrane. After the solution is cooled, the product was isolated by 

filtration washed with methanol and purified on an ion exchange column (Dowex 50 WX8, 

H
+
 form, 200-400 mesh, elution with water and followed by a 3 % aqueous ammonia 

solution). The product was obtained as a yellow oily (5,4 mg; 0,03  mmol; 0,05 %).  

ESI-MS: (positive) m/z: 173 [M+H]
+
.
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1
H and 

13
C NMR spectra of the synthesized cyclen correspond to one described in the 

literature. 

 

1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrakis(methyl phosphonic acid) (TETP 13) 

1,4,8,11-tetraazacyclotetradecane (Cyclam) (200 mg, 1 mmol) and phosphorous acid (656 mg, 

8 mmol in 0,25 mL HCl) were mixed in water (0,7 mL). The mixture was heated to 40 °C 

while being stirred, and 36 % aqueous paraformaldehyde (0,57 mL g, 6 mmol) was added in 

small portions over 5 min. The mixture was further heated at this temperature for 5 hours. The 

reaction mixture was purified on a cation exchange resin (Dowex 50 WX8,  H
+ 

form, 200-400 

mesh, elution with water and followed by a 3 % aqueous ammonia solution). The product was 

eluted in the first water fraction which contained the pure ligand in a form of white crystalline 

solid (254,3 mg; 0,44 mmol; 44, 1%) 

ESI-MS: (positive) m/z: 581 [M+5H]
+
, (negative) m/z: 573 [M-3H]

-
. 

1
H and 

13
C NMR spectra of the synthesized phosponate derivative of cyclam correspond to 

spectra described in the literature. 
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3.3.  Structures of the compounds 
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3.4.  General procedure for labelling with 
152,154

Eu 

 

Labelling with Eu was performed in hydrochloric acid/potassium chloride (pH 2) and citrate 

(pH 3-6) (400 μL) buffer solutions by adding 17 nmol of ligand as a stock solution with a 

concentration of 1 mg/mL. Then 20 μL of stock solution of Eu (152 000 cps/mL in 0,1 M 

HCl) was added and the solution was shaken in a heating block for 30 min at 95 °C. After 

cooling, pH was adjusted to 6-7 by adding small amounts of 1 M aq. NaOH solution. 

Radiochemical yields were determined by silica TLC (Merck) using a solvent mixture 

consisting of 2 parts of A (conc. aq. HCl:acetone:water = 0,1:1:1) and 1 part of B (pure 

acetylacetone). Free Eu migrates as an acetylacetonate complex. In-cage complexes stay on 

the baseline (Eu-complexes: Rf = 0,0-0,1; Eu-acac.: Rf = 0,5-0,6). 
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4. RESULTS AND DISCUSSION 
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4.1.  Synthesis 

 

This thesis work was focused on obtaining possible azamacrocycle ligands based on cyclen 

and cyclam structures for their 
152,154

Eu-labelling studies. For this purpose cyclen and TETP 

ligands were prepared. 

Cyclen was obtained through a four-step reaction. First step included Mannich 

condensation of triethylenetetraamine with glyoxal at room temperature in a polar protic 

solvent (ethanol). After 24 h of stirring, a tricyclic compound was obtained as a first 

intermediate (Sheme 1).   

 

NH HN

NH2NH2

N N

N N

H

i

H  

Sheme  1. Reagents and conditions: (i) EtOH, glyoxal, r.t., 24 h 

 

Tricyclic compound was converted into a tetracyclic intermediate by alkylation of two 

secondary amine-nitrogen atoms with a 1,2-dibromoethane. This step was carried out in polar 

aprotic solvent, DMF at 40 °C (Sheme 2). 

 

N N

N N

H H

ii

N N

N N

 

 Sheme  2. Reagents and conditions: (ii) 1,2-dibromoethane, DMF, 40 °C, 24 h 
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Removal of the ethylene bridge that connects four nitrogen atoms was achieved by treating 

tetracyclic intermediate with hydrazine hydrate in ethanol, at pH 3 to 4. The cyclen that was 

obtained after 30 h of stirring at reflux temperature was released from the cyclene salt by 

adding potassium hydroxide as a base.  

The last step included isolation of the cyclen by crystallization in formaldehyde diethylacetal. 

 

N N

N N

iii

NH HN

NH HN
iv

 

Sheme  3. Reagents and conditions: (iii) EtOH, hydrazine hydrate, HCl, reflux, 30 h  

(iv) KOH, EtOH, active carbon, formaldehyde diethylacetal 

 

Ion exchange chromatography after the last step is necessary in order to obtain a very pure 

product. The complete synthesis was carried out in less than four days, but the pure product 

was obtained in a low yield.  

With modification of the synthesis procedure from literature [24], TETP ligand was 

prepared by Mannich condensation. The preparation protocol is extremely short; there is just 

one step starting from commercially available 1,4,8,11-tetraazacyclotetradecane (Cyclam) as 

a secondary amine. The amine reacts with formaldehyde, in this case paraformaldehyde, and 

phosphorous acid. Amino alkylation was achieved under mild conditions at 40 ºC in 

hydrochloric acid and water as solvents. To obtain a pure ligand for further labelling studies, 

the product mixture was purified on Dowex cation exchange column. The final product was 

obtained in a yield of 44,1 %. Synthesis of TETP is shown in Sheme 4. 

 

NH HN

NH HN

i
N N

N N

PO3H2H2O3P

PO3H2
H2O3P

 

Sheme  4. Reagents and conditions: (i) H3PO3, HCl, H2O, H2CO, 40 ºC, 5h 
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4.2.  
152,154

Eu-labelling studies  

 

According to the general procedure (Chapter 3.4.), labelling of the ligands DOTA, TETP, 

NOTA and TRAP-Pr was performed with 
152,154

Eu at various pH values (pH 2-6) at constant 

temperature (95 ºC) and constant concentration of the ligands. This procedure allows a very 

precise adjustment of pH with different buffer solutions and is therefore well studied for the 

investigation of labelling properties.  

Radiochemical yields were determined by thin layer radio chromatography. The 

results of complexation of 
152,154

Eu with DOTA, TETP, NOTA and TRAP-Pr, at pH 4 (95 ºC, 

30 min), are shown in Figures 13, 14, 13 and 15.  

 

 

 

               Figure 13. Radio-chromatogram of 
152,154

Eu-DOTA complex  
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        Figure 14. Radio-chromatogram of 
152,154

Eu-TETP complex 

 

 

 

        Figure 15. Radio-chromatogram of 
152,154

Eu-NOTA complex 
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          Figure 16. Radio-chromatogram of 
152,154

Eu-TRAP-Pr complex 

 

The radio-chromatograms show that formed DOTA, TETP, NOTA and TRAP-Pr 
152,154

Eu-

complexes stay on the baseline (Rf = 0,0-0,1), while free europium in form of 
152,154

Eu(acac)3 

complex stays at Rf = 0,52-0,54. 

 

 

  

Figure 17. Radiochemical yields (%) of complexation of 
152,154

Eu with DOTA ligand   

(19, 8 nmol) as a function of time (min) in the pH range from 2 to 6 at 95 ºC 
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Figure 18. Radiochemical yields (%) of complexation of 
152,154

Eu with TETP  

ligand (17,4 nmol) as a function of time (min) in the pH range from 2 to 6 at 95 ºC 

 

 

 

Figure 19. Radiochemical yields (%) of complexation of 
152,154

Eu with NOTA 

ligand (18,2 nmol) as a function of time (min) in the pH range from 2 to 6 at 95 ºC 
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Figure 20. Radiochemical yields (%) of complexation of 
152,154

Eu (%) with TRAP-Pr  

ligand (17,1 nmol) as a function of time (min) in the pH range from 2 to 6 at 95 ºC 

 

The results presented above confirm strong dependence of radiochemical yields of 

152,154
Eu complexation with DOTA, TETP, NOTA and TRAP-Pr on the pH value. The 

complexation can be described as a two-step process. The intermediate out-of-cage complex 

is formed instantly and the metal ion is coordinated only through oxygen atoms of 

phosphonate and carboxylate groups, at a low pH, whereas macrocyclic amines are 

protonated. In the rate-determining step, ring nitrogen atoms lose proton(s) and the metal ion 

simultaneously moves into the macrocycle cavity.  

Radiochemical incorporations of more than 95% are achieved by dissolving 

nanomolar concentration of the ligands in a solution containing a specified volume of EuCl3 

solution at pH 2 and also at pH 4. Potassium chloride/hydrochloric acid buffer was used to 

adjust pH at 2 and citrate buffer was used for adjusting pH values from 3 to 6. The lowest 

yields for TETP, NOTA and TRAP-Pr were observed at pH 3, while for DOTA the lowest 

yields were at pH 5.  
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Figure 21. Radiochemical yields (%) of complexation of 
152,154

Eu (%) with DOTA (19,8 nmol), TETP 

(17,4 nmol), NOTA (18,2 nmol) and TRAP-Pr (17,1 nmol) ligands as a function of pH (95 ºC, 30 min)  

 

Variation of pH at a constant temperature of 95 ºC revealed that all four ligands exhibit 

almost the same coordinating abilities. After 30 minutes, radiochemical yields follow the 

order pH 3 < pH 5 < pH 6 < pH 4 ~ pH 2. In literature [25], it was found that the trivalent 

cation of europium which is stable in aqueous solutions forms complexes with citrate anion. 

At pH 3, Eu(III)-citrate complex is identified as a neutral charge (1:1) complex, EuHCit
0
. 

Eu(III)-citrate complex at pH 4 to 5,5 is found to be a 1:2 complex Eu(HCitH)Hcit
2-

. In this 

complex, one hydrogen citrate HcitH
2- 

and one citrate anion Hcit
3-

 bind to the Eu
3+

 ion. 

Creation of Eu
3+

 complexes with citrate anion is the main cause of lower radiochemical yields 

at pH 3 and 5. 

 

 
Figure 22. Radiochemical yields (%) of complexation of 

152,154
Eu (%) with DOTA (19,8 nmol), TETP 

(17,4 nmol), NOTA (18,2 nmol) and TRAP-Pr (17,1 nmol) ligands as a function of time (min) at 95 ºC 
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The best yields, after 30 minutes, for ligands DOTA (96,0 %), TETP (95,7%), NOTA      

(98,2 %) and TRAP-PR (97,5 %) were achieved at pH 4. Citrate buffer was used to adjust the 

pH to 4. This pH was chosen for kinetic studies in order to ensure realistic comparison of the 

ligands, since it was found to be optimal for all four ligands. 

The results of the kinetic studies of DOTA, TETP, NOTA and TRAP-Pr are 

summarized in Table 5.  

 

Table 4. Time course of complexation of 
152,154

Eu with with DOTA (19,8 nmol), TETP (17,4 nmol), 

NOTA (18,2 nmol) and TRAP-Pr (17,1 nmol) ligands in 400 µL of citrate buffer solution at              

pH 4 (0-95 ºC) 

Time 

(min) 
0 1 2 3 4 5 6 7 8 9 10 15 30 45 60 

Yield 

(%)  

DOTA 

95 95 91 91 90 91 89 81 91 84 89 90 89 89 89 

Yield 

(%)  

TETP 

94 95 95 93 87 89 86 90 89 87 93 92 93 93 92 

Yield 

(%)  

NOTA 

93 90 87 85 82 83 86 90 84 85 83 85 83 92 86 

Yield 

(%) 

TRAP-Pr 

93 89 89 89 91 92 92 87 92 91 89 74 83 83 85 

 

Direct comparison of radiochemical yields of the ligands show that they are able to 

incorporate 
152,154

Eu instantaneously (>92 %) at room temperature. These ligands form kinetic 

stable complexes and they all achieve radiochemical yields between 83 and 95 % within 60 

minutes. Yield of 74,4 %, which is out of range, can be considered as experimental error 

caused of constant pipetting small amounts of ligands. 
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5. CONCLUSIONS 
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The synthesis of TETP ligand was fast, simple, and scalable. Starting from commercially 

available 1,4,8,11-tetraazacyclotetradecane (Cyclam) the final product was obtained by 

Mannich condensation. The synthesis of cyclen appears to be more problematic and all 

attempts gave poor yields. Cyclen was obtained through a four-step reaction in a low yield 

and further synthesis of potential phosphonate or carboxylate derivatives of cyclen could not 

be implemented. Both cyclen and TETP ligand were purified on dowex exchange column to 

obtain a pure ligand. The structures of synthesized compounds were confirmed by 
1
H and 

13
C 

NMR, FT-IR spectroscopy and mass spectrometry. 

Ligands DOTA, TETP, NOTA and TRAP-Pr showed efficient complexation with 

Eu
3+

. Almost quantitative complexes with radiochemical yields over 95 % are formed at pH 2 

and pH 4 within 30 min at 95 ºC. Complexation at pH 3 and 5 is partially decelerated by 

the presence of citrate anion from the buffer solution. Competition between formation of 

citrate and macrocyclic complexes results in lower yields at pH 3 and pH 5. Lower 

radiochemical yields at pH 6 are caused by more extensive deprotonation of phosphate and 

carboxylate functional groups at higher pH leading to their stronger interaction with Eu(III) 

ion and stabilization of the out-of-cage complexes. 

DOTA, TETP, NOTA and TRAP-Pr form kinetically stable complexes with 
152,154

Eu 

at pH 4. These ligands are also able to form complexes instantaneously at room temperature. 

All of the ligands are particularly suitable for innovative tracer design since they can 

be derivatized by amide formation without affecting the integrity of the complexation site. For 

potential use in vivo further studies are needed. 
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