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Summary 

 

Tissue engineering and regenerative medicine has been providing exciting technologies 

for the development of functional macroporous biomaterials (scaffolds) aimed to repair and 

regenerate damaged bone. Biodegradability, high mechanical strength, osteointegration and 

formation of bony tissue are properties required for such materials. Bioactive synthetic hydrogels 

have emerged as promising materials because they can provide molecularly tailored biofunctions 

and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment 

for cell growth and tissue formation. 

 In this study, injectable composite hydrogels were designed to be used in bone tissue 

regeneration. To mimic the mineralogical and organic components of the natural extracellular 

matrix of bone, hydroxyapatite and a tyramine conjugate of gelatin were combined to 

manufacture the composites. Gelatin conjugate is able to crosslink through the oxidative 

coupling of tyramine molecules, catalyzed by hydrogen peroxide and horseradish peroxidase, via 

non-cytotoxic conditions. The effect of various amounts of in situ synthesized hydroxyapatite in 

gelatin-tyramine solutions was investigated by analysing the morphology and physical properties 

of the resulting hydrogels. Characterization of hydroxyapatite within the hydrogels was 

performed by X-ray diffraction analysis and Fourier transform infrared spectroscopy. The 

morphology of prepared hydrogel was characterized using scanning electron microscope. Shear 

storage and loss moduli were measured as a function of gelation time, while the rheological 

properties of the completely crosslinked hydrogels were tested by changing the shear strain and 

frequency. 

Results have confirmed adequate formation of apatite within the gelatin-tyramine matrix. 

Microscopy reveals better dispersion of hydroxyapatite crystals by in situ synthesis than in 

control samples prepared by classical blending. The rheological testing has shown no significant 

effect of hydroxyapatite content on the gelation time with respect to pure gelatin-tyramine 

matrix, while shear strength of the different hydogels seems to needs to be further investigated. 

 

Keywords: injectable hydrogels, in situ hydroxyapatite, gelatin-tyramine, gelation time, 

rheology.  



 
 

Priprava bioaktivnog kompozitnog materijala za popravak koštanog tkiva 

 

Sažetak 

 

Inţenjerstvo tkiva i regenerativna medicina pruţaju mnoge razvijene tehnologije za razvoj 

funkcionalnih nadomjestaka, kojima je cilj popravak ili regeneracija koštanog tkiva ili organa. 

Karakteristike koje takvi materijali trebaju ispunjavati su biorazgradivost, visoka mehanička 

čvrstoća, osteointegracija i stvaranje  koštanog tkiva. Kao obečavajući materijali javili su se 

bioaktivni, sintetski hidrogelovi zbog mogućeg pruţanja molekularno prilagoĎenih biofunkcija, 

podesivih mehaničkih svojstava te pogodni mikrookoliš za razvoj stanica i stvaranje tkiva.  

 U ovom radu, pripravljeni su kompozitni hidrogelovi za popravak koštanog tkiva. Za 

imitaciju kemijskog sastava prirodne kosti, kao komponente su se koristili hidroksiapatit i 

ţelatina modificirana tiraminom. Stvaranje injekcijskih hidrogelova postignuto je djelovanjem 

enzima peroksidase uz pomoć vodikova peroksida. Istraţivan je utjecaj različite koncentracije in 

situ sintetiziranog hidroksiapatita istraţivan je na morfologiji i fizikalnim svojstvima hidrogela. 

Prisutnost hidroksiapatita u hidrogelovima potvrĎena je karakterizacijskim tehnikama 

uključujući rendgensku difrakcijsku analizu i infracrvenu spektorskopiju s Fourijerovim 

transformacijama. Morfologija pripravljenih hidrogelova istraţena je pretraţnim elektronskim 

mikroskopom. Smični modul pohrane i gubitka mjereni su u ovisnosti o vremenu geliranja, dok 

su reološka svojstva potpuno umreţenog gela ispitana promjenom smične deformacije i 

frekvencije.  

Rezultati karakterizacije potvrdili su stvaranje apatitne faze unutar matrice modificirane ţelatine. 

Mikroskopska analiza ukazuje na bolju disperziju hidroksiapatita sintetiziranog in situ u odnosu 

na kontrolne uzorke dobivene klasičnim umiješavanjem. Reološka ispitivanja pokazala su da ne 

postoji utjecaj različitog udjela hidroksiapatita na vrijeme geliranja u odnosu na tiraminom 

modificiranu ţelatinu, dok se utjecaj reoloških parametara na smičnu čvrstoću različitih 

hidrogelova treba detaljnije istraţiti. 

 

Ključne riječi: injekcijski hidrogelovi, in situ hidroksiapatit, tiraminom modificirana ţelatina, 

vrijeme geliranja, reologija. 

 



 
 

Content 

1. Introduction ........................................................................................................................... 1 

2. State of the art ....................................................................................................................... 4 

2.1. Hydrogels ....................................................................................................................... 4 

2.2. Injectable hydrogels ....................................................................................................... 6 

2.2.1. Injectable gelatin-based hydrogels .......................................................................... 8 

2.2.2. In situ precipitation of hydroxyapatite ..................................................................... 9 

2.4. Materials and methods ................................................................................................. 13 

2.4.1. Materials ................................................................................................................ 13 

2.4.2. Tyramine grafting to gelatin .................................................................................. 13 

2.4.3. Synthesis of hydroxyapatite particles as a control material .................................. 14 

2.4.4. In situ synthesis of composite hydrogels ............................................................... 14 

2.4.5. Injectable composite hydrogel preparation ............................................................ 15 

2.5. Materials characterization ............................................................................................ 15 

2.5.1. The pH monitoring ................................................................................................ 15 

2.5.2. Fourier transform infrared spectroscopy ............................................................... 15 

2.5.3. X-ray diffraction analysis ...................................................................................... 16 

2.5.4. Scanning electron microscopy ............................................................................... 16 

2.5.5. Equilibrium swelling ............................................................................................. 16 

2.6. Rheological properties.................................................................................................. 17 



 
 

3. Results and discussion ........................................................................................................ 18 

3.1. FTIR identification ....................................................................................................... 18 

3.2. Determination of mineralogical composition ............................................................... 21 

3.3. Microstructure of injectable hydrogels ........................................................................ 24 

3.4. Equilibrium water swelling of crosslinked hydrogels .................................................. 27 

3.5. Rheological properties of hydrogels ............................................................................ 28 

3.5.1. Determination of gelation time .............................................................................. 28 

3.5.2. Shear strength of crosslinked composite hydrogels .............................................. 29 

4. Conclusions ......................................................................................................................... 33 

5. Literature ............................................................................................................................. 34 

 



1 
 

1. Introduction 

 

A variety of bioactive organic-inorganic composites have been investigated over the last 

two decades as scaffolds for pathological or damaged bone in the human body. Bioactive 

organic-inorganic composites are materials formed by an organic matrix and a reinforcement of 

inorganic particles. Those kinds of materials are inspired on the composition of the living bone 

and the particles usually provide matrix strengthening and bioactivity. At the ultra-structural 

level, human bone is a composite material consisted of nanometric apatite crystals and collagen 

fibres, therefore a polymer matrix composite containing a bioactive component as a particulate 

appears a natural choice for a bone substitute. The bioactivity of the composite, which is 

rendered by the bioactive component in the composite, promotes the tissue growth adjacent to 

the implant and the formation of a strong bond between the tissue and the implant after 

implantation [1,2]. As such, bioactive composite materials have an important role in the 

development of bone tissue engineering. There are multiple clinical reasons to develop bone 

tissue-engineered alternatives, including the necessity for better filler materials that can be used 

in the reconstruction of large orthopaedic defects and for orthopaedic implants that are 

mechanically more suitable for biological environment.  
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Figure 1. Hierarchical bone structure at various scales [3]. 

 

Bone tissue engineering (BTE) is based on the understanding of bone structure (Figure 

1), bone mechanics, and tissue formation as it aims to induce new functional bone tissues. The 

classic BTE paradigm highlights several key players: a) a biocompatible scaffold that closely 

mimics the natural bone extracellular matrix niche, b) osteogenic cells to deposit the bone tissue 

matrix, c) morphogenic signals that help to direct the cells to the phenotypically desirable type, 

and d) sufficient vascularization to meet the growing tissue nutrient supply and clearance needs 

[4].  

Among tissue reconstruction strategies, the use of biomaterials is an attractive alternative method 

due to their flexibility and possibility for further development. In addition to providing a broad 

range of materials, biomaterials allow for structural manipulations to improve the dispositive 

biocompatibility and increase the chance of success in reparative and regenerative procedures 

[5]. 

 The evolution of bone graft biomaterials can be categorized into four different 

generations. The first generation of bone grafts are metals and alloys which have excellent 
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mechanical properties, but are neither bioresorbable nor bioactive. Their lifetime is limited and 

hence need to be removed and replaced surgically. The second generation of bone grafts includes 

bioactive ceramics and bioresorbable polymers. The third generation of bone grafts is focused on 

composite scaffolds which combine the strength, stiffness and osteoconductivity of ceramics 

with the flexibility, toughness and resorbability of polymers. Fourth generation of bone grafts are 

polymer-ceramic composite scaffolds with the incorporation of osteogenic cells, growth factors 

or bone morphogenetic proteins, used alone or in a combination [6].  

One of the greatest advances in bone tissue engineering has also been a development of 

hydrogels, which present properties suitable for biomedical application. Structurally, these 

systems resemble the extracellular matrix of many natural tissues, giving them high 

biocompatibility. In addition, hydrogels have flexible processing methods and can be used as 

scaffolds, controlled release systems for drugs, cells or growth factors, and as barriers or 

adhesives at the biomaterial-tissue interface. Recently, hydrogels that exhibit in situ gelation 

have been widely researched due to their ability to remain liquid at room temperature and 

become gel at body temperature which makes them suitable for injection purposes. Therefore, 

injectable hydrogels, which offer minimally invasive surgery are promising scaffolds for cell 

encapsulation, drug delivery, tissue repair, and reconstructive surgery. Nonetheless, injectable 

hydrogels may be well suited to tissue repair, but they have to be biocompatible, biologically 

stable, and without toxic initiating system [7]. Moreover, they can fill even small and irregular 

damaged cavities, easily incorporate therapeutic agents, and be manipulated to improve their 

physical and bioactive properties [5]. 
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2. State of the art 

2.1. Hydrogels 

 

Over the years, researchers have defined hydrogels in many different ways. The most 

common proposition is that hydrogel is a water-swollen cross-linked polymer network produced 

by the simple reaction of one or more monomers [8]. Another definition is that a polymer 

material exhibits the ability to swell and retain a significant fraction of water within its structure, 

but will not dissolve in water. Hydrogels have received considerable attention in the past 50 

years due to their exceptional promise in wide range of applications. They possess also a degree 

of flexibility very similar to natural tissue due to their large water content [9]. 

Natural origin hydrogels have gained much popularity because of their similarity to the 

extracellular matrix (ECM) and higher regeneration rate [10]. They are widely recognized as a 

useful material for a wide range of biopharmaceutical and biomedical applications due to their 

excellent properties, such as high biocompatibility and low mechanical irritation of surrounding 

tissues after implantation in vivo. Hydrogel’s network can be prepared from natural, synthetic 

polymers or polymer blends and hybrids. Based on the polymer origin, hydrogels can be 

classified into three major types: 1) natural, 2) synthetic, and 3) synthetic-natural hybrid 

hydrogels.  

 This section describes the properties of polymers that have been used for designing and 

fabricating the hydrogel scaffolds. The mostly used polymers for mentioned purpose are natural 

polymers. Natural polymers have been used to make natural hydrogels as scaffolds for tissue 

engineering owing to their biocompatibility, inherent biodegradability and critical biological 

functions. There are four major types of natural polymers, including:  

1) Proteins, such as collagen, gelatin, fibrin, silk;  

2) Polysaccharides, such as hyaluronic acid, agarose, dextran and chitosan;  

3) Protein/polysaccharide hybrid polymers, such as collagen/hyaluronic acid, 

laminin/cellulose, gelatin/chitosan and fibrin/alginate;  

4) DNA [11-13]. 
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However, the application of natural hydrogels is often restricted because of concerns regarding 

potential immunogenic reactions and relatively poor mechanical properties. 

 Compared with natural polymers, synthetic polymers possess more reproducible physical 

and chemical properties, which is critical for the fabrication of tissue-engineered scaffolds. 

Currently, synthetic polymers have emerged as an important alternative for fabricating hydrogel 

tissue-engineered scaffolds because they can be molecularly tailored with block structures, 

molecular weights, mechanical strength and biodegradability. Synthetic polymers used for 

preparing synthetic hydrogels are classified into three major types, including non-biodegradable, 

biodegradable and bioactive polymers. Biodegradability is one of the most important 

considerations of scaffolds for tissue engineering. It is highly desirable to ensure that the 

biodegradation rate coincides with new tissue regeneration at the defect site [14]. 

 

Hydrogels are broadly classified into two categories:  

1. Permanent/chemical gel: they are called ‘permanent' or ‘chemical’ gels when they are 

covalently cross-linked networks. Therefore, they are stable and cannot be dissolved in 

any solvents unless the covalent crosslink points are cleaved.  

2. Reversible/physical gel: they are called ‘reversible’ or ‘physical’ gels when the networks 

are held together by molecular entanglements, and/or secondary forces including ionic, 

hydrogen bonding or hydrophobic interactions. In physically cross-linked gels, 

dissolution is prevented by physical interactions, which exist between different polymer 

chains. All of these interactions are reversible, and can be disrupted by changes in 

physical conditions or application of stress.  

 

Although physically crosslinked hydrogels have the general advantages of forming gels without 

the need for chemical modification or the addition of crosslinking entities, they have some 

limitations. It is difficult to decouple variables such as gelation time, network pore size, chemical 

functionalization, and degradation time; this restricts the design flexibility of a physically 

crosslinked hydrogel because its strength is directly related to the chemical properties of the 

constituent gelling agents. In contrast, chemical crosslinking results in a network with a 

relatively high mechanical strength and, depending on the nature of the chemical bonds in the 

building blocks and the crosslinks, relatively long degradation times. Chemically crosslinked 
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gels are also mechanically stable owing to the covalent bond in these gels. The detailed 

classification is presented in table 1 [15]. 

 

Table 1. Methods for synthesizing physically and chemically crosslinked hydrogels. 

 

Physically crosslinked hydrogels Chemically crosslinked hydrogels 

Ionic interactions (alginate etc.) Polymerization (acryloyl group etc.) 

Hydrophobic interactions  

(PEO–PPO–PEO etc.) 
Radiation (γ-ray etc.) 

Hydrogen bonding interactions (PAAc etc.) 
Small-molecule crosslinking  

(glutaraldehyde etc.) 

Stereocomplexation  

(enantiomeric lactic acid etc.) 

Polymer–polymer crosslinking  

(condensation reaction etc.) 

Supramolecular chemistry  

(inclusion complex etc.) 
 

 

 

2.2. Injectable hydrogels 

 

A major achievement of hydrogel-based technology is the development of in situ 

crosslinking mechanisms which renders the system injectable by allowing an aqueous mixture of 

gel precursors and bioactive agents to be administered using a syringe [16]. In particular, in situ 

gelling hydrogels have attracted attention for drug delivery application and tissue regeneration 

[17]. Compared with preformed hydrogels, in situ gelling hydrogels are attractive because they 

can fill any shape of a defect, allow homogeneous incorporation of therapeutic molecules or 

cells, and do not require surgical procedures for implantation [18]. 

In situ gelling hydrogels can also be subdivided into the two categories above mentioned: 1) 

chemical crosslinking (such as photocrosslinking, Michael-type reactions, Schiff-base formation 

reactions), and 2) physical crosslinking (such as ionic interactions, hydrophobic interactions and 

stereocomplexation) [19-21].   
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Physically crosslinked hydrogels are usually formed under mild conditions providing a friendly 

environment to cells and bioactive molecules. However, they generally have a low mechanical 

strength, and changes in the external environment (e.g. ionic strength, pH, temperature) may give 

rise to disruption of the hydrogel network. Chemically crosslinked hydrogels, on the other hand, 

may exhibit enhanced mechanical strength and better stability, but with possible lower 

bioactivity and biocompatibility. In order to obtain a chemically crosslinked hydrogel, the use of 

additives such as photo-initiators, crosslinking agents, or organic solvents are often required 

[22]. Those additives may be cytotoxic, resulting in a non-biocompatible hydrogel. Photo-

crosslinking as one of the method for injectables may also lead to a local increase of temperature, 

which subsequently may damage neighbouring cells and tissues. 

 

  An emerging approach for in situ formation of hydrogels is based on enzyme-catalyzed 

crosslinking reactions. Usually, hydrogels have been obtained by horseradish peroxidase (HRP)-

catalyzed crosslinking reactions [23]. HRP is a single-chain β-type hemoprotein that catalyzes 

the coupling of phenol or aniline derivatives via decomposition of hydrogen peroxide [24]. As a 

natural polymer possessing functional groups, gelatin has a potential to form HRP-catalyzed 

injectable hydrogels for cell encapsulation. However, the lack of HRP-reactive groups requires 

additional modification of gelatin macromolecules. 
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2.2.1. Injectable gelatin-based hydrogels 

  

Gelatin is a natural polymer composed of amino acids. It is produced by partial 

hydrolysis of collagen extracted from the skin, bones and connective tissues of domestic animals 

[25]. It is commonly used for pharmaceutical and medical applications due to its biodegradability 

and biocompatibility in physiological environments. The chemical properties of gelatin are 

affected by amino acid composition, which is similar to that of the parent collagen, thus 

influenced by animal’s species and type of tissues [26]. In the present work, we used porcine 

skin gelatin which is produced from acidic treatment and it is known as the type A gelatin.  

Aqueous gelatin solution, obtained by heating a suspension of gelatin powder to over 

approximately 40 °C will form physical hydrogels when cooled down to less than 30 °C. Gelatin 

forms a triple helix in a solid state, however, upon heating in water some of its triple helices 

dissolve forming a gel after cooling. This is because the triple helice structures act as 

crosslinking points of the hydrogel. If subsequently heated to around 40 °C, the α-helices remelt 

and result in a gel-to-sol transition. This means that, at a body temperature, gelatin is in liquid 

state and cannot form a stable hydrogel limiting the application of thermally-induced formation 

of gelatin hydrogels in tissue engineering.  

To avoid dissolution, lot of studies include the application of chemical crosslinker as 

glutaraldehyde, genipin, carbodiimides etc. A drawback of those crosslinkers is the potentially 

cytotoxic chemical reactions to form the hydrogel, which has to be performed outside of the 

body. Several washes are necessary to remove residual and ureacted products after gelation. 

Besides, the obtained hydrogel has the shape of the mould in which it was produced.  

 Recently, gelatin-tyramine conjugates have been proposed as injectable hydrogels as they 

form stable hydrogels under a non-cytotoxic enzymatically catalyzed reaction in the presence of 

small amounts of hydrogen peroxide. Gelatin derivatives possessing phenol groups were 

synthesized by combining gelatin and tyramine hydrochloride via the carbodiimide-mediated 

condensation of the carboxyl groups of gelatin and the amino groups of tyramine, as shown in 

figure 2 [21]. Controlling the content of phenol groups can tune the mechanical properties of 

gelatin hydrogels. It has been found that the resistance forces increase by decreasing the content 

of phenol groups [18]. 
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Figure 2. Synthesis scheme of gelatin–phenol (gelatin-Ph) derivative using tyramine [28]. 

 

2.2.2. In situ precipitation of hydroxyapatite 

 

 Numerous studies on apatite and polymer-apatite composites have confirmed positive 

influence of hydroxyapatite on cell proliferation, differentiation and growth in vitro and in vivo 

[27-29]. Therefore, incorporation of hydroxyapatite within gelatin matrix can mimic a complex 

composition of natural bone which is mainly composed of a mineralized organic phase, i.e. 

collagen fibres with nanometric crystals of calcium phosphate (apatites). Hydroxyapatite and 

other related calcium phosphate minerals have been utilized extensively as implant materials for 

many years due to their excellent biocompatibility and bone bonding ability, and structural and 

compositional similarity to the mineral phase of hard tissue [30]. 
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Figure 3. Tissue engineering strategy of biopolymer/calcium phosphate nanocomposites [4]. 

 

 Hydroxyapatite (HA) with the chemical formula Ca10(PO4)6(OH)2 is one of the calcium 

phosphate (CaP) ceramics and it is clinically available as a synthetic bone substitutes [31]. 

Hydroxyapatite’s excellent properties of bioactivity, osteoinductivity and osteoconductivity lie 

on its biologically resorbable nature and ability for ionic substitution.  

Hydroxyapatite is chemically similar to bone mineral but it lacks many other ions that are also 

present in native bone. Substitutions can be made into the hydroxyapatite lattice to mimic the 

chemical composition of bone more closely. The first type of substitution is a cationic 

substitution where the substituted ions replace the calcium atoms in the lattice. The other type, 

anionic, has two forms as it covers substitutions for the both the hydroxyl (type A) and 

phosphate (type B) groups.  

 A potential method of producing synthetic HA with enhanced osteointegration is to 

incorporate ions that are present in bone mineral, such as carbonate ions, into the HA structure. 

In addition to calcium, phosphate and hydroxyl ions, the inorganic component of hard tissues 

contains a significant proportion of carbonate ions (2 – 8 wt.%). Carbonate ion substitution has 
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the effect of inducing lower crystallinity and a higher number of structural defects within the HA 

structure [32]. 

Hydroxyapatite can be prepared either as stoichiometric HA or as calcium-deficient HA. 

Stoichiometric apatite, Ca10(PO4)6(OH)2, has a Ca/P ratio of 10:6, normally expressed as 1.67. It 

is used in various medical applications such as repairing of bone defects and bone augmentation, 

orthopaedics, odontology, coating of metal implants etc. In contrast to stoichiometric calcium 

HA with a Ca/P molar ratio of 1.67, biological apatites contain minor substituent in their 

structure (CO3
2-

, Cl
-
, Mg

2+
, K

+
, Na

+
). Those types of apatites are usually calcium-deficient with a 

Ca/P molar ratio lower than 1.67, and CO3
2-

 substitutes primarily for PO4
3-

 groups (B-type 

substitution) [33]. 

 Hydroxyapatite can be synthesised via numerous production routes in wet state 

(precipitation, hydrothermal technique, hydrolysis of other calcium phosphates), using a range of 

different reactants. Depending upon the technique, materials with various morphology, 

stoichiometry, and level of crystallinity can be obtained. Wet-chemical precipitation route is the 

most talented route owing to its ease in experiment operations, low working temperature, high 

percentages of pure products and inexpensive equipment requirement [34]. Usually, precipitation 

method is based on the addition one precursor to another in a stoichiometric ratio of calcium and 

phosphorus (Ca/P = 1.67) with continuous stirring and pH regulation [35]. The most common 

hydroxyapatite synthesis is based on reaction of calcium and orthophosphate ions originated 

from different starting materials. 

 

Up till now, researches of hydrogels based on gelatin and hydroxyapatite have been 

conducted. Peng and Wang have synthesized a composite of gelatin and hydroxyapatite using 

glutaraldehyde as a crosslinker [36]. Azami and Rabie have been designed glutaraldehyde 

crosslinked gelatin/hydroxyapatite nanocomposite as well [24]. According to the available 

literature, synthesis of injectable composite hydrogel based on in situ formed hydroxyapatite and 

tyramine grafted gelatin has not yet been proposed.  
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 The synthesis of polymer-apatite hydrogels simply by blending both phases can rise up 

difficulties in the homogeneity of the microstructure of the final product. To minimize the 

agglomerating factor of hydroxyapatite particles added into the matrix, the in situ synthesis has 

been proposed. Usually, nitrate precursors as a source of calcium ions have been used regardless 

to the possibility of development of toxic nitrogen oxides (NOX). As previously stated, biological 

apatite is carbonate-substituted hydroxyapatite. Thus, calcium carbonate as a non-toxic calcium 

precursor could provide in situ synthesis of biologically more active apatite phase similar to 

biological one. The formation of hydroxyapatite crystals in situ from initial calcium carbonate 

can be accomplished by using urea phosphate as a simultaneous phosphate precursor and pH 

regulator by thermal degradation of urea during the HA synthesis. 

Finally, it is assumed that specific groups of gelatin macromolecules (-COOH) could provide 

ordered structure of in situ synthesized hydroxyapatite by acting as nucleation sites for apatite 

crystallization. 
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2.4. Materials and methods 

2.4.1. Materials  

 

Chemicals used for the preparation of injectable composite hydrogels are listed below: 

 

 Gelatin from porcine skin (powder, gel strength ~300 g Bloom, type A; Sigma-Aldrich 

USA) 

 Tyramine hydrochloride (C8H12ClNO; Sigma-Aldrich, USA) 

 Calcium carbonate (CaCO3, calcite; TTT, Croatia) 

 Urea phosphate (UPH, (NH2)2CO-H3PO4; Aldrich Chemistry, USA)  

 Horseradish peroxidase (HRP, type VI, 298 purpurogallin unit/mg solid was purchased 

from Aldrich and used without further purification) 

 Hydrogen peroxide solution (H2O2, 30% (w/w) in H2O, contains stabilizer; Aldrich 

Chemistry, USA) 

 

The preparation of investigated materials can be divided into several steps: 1) synthesis of 

polymer matrix (gelatin-tyramine); 2) synthesis of control material (hydroxyapatite particles);  

3) in situ synthesis of composite hydrogels, 4) synthesis of injectable composite hydrogels. 

 

2.4.2. Tyramine grafting to gelatin 

 

The modified gelatin to be later used as an injectable hydrogel was obtained by grafting 

the amine groups of tyramine to the carboxylic groups of gelatin. The molar ratios for the 

grafting were tyramine/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride 

(EDC)/COOH = 2/2/1 and N-hydroxysuccinimide (NHS)/EDC = 1/10. Briefly, 3% (w/v) gelatin 

was dissolved in 50 mmol/dm
3
 2-(N-morpholino)ethanesulfonic acid (MES) at 60 °C for 30 min 

under stirring (0.6 g of gelatin and 0.195 g of MES in 20 mL). 

Then 0.111 g of tyramine hydrochloride was added and the mixture was stirred for 20 min at 

room temperature. The pH was adjusted to 6, and 7 mg of NHS was added and stirred for 30 min 
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for homogenization. Afterwards, 123 mg of EDC was added to the mixture and stirred for 

another 24 h at 37 °C. Unreacted reagents were removed via dialysis against deionized water for 

48 h. Finally, the modified gelatin was lyophilized for further use and denoted as ‘gel-tyr’. 

 

2.4.3. Synthesis of hydroxyapatite particles as a control material 

 

Hydroxyapatite particles were synthesized as a control for further identification and 

characterization. Hydroxyapatite was prepared by wet chemical precipitation method using 

calcite (CaCO3) and urea phosphate (UPH) as precursor materials. Specific amount of calcite as 

a source of calcium ions was added to 100 mL of deionized water followed by addition of UPH 

with respect to the Ca/P ratio of 1.67. Temperature was set at 50 °C and stirring was continued 

for 4 days. Obtained precipitate suspension was filtered, washed three times with deionized 

water and left to dry at room temperature. After drying, hydroxyapatite powder was obtained as a 

final product.   

 

2.4.4. In situ synthesis of composite hydrogels  

 

The preparation of the composite gelatin-tyramine/hydroxyapatite hydrogel was done by 

in situ wet precipitation method from previously mentioned calcium and phosphate precursors to 

obtain different hydroxyapatite content (2, 5 and 10%) in final composite. Starting 3% (w/v) 

polymer solution was prepared by dissolving gelatin-tyramine powder in deionized water. The 

pH of deionized water was previously adjusted at 7 by adding aqueous NaOH solution (1 

mol/dm
3
). Then, specific amount of calcite was added into polymer solution with rigorous 

stirring at 37 °C. When homogeneous gelatin-tyramine/calcite suspension was achieved, specific 

amount of UPH with respect to the Ca/P ratio of 1.67 was added into the mixture. The reaction 

temperature was set at 50 °C and solution was stirred for 24 hours. The final suspension was 

cooled down to room temperature and subsequently frozen with liquid nitrogen, stored at -80 °C 

overnight and lyophilized. 
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As reference materials, gelatin-tyramine/hydroxyapatite composites were prepared by 

conventional mechanical mixing method as follows: hydroxyapatite particles, obtained by the 

synthesis method described in section 2.4.3., were added into 3 % gelatin-tyramine solution and 

rigorously stirred for 24 h at 50 °C. The final solution was cooled down to room temperature and 

subsequently frozen with liquid nitrogen, stored at -80 °C overnight and lyophilized. 

    

2.4.5. Injectable composite hydrogel preparation 

 

The chemical crosslinking of gelatin-tyramine/hydroxyapatite composite was done by 

firstly preparing 3% composite solution from lyophilized sample obtained in section 2.4.4. The 

crosslinking reaction was achieved using 10% of the total hydrogel volume of 20 U/mL of HRP 

and 10% of the total hydrogel volume of 10 mmol/dm
3
 H2O2 solution. Then, the mixture was 

quickly stirred to obtain a homogeneous solution which allowed formation of a hydrogel at room 

temperature in few minutes. After crosslinking, the samples were washed with deionized water 

dried and stored for further characterization. 

 

2.5. Materials characterization 

2.5.1. The pH monitoring 

 

The pH of the prepared solutions was measured using Schott CG 842 pH-meter with 

BlueLine14 electrode. The pH was measured at each step of described syntheses. 

 

2.5.2. Fourier transform infrared spectroscopy 

 

All prepared samples were characterized by Fourier transform infrared spectroscopic 

analysis (FTIR). FTIR spectra were recorded by ATR-FTIR Bruker Vertex 70 spectrometer with 

diamond crystal, 16 times in the absorption mode in the range of 4000 – 400 cm
-1

 with a 

resolution of 4 cm
-1

 at 20 °C. 
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2.5.3. X-ray diffraction analysis 

 

Mineralogical composition of the dried hydrogels was determined by X-ray diffraction 

analysis (XRD) on a Shimadzu XRD 6000 instrument with Cu K radiation at 40 kV and 30 

mA. The measuring range of angles of 5° < 2θ < 70° with scan rate of 0.2°/s. Identification of 

crystal phase was carried out with ICDD database (The International Centre for Diffraction 

Data). 

 

2.5.4. Scanning electron microscopy 

 

The morphology of lyophilized hydrogels was investigated by scanning electron 

microscopy (SEM) on the instrument TESCAN Vega3SEM EasyProbe in electron beam energy 

of 10 kV. Prior to scanning, the samples were exposed to plasma of gold and palladium for 120 

seconds. 

 

2.5.5. Equilibrium swelling  

 

The swelling capacity of prepared crosslinked hydrogels was evaluated in deionized 

water. Previously weighed samples were immersed in deionized water for 2 h at room 

temperature (no longer times were measured to avoid hydroxyapatite dissolution from the 

samples). The swollen hydrogels were removed from the medium and the remained water excess 

was absorbed with a filter paper. As such, samples were weighed with a microbalance. The 

equilibrium swelling ratio (ESR) was calculated using the following equation 1:  

 

ESR = (ms – md)/md     (1) 

 

Where ms and md are the mass of the hydrogels at the swollen state and at the dry state, 

respectively. 
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2.6. Rheological properties 

 

Rheological characterization of prepared hydrogels was carried out by a Discovery HR-2 

Hybrid Rheometer (TA Instruments) using a cone and plate geometry of 20 cm diameter. The 

gap between the upper and lower plates was kept at of 900 μm. The measurements were taken at  

25 °C using solvent trap to create a thermally stable vapour barrier, virtually eliminating any 

solvent loss during the experiment.  

The influence of the time (ts), the shear strain (γ) and the angular frequency (ω) on shear 

storage modulus (G’) and loss modulus (G”) of hydrogel was measured. 

The time dependence of the shear storage and loss modulus was examined on the in situ gelation 

of the hydrogel in the shear deformation of 2% and the frequency of 0.2 Hz. 

The strain amplitude of crosslinked hydrogel was verified in the range of 0.01 to 100 % of 

deformation at 0.2 Hz to ensure linear viscoelastic region of hydrogel, where storage modulus 

(G’) and loss modulus (G”) are independent of the strain amplitude.  

Finally, dynamic frequency sweep tests of crosslinked hydrogels were performed in order to 

determine the dependence of storage and loss modulus on frequency (100 < ω < 0.01 Hz) at 

constant strain corresponding to the linear viscoelastic region of the hydrogel.  
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3. Results and discussion 

3.1. FTIR identification 

 

 The FTIR spectra of identification of prepared hydroxyapatite particles and composite 

hydrogels by infrared spectroscopy are given in figures 4 – 6. The FTIR identification of all 

prepared systems is focused on wave number range of 4000 – 400 cm
-1 

to characterize calcium 

phosphate phase formed by in situ precipitation reactions. 

Figure 4 shows spectrum of hydroxyapatite particles as a control sample for identification of 

further in situ formation of apatite phase within the gelatin-tyramine matrix, with its 

characteristic bands: the band at 1026 cm
-1 

corresponds to the asymmetric stretching of the 

phosphate (PO4
3-

)
 
bonds, while absorption band at 962 cm

-1
 corresponds to the symmetric 

stretching of the PO4
3-

 bonds. Besides stretching, the asymmetric bending of phosphates was 

observed at 561 cm
-1

 [37]. These are the most characteristic chemical groups in the FTIR 

spectrum of synthesized hydroxyapatite. [38].  

 

 

Figure 4. FTIR spectrum of hydroxyapatite particles. 
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Beside characteristic phosphate bands, weak absorption bands at wave number of 1454 and 1421 

cm
-1 

are associated with carbonate groups (CO3
2-

). The presence of CO3
2- 

bands can signify 

substitution of phosphate ions, which means formation of a B-type substituted hydroxyapatite 

[39-40].  

 

The figure 5 illustrates the FTIR spectra of injectable composite hydrogels with different content 

of in situ formed hydroxyapatite compared with pure gel-tyramine hydrogel. All prepared 

hydrogels show absorption bands at 561 cm
-1

 and 601 cm
-1

 associated with the asymmetric 

bending of PO4
3-

 bond, and band at 1035 cm
-1

 confirming formation of apatite phase [39]. The 

clarity of phosphate band increases by the concentration of hydroxyapatite precursors, with most 

observable intensity in composite with 10% of HA.  

The amine absorption band arising from N-H stretching of gelatin-tyramine matrix was 

distributed at 3270 – 3370 cm
-1

, while C-H stretching is observed by the band at 2947 cm
-1

. 

Characteristic amid bands were found at 1633 cm
-1

 for the carbonyl group in amid bond (amid I), 

while N-H deformation at 1540 cm
-1

 (amid II) [40]. The band at 1429 cm
–1

 corresponds to C=O 

asymmetric stretching vibration [41]. Since gelatin-tyramine possesses strong intensity through 

all measured region, identification of carbonate groups substituted in hydroxyapatite lattice is 

very difficult. 

It is assumed that, during the in situ apatite reactions within gelatin-tyramine matrix, the calcium 

(Ca
2+

) ions from hydroxyapatite precursors (calcite) can form specific complexation with 

carboxyl (-COO-) ions of gelatin molecules allowing nucleation sites for apatite crystal 

formation [42].  
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Figure 5. FTIR spectra of gelatin-tyramine/in situ HA hydrogels. 

 

The FTIR spectra of control materials obtained by conventional mechanical mixing of 

hydroxyapatite particles within gelatin-tyramine matrix are shown in figure 6. As it can be seen, 

control materials show very similar spectra as hydrogels prepared by in situ synthesis. The 

characteristic bands for phosphate group indicating the presence of apatite phase in composite 

hydrogels can be found at 1033, 601 and 561 cm
-1

. Once again, characteristic amid bands of 

gelatin-tyramine are noted at 1633 and 1544 cm
-1

.  

The significant difference in absorption spectra of in situ formed composites and control 

materials has not been observed, from which successful in situ apatite formation can be 

confirmed.    
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Figure 6. FTIR spectra of gelatin-tyramine/HA particles hydrogels. 

 

3.2. Determination of mineralogical composition 

 

 The mineralogical composition of synthesized hydroxyapatite particles was confirmed by 

X-ray powder diffraction analysis (XRD) and ICDD (International Centre for Diffraction Data) 

card catalogue. The XRD patterns of hydroxyapatite particles and hydroxyapatite standard 

(ICDD 9-432) are given in figure 7.  

 

Mechanical mixing 
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Figure 7. XRD patterns of hydroxyapatite particles and hydroxyapatite standard (ICDD 9-432). 

 

Comparing the obtained pattern, hydroxyapatite as the only mineralogical phase of synthesized 

particles has been observed. Regarding the morphology of the particles, low crystallinity 

associated with small crystals can be indicated by wider X-ray diffraction maxima at 2 = 26° 

and 32°.   

 

XRD diffraction patterns of in situ formed composite hydrogel are shown in figure 8. The 

presence of gelatin in composite hydrogels is identified with typical maxima at 2θ = 7.8°  

(d101 = 11.08 Å) and at 22.12° (d101 = 4.01 Å), as shown in figure 8. These characteristic 

diffraction maxima are usually assigned to the triple-helical crystalline structure in collagen and 

gelatin.  

The apatite phase is confirmed by the maximum at 2 32° clearly visible for composite 

hydrogel consisted of 10 % of hydroxyapatite. A broad maximum indicates low crystallinity of 

in situ formed apatite, which can be accompanied by better dispersion of inorganic phase within 

gelatin-tyramine matrix. Such crystallographic structure resembles the morphology of the 
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biological apatite of natural bone and has a larger specific surface area. Low intensity of 

characteristic hydroxyapatite maximum in other composite hydrogels (2% HA and 5% HA) 

could be due to lower precursors fraction. The XRD patterns indicate that hydroxyapatite is only 

inorganic phase, while traces of other calcium phosphates were not detected by this technique. 

 

 

 

Figure 8. XRD patterns of gelatin-tyramine/in situ HA hydrogels. 

 

 The control samples of composite hydrogels show similar X-ray diffraction patterns 

regarding the in situ sysnthesized ones (figure 9). The notable difference in the shape of 

diffraction maximum at 2 32° is observed for composite with 10% of HA particles as more 

narrow with respect to the composite with 10% of in situ HA. This effect could indicate greater 

crystallinity of HA particles which are added into gelatin-tyramine matrix. Moreover, composite 

hydrogel with 5% of HA particles shows clearer diffraction maximum at 2 32° which could 

also be a result of possible particle agglomeration into bigger grains during mechanical mixing.  
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Figure 9. XRD patterns of gelatin-tyramine/HA particles hydrogels. 

 

3.3. Microstructure of injectable hydrogels 

 

  Since the morphology of a hydrogel contributes significantly to its ability to encapsulate 

cells, the morphology of the surface and cross section has been examined by SEM imaging. 

Figure 10 shows SEM micrographs of the pure gelatin-tyramine, in situ synthesized composite 

hydrogels and control materials. Prior to imaging, all samples were shock-frozen in liquid 

nitrogen, quickly transferred to a freeze drier and lyophilized for 72 h. The lyophylization 

procedure is used to preserve the porous microstructure of prepared hydrogels by withdrawing 

the water through sublimation under vacuum, after having the product frozen: by heating up 

water in a frozen state under very low air pressure conditions, the water changes directly into the 

gaseous state (steam). This released steam is caught up in a cooling coil and removed. This 

technology allows keeping the quality of the product unchanged. This is the only way of drying, 

which does not change the molecular structure of the various molecules of the product [41]. 

Mechanical mixing 



25 
 

Comparing the hydrogel micrographs, changes in the microstructure of the composite 

material are visible by increasing the fraction of hydroxyapatite. The presence of apatite 

agglomeration can be seen at higher HA content as a result of stronger interactions between HA 

phase. 

The in situ synthesis of composite hydrogels resulted with formation of smaller plate-like 

hydroxyapatite crystals resembling the biological bone tissue. Additionally, those crystal show 

typical cauliflower morphology already reported by other studies [37, 43]. 

In contrast to the in situ formed composites, control materials have shown irregular particles of 

hydroxyapatite agglomerated in larger clusters, which is clearly visible in control sample with 

10% of HA particles (figure 10g). This could be an effect of poor particle distribution which 

leads to precipitation of inorganic phase and non-homogeneity of the hydrogel. 

Based on SEM imaging, in situ synthesis of gelatin-tyramine/hydroxyapatite composite 

has allowed formation of smaller apatite crystals ensuring higher specific area of osteoinductive 

component.   
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Figure 10. SEM images of composite hydrogels: A) gelatin-tyramine; B) 2% in situ HA; D) 5% in situ 

HA; F) 10% in situ HA; C) 2% HA particles; E) 5 % HA particles; and G) 10% HA particles. 

Scale bar: 10 and 50 µm.  
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3.4. Equilibrium water swelling of crosslinked hydrogels  

 

One of the main factors that influence the diffusion of nutrients and the mechanical 

properties of hydrogels is the swelling property, which is related to the porosity of the systems 

and crosslinking degree. All prepared hydrogels show high swelling ratio with values higher than 

2500 % after 2 h being immersed in water (figure 11), which is of great importance for cells and 

nutrients diffusion. The equilibrium water content indicates that hydrogels have capacity to 

uptake and retain water content greater than their own weight which is advantage in practical 

applications to have stable implant during cell culture or implanted site contact.  

 

 

Figure 11. Swelling capacity of crosslinked injectable hydrogels.  

As seen from figure 11, the presence of hydroxyapatite influences the content of absorbed water causing 

constrain during the swelling. This effect can be described as a formation of HA barrier that prevents 

water permeation into gelatin-tyramine matrix. The significant difference in swelling capacity of in situ 

formed composite hydrogels has not been observed, although, in situ synthesis have provide higher 

swelling of hydrogels with respect to the control materials. This could be a result of better matrix-filler 

interactions and lower interface energy without forming agglomerates. It seems that smaller crystals 

obtained by complex in situ hydroxyapatite formation, indicated by SEM analysis, stabilize the 

hydrocolloid structure of gelatin-tyramine during the swelling allowing greater water absorption.  

 

In situ synthesis                Mechanical mixing 
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3.5. Rheological properties of hydrogels 

 

 The hydrogel as an injectable system should have an optimum viscosity to allow secure 

coverage of the defect during the implantation without flowing down [44]. To improve 

knowledge regarding the gelation kinetics and gel mechanical properties, the rheological 

behaviour, decomposed in both components G’ and G” modulus, has been monitored. Although 

the gelation time determination strategy, based on the intersection of elastic and viscous moduli, 

has been repeatedly used in literature, it often provides a rough approximation [45].  

3.5.1. Determination of gelation time 

 

The gelation time of the composite hydrogels (table 2 and 3) were assessed by 

rheological testing using the time sweep test at 25 °C. The gelling time values of composite 

hydrogels and control materials crosslinked with HRP and H2O2, given in table 2 and 3, were 

determined as an intercept of tangents drawn at the beginning and the end of gelation curve 

(figure 12a). The gelation of in situ formed hydrogels shows high dissipation of values, in which 

significant difference is noted only for 10% of in situ HA. This behaviour can be related to 

viscosity increment due to larger apatite crystals formed by higher fraction of HA precursors. 

Nevertheless, possible experimental error due to difficult handle of the samples is also assumed.  

 

Table 2. Gelation time of in situ formed composite hydrogels. 

System gel-tyr 2% 5% 10% 

Gelation time (s) 205.68 ± 2.16 240.75 ± 43,42 203.8 ± 1.96 275.77 ± 2.93 

 

Table 3. Gelation time of control materials. 

System gel-tyr 2% 5% 10% 

Gelation time (s) 205.86 ± 2.16 229.79 ± 6.12 224.67 ± 1.78 227.83 ± 13.45 

 

The control composite materials show similar gelation time regarding the different fraction of 

hydroxyapatite particles with respect to the pure gelatin-tyramine matrix. Taking into account 
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possible experimental errors, we can assume that hydroxyapatite presence does not influence the 

gelation time of crosslinked gelatin-tyramine hydrogel. 

Regarding the shear strength during the crosslinking reaction, all investigated hydrogels show 

similar behaviour of storage modulus with time as rapid increment during the initial 200 s of 

testing followed by reaching the plateau which indicates completed crosslinking reaction. 

 

3.5.2. Shear strength of crosslinked composite hydrogels 

 

Figure 12a shows the typical time sweep profiles of shear behaviour for pure gelatin-

tyramine, in situ formed composite hydrogels and control materials crosslinked with HRP and 

H2O2. To evaluate storage (G’) and loss (G”) modulus of each material, samples were subjected 

to oscillatory stress sweep experiment. This way, we applied shear stress range over which 

storage modulus is independent of the applied shear stress, defined as linear viscoelastic region 

(LVR). The LVR profiles of all crosslinked hydrogels are depicted in figure 12b, while shear 

parameters determined at 1 Hz and 25 °C are summarized in tables 4 and 5. 
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Figure 12. Rheological testing a) time sweep; b) oscillatory stress sweep; and c) oscillatory 

frequency sweep of composite hydrogels. 

 

According to the strain amplitude testing, the presence of in situ hydroxyapatite show slight 

increment in shear strength of composite hydrogels regarding the pure gelatin-tyramine. It is 

possible that in situ HA synthesis has provided secondary interactions between polymer and 

filler resulting in higher persistence to shear deformation. However, significant influence of in 

situ HA fraction has not been observed. 
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Table 4. The shear parameters of in situ formed composite hydrogels determined at constant 

deformation of 1% and frequency of at 1 Hz. 

 
Storage modulus (Pa) Loss modulus (Pa) tan () ^10

3 

gel-tyr 821.78 ± 39.39 1.21 ± 0.05 2.07 ± 1.12 

2% HA 971.05 ± 76.94 1.98 ± 0.94 2.07 ± 1.12 

5% HA 1119.67 ± 54.49 2.63 ± 0.48 2.92 ± 0.01 

10% HA 1009.98 ± 45.58 1.18 ± 0.82 2.13 ± 1.01 

 

Table 5. The shear parameters of control materials determined at constant deformation of 1% and 

frequency of at 1 Hz. 

 
Storage modulus (Pa) Loss modulus (Pa) tan () ^ 10

3
 

gel-tyr 821.78 ± 39.39 1.21 ± 0.05 2.07 ± 1.12 

2% HA 949,14 ± 111.79 1.46 ± 0.10 2.20 ± 1.35 

5% HA 1503.94 ± 73.22 1.79 ± 0.04 1.52 ± 0.15 

10% HA 699.83 ± 293.10 0.88 ± 0.11 3.40 ± 0.58 

 

 

During the evaluation of control materials, composite with 5% of HA particles has 

emerged as a sample with highest storage modulus, while sample with 10% has shown large 

values dissipation. Once again, a possible error cannot be neglected and re-evaluation of 

rheological behaviour of crosslinked hydrogels is required.     

Finally, frequency sweep experiments (Figure 12 c) were carried out to investigate the gel 

properties of the cured systems, namely, the stability of three-dimensional crosslinked networks. 

The obtained data revealed that all hydrogels exhibit a plateau of storage modulus in wide range 

of frequency, which indicates stable crosslinked network of all prepared hydrogels. 

 



32 
 

The behaviour of crosslinked hydrogels can be characterized by the ratio between the loss 

modulus and storage modulus (G”/G’). This ratio is defined as the loss factor (tan (δ)) and can be 

calculated by the equation 2: 

                                            G”/G’ = tan (δ)     (2)  

For the ratio G”/G’> 1, material behaves as a viscous liquid, while for G”/G’ < 1 material acts as 

an elastic solid. It has been considered, that lower ratio indicates elastic material or a gel with 

greater number of network junctions [43].  
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4. Conclusions 

 

Gelatin and hydroxyapatite are most frequently used components for preparation of potential 

bone tissue grafts due to its biocompatibility, biodegradation and osteoinductivity. In this work, 

injectable composite hydrogels based on tyramine modified gelatine and in situ formed apatite 

have been prepared and characterized using FTIR analysis, X-ray diffraction, SEM imaging and 

rheological testing. 

 In situ synthesis showed a positive effect on the formation of hydroxyapatite (HA) as the 

calcium phosphate phase in the gelatin-tyramine matrix. 

 The broad maximum obtained by XRD analysis indicates low crystallinity of in situ 

formed apatite similar to biological apatite. 

 All prepared hydrogels show high swelling ratio which is advantage in practical 

applications to have stable implant. The presence of hydroxyapatite influences the 

reduction of swelling. With respect to the control materials, in situ synthesis has provided 

higher swelling of composite hydrogels.  

 Investigated composite hydrogels show similar behavior of storage modulus with time as 

rapid increment followed by reaching the plateau which indicates completed crosslinking 

reaction 

 Samples with in situ hydroxyapatite show slight increment in shear strength of composite 

hydrogels regarding the pure gelatin-tyramine 

 A storage modulus plateau in wide range of frequency of all prepared injectable 

hydrogels indicates stable crosslinked network. 

Based on the presented research, prepared injectable hydrogels show good potential for 

further investigation of physical and biological properties and clarification of the 

hydroxyapatite influence of gelation mechanism and hydrogel’s bioactivity and 

osteonductivity. 
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