Identifikacija polimernih ambalažnih materijala FTIR spektroskopijom

Perešin, Anita

Undergraduate thesis / Završni rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Chemical Engineering and Technology / Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:149:701614

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-14

Repository / Repozitorij:

Repository of Faculty of Chemical Engineering and Technology University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE SVEUČILIŠNI PREDDIPLOMSKI STUDIJ

Anita Perešin

IDENTIFIKACIJA POLIMERNIH AMBALAŽNIH MATERIJALA FTIR SPEKTROSKOPIJOM

ZAVRŠNI RAD

Voditelj rada:	Doc.dr.sc. Domagoj Vrsaljko
Članovi ispitnog povjerenstva:	Prof. dr. sc. Vesna Volovšek Dr.sc. Zvonimir Katančić

Zagreb, 11.rujan 2015

Završni rad je izrađen na Zavodu za termodinamiku, strojarstvo i energetiku Fakulteta kemijskog inženjerstva i tehnologije

SAŽETAK

Infracrvena spektroskopija proučava interakciju elektromagnetskog zračenja IR dijela spektra i materije. IR spektroskopija omogućava ispitivanje uzoraka na jednostavan, brz i nedestruktivan način. Može se primjeniti na plinovite, tekuće i krute uzorke.

Ovaj rad daje pregled spektara i identifikacije raznovrsnih ambalažnih materijala korištenih u svakodnevnom životu. Identifikacija se provodi na temelju položaja i intenziteta apsorpcijskih vrpci koje su specifične za određenu strukturnu skupinu. U ovome radu snimljeno je 44 različitih ambalažnih materijala, te su snimljenim vrpcama pripisane katakteristične skupine.

Identifikacija strukturnih skupina u uzorcima ambalažnih materijala analiziranih u ovome radu pokazuje da je većina ambalažnih materijala izrađena od polietilena, polistirena i poli(vinil-klorida).

Ključne riječi: IR spektroskopija, polimeri, ambalažni materijali.

Identification of polymeric packaging materials by FTIR spectroscopy

Infrared spectroscopy studies the interaction between electromagnetic radiation of IR part of spectrum and matter. IR spectroscopy allows sample testing in a simple, fast and non-destructive manner. It can be applied on gaseous, liquid and solid samples.

This paper provides an overview of spectra and identification of various packaging materials used in everyday life. The identification is carried out based on the position and intensity of the absorption bands that are specific to a particular structural unit. In this paper 44 samples of various packaging materials were recorded. Characteristic groups were attributed to each recorded band.

Identification of structural groups of packaging materials studied in this paper showed that most packaging materials are made of polyethylene, polystyrene and poly (vinylchloride).

Key words: IR spectroscopy, polymers, packaging materilas.

Sadržaj

1.	Uvo	od	. 1
2.	Opd	ći dio	. 2
	2.1.	Otkriće infracrvenog zračenja	. 2
	2.2.	Elektromagnetski spektar	. 3
	2.3.	Interakcija elektromagnetskog zračenja i materije	.4
	2.4.	Radni princip FTIR spektrometra	. 6
	2.5.	Analiza spektra	. 8
	2.6.	Transmisijsko mjerenje	.9
	2.7.	ATR spektrometrija	13
	2.8.	Difuzna refleksija	16
3.	Eks	perimentalni dio	17
4.	Rez	ultati i rasprava	19
5.	Zak	ljučak	31
6.	Lite	eratura	33

1. Uvod

Infracrvena spektroskopija (IR spektroskopija) jedna je od najvažnijih metoda u identifikaciji uzoraka, a jedno od najvažnijih značenja ove metode je visoka informacijska vrijednost spektra, te mogućnost proučavanja najraznovrsnijih uzoraka. Identifikacija strukturnih skupina određenog uzorka provodi se na temelju položaja i intenziteta apsorpcijskih vrpci. Na taj način možemo izravno dokazati postojanje određene strukturne skupine.

Infracrveni spektrometri dostupni su na tržištu od 1940ih, a najveći napredak svakako je bio uvođenje Fourierove transformacije. Time se uštedjelo vrijeme potrebno za dobivanje rezultata.

Najstarija metoda infracrvene spektroskopije je transmisijska metoda, a uz nju u ovom radu korištena je i ATR metoda, eng. *attenuated total reflectance (ATR)*.

Polimerni ambalažni materijali imaju vrlo raširenu upotrebu. Koriste se npr. za pakiranje hrane, lijekova, kozmetike i igračaka. Mogu sadržavati različite dodatke kako bi im se poboljšala svojstva [1].

2. Opći dio

2.1. Otkriće infracrvenog zračenja

Infracrveno zračenje otkrio je 1800. godine astronom Friedrich Wilhelm Herschel. Analizirao je sunčeve zrake i napravio je spektar tako da je usmjerio zraku svjetlosti kroz staklenu prizmu (slika 1.). Zraka svjetlosti podijelila se na različite boje. Herschel je tada izmjerio sposobnost zagrijavanja (eng. *heating ability*) svake boje.

Slika 1. Spektar vidljive svjetlosti.

Kada je mjerio sposobnost zagrijavanja svake boje, Herschel je primjetio neku vrstu nevidljive radijacije iznad crvenog dijela spektra.

Zaključio je da iznad crvenog područja spektra postoji drugačija vrsta svjetla, nevidljiva ljudskom oku, tj. infracrvena svjetlost. Na temelju eksperimenata zaključio je i da određeni medij (npr. voda) može apsorbirati zračenje koje dolazi iz tog spektra. Ovo su bili početci spektroskopije [2].

Slika 2. Elektromagnetski spektar.

Spektroskopija je povijesno gledano nastala proučavanjem vidljive svjetlosti.

Infracrveno zračenje možemo podijeliti na (slika 2.):

NIR (eng. *near infrared spectroscopy*) je spektroskopska metoda koja koristi dio elektromagnetskog spektra od 780 nm do 3000 nm.

MIR (eng. *mid infrared spectroscopy*) je spektroskopska metoda koja koristi dio elektromagnetskog spektra od 3000 nm do 50000 nm.

FIR (eng. *far infrared spectroscopy*) je spektroskopska metoda koja koristi dio elektromagnetskog spektra od 50000 nm pa sve do područja mikrovalova (1 mm) [3].

2.2. Elektromagnetski spektar

Vidljiva svjetlost i infracrvena svjetlost su dijelovi elektromagnetskog spektra različitih valnih duljina. Vidljiva svjetlost nalazi se u području od 390 nm do 780 nm, dok se infracrvena svjetlost nalazi u području između 780 nm i oko 1 mm.

Slika 3. Elektromagnetsko zračenje.

Valna duljina (slika 3.) (λ) je udaljenost između dva vala na sinusoidalnoj krivulji. Frekvencija (ν) je broj titraja u jedinici vremena.

Elektromagnetski valovi putuju brzinom svjetlosti c = 299792458 m/s.

To se može i matematički prikazati ovako:

$$v = \frac{c}{\lambda}$$
 (Hz) (1)

Frekvencija zračenja elektromagnetskih valova proporcionalna je energiji elektromagnetskih valova.

To možemo opisati formulom:

$$E = h^* v \quad (\mathbf{J}) \quad (2)$$

h – Planckova konstanta, iznosi 6,626*10⁻³⁴ Js

U IR spektrometriji važna je i treća veličina, a to je valni broj \tilde{v} , (cm⁻¹) [4]. Valni broj je recipročna vrijednost valne duljine:

$$\tilde{v} = \frac{1}{\lambda} \text{ cm}^{-1}$$
, (3)
a s frekvencijom stoji u sljedećem odnosu:
 $\tilde{v} = \frac{v}{c} \text{ cm}^{-1}$ (4)

2.3. Interakcija elektromagnetskog zračenja i materije

Elektromagnetska svjetlost koja se propušta kroz uzorak djeluje na molekule u tom uzorku. Molekule sadrže dva ili više atoma u svom sastavu, koji su međusobno povezani različitim vezama te imaju definiran prostorni položaj, odnosno imaju određenu kemijsku strukturu. Ako na atome pustimo elektromagnetsko zračenje, oni tim putem mogu primiti energiju te počnu vibrirati oko svojih ravnotežnih položaja. Vibriranje atoma u molekuli dogodit će se samo u slučaju kada se frekvencija zračenja podudara s frekvencijom pri kojoj vibriraju molekule. Ako dovedemo vrlo malu količinu energije molekula će moći samo rotirati.

Kada na molekule pustimo elektromagnetsko zračenje određene frekvencije, zračenje će biti apsorbirano ako su atomi u molekuli promjenjivog dipola, tj. ako se molekula sastoji iz različitih vrsta atoma.

Dvoatomne molekule imaju jedno vibracijsko gibanje. One imaju dva rotacijska stupnja i nisu vezane za gibanje atoma ili centara mase. Troatomne molekule imaju četiri vibracijska gibanja. U prvom nema gibanja atoma ili centra mase i naziva se simetrična istezna vibracija i ona je infracrveno neaktivna za razliku od ostale tri. U drugom načinu gibanja, dva vanjska atoma se gibaju u istom smijeru asimetrično prema centralnom atomu. Sam centralni atom giba se tako da centar mase miruje, odnosno giba se u suprotnom smijeru od dva vanjska atoma, kao što možemo vidjeti na slici 4. Ovakvo gibanje naziva se asimetrična istezna vibracija. U trećem načinu vibriranja vanjski atomi se gibaju okomito na smijer veza, a centralni atom u suprotnome smijeru. Ovakvo vibriranje naziva se deformacijsko vibriranje jer dolazi do promjene vrijednosti valentnog kuta od 180°. Posljednja deformacija se razlikuje od treće samo u vrijednosti valentnog kuta koja iznosi u ovom slučaju 90°. Jedna od takvih molekula je CO_2 , ona je troatomna molekula s nesimetričnom raspodjelom mase [4].

Slika 4. Način vibriranja CO₂ molekule.

Valni broj pri kojem se događa apsorpcija ako na molekulu CO₂ pustimo IR svjetlost za prvi slučaj je između 1285 cm⁻¹ i 1388 cm⁻¹, za drugi slučaj to je pri 2349 cm⁻¹, a za posljednja dva pri 667 cm⁻¹. Svaka molekula apsorbira svjetlost na drugačijoj valnoj duljini i prema tome možemo odrediti o kojim se molekulama, skupinama spojeva radi, te u konačnici i o kojim materijalima.

S druge strane, za razliku od molekule CO_2 , primjerice jednostavni karbonilni spojevi, koji također imaju vezu između atoma C i O, prepoznaju se po intenzivnoj apsorpciji između 1800 cm⁻¹ i 1650 cm⁻¹ [4].

Iz primjera vibracijskog gibanja troatomne molekule, molekulske vibracije zapravo možemo podijeliti na :

- a) vibracije istezanja i
- b) vibracije deformacije

Vibracije istezanja su vibracije duž kemijske veze, a mogu biti simetrične i asimetrične. Vibracije deformacije uzrokuju promjenu kuta između kemijskih veza u molekuli. Vibracijske deformacije su: njihanje, strižna deformacija, uvijanje i mahanje (slika 5.). Koja od vibracijskih deformacija će nastupiti ovisi o odnosu vanjskih atoma sa centralnim atomom molekule [5].

Slika 5. Prikaz vibracija istezanja i vibracija deformacija.

2.4. Radni princip FTIR spektrometra

Slika 6. Konstrukcija FTIR spektrometra.

Glavni dijelovi spektrometra s Fourierovom transformacijom, FTIR spektrometra su: izvor zračenja, interferometar i detektor.

Izvor zračenja uglavnom je globar. Globar je termički izvor zračenja za IR spektrometre. Sastoji se od silicijeva karbida u obliku štapića ili spirale, te se zagrijava do oko 1500 K. Interferometar dijeli upadno infracrveno zračenje u dva snopa. Svaki od njih prolazi svoj optički put, zatim se sastaju i prolaze kroz uzorak. Detektori pretvaraju optičke signale u električne.

Na slici 6. vidi se konstrukcija FTIR spektrometra. Infracrveno zračenje iz termičkog izvora pada na djelitelj. On u idealnom slučaju pola upadnog svjetla propušta, a pola odbija. Odbijeni dio svjetla pada na stacionarno zrcalo M1 prešavši put L. Na stacionarnom zrcalu se ponovno odbija i vraća se na djelitelj prešavši ukupni put 2L. Propušteni dio svjetla pada na pokretno zrcalo koje se kreće po optičkoj osi naprijed i natrag za korak x. I ovaj dio svjetlosti se vraća na djelitelj prešavši ukupni put 2(L+x).

Ova dva dijela zračenja pokazuju razliku puteva od 2x. Za određenu valnu duljinu λ na izlazu iz interferograma, postići će se konstruktivna interferencija ova dva snopa zračenja, ukoliko im je razlika puta 2x cjelobrojni višekratnik te valne duljine. Svakom položaju x pomičnog zrcala, odgovara jedna valna duljina λ , odnosno jedan valni broj. Modulirana zraka izlazi iz interferograma, prolazi kroz uzorak i dolazi na detektor. Sve frekvencije infracrvenog izvora na detektor padaju istovremeno. To je velika prednost u odnosu na konvencionalne spektrometre gdje frekvencije infracrvenog izvora padaju jedna po jedna, a vrijeme dobivanja spektra se produljuje. Na detektoru se registrira signal, odnosno dobiva se interferogram [6].

Zamislimo da imamo izvor svjetla sa samo dvije frekvencije (slika 7.).

Slika 7. Spektar dikromatskog izvora svjetlosti.

Izvor svjetlosti podijelimo na dvije zrake. Jedna je zraka referentna (slika 8.) i služi za usporedbu, te prolazi kroz interferometar bez uzorka.

Slika 8. Interferogram referentne zraka.

Druga zraka je testna zraka (slika 9.) i prolazi kroz optički sustav interferometra i kroz uzorak koji promatramo.

Slika 9. Interferogram s uzorkom i referentni interferogram.

Pogledamo li spektar sada, slika 10. i usporedimo li ga sa spektrom na slici 7. zaključujemo da je uzorak apsorbirao svjetlost frekvencije v1 [6].

Slika 10. Spektar nakon apsorpcije uzorkom.

Rezultati dobiveni digitalnim interferogramom, koji su pretvoreni u spektar matematičkim oblicima nazivamo Fourierova transformacija.

2.5. Analiza spektra

Analizom infracrvenih spektara brojnih spojeva s uobičajenim skupinama, pronađeno je da te skupine apsorbiraju energiju u nekom uskom frekvencijskom području, neovisno od ostalog dijela molekule. Metilna skupina primjerice pokazuje više od dvije jake vrpce u području zmeđu 3000 cm⁻¹ i 2800 cm⁻¹. Infracrveni spektar možemo podijeliti na nekoliko područja s obzirom na to kakve se vrpce pojavljuju. Uzmemo li da je područje infracrvenog spektra između 4000 cm⁻¹ i 400 cm⁻¹, prema tome, prvo područje pripada X-H istezanjima između 4000–2500 cm⁻¹. Zatim slijedi područje istezanja trostrukih veza 2500–2000 cm⁻¹, potom područje istezanja dvostrukih veza 2000–1500 cm⁻¹ te područje istezanja jednostrukih veza od 1500 cm⁻¹ do 400 cm⁻¹[7].

Za prvo područje karakteristično je npr. C-H i O-H istezanje. C-H vrpca nalazi se pri oko 3000 cm⁻¹, a vrpca O-H između 3600 i 3700 cm⁻¹. Kao primjer trostruke veze možemo uzeti apsorpciju C=C veze pri 2000 cm⁻¹, dok npr. C=C zbog dvostruke veze apsorbira pri 1600 cm⁻¹. Apsorpcija C-C veze kao što je i očekivano je pri manjem valnom broju, točnije pri 1000 cm⁻¹.

Iako je moguća vrlo precizna identifikacija spojeva, kod složenije građenih molekula može doći do preklapanja apsorpcijskih područja različitih dijelova molekule. Tako se npr. preklapaju područja C=O i C=C. No i kada se to dogodi identifikacija je moguća na temelju različitog intenziteta i sl [7].

2.6. Transmisijsko mjerenje

Transmisijsko mjerenje je najstarija i najjednostavnija mjerna metoda. Temelji se na apsorpciji infracrvenog svjetla na određenim valnim duljinama tijekom prolaska kroz uzorak (slika 11.). Ovom tehnikom možemo analizirati krutine, plinove i tekućine.

Slika 11. Prolaz zrake kroz uzorak pri transmisijskom mjerenju.

Tekući uzorci stavljaju se u prikladne posude, kivete. Poznajemo tri tipa kiveta. Prvi i najjednostavniji tip su rastavljive kivete koje imaju dva kružna prozora između kojih je razdjelnica (razdjelni prsten) od aluminija, olova ili teflona. Razdjelnica održava razmak između prozora kivete. Drugi tip su fiksne kivete, odnosno kivete s definiranom stalnom debljinom sloja. Kada se jednom sklope mogu se više puta primjenjivati. Sastavljene su kao i rastavljive kivete od dva prozora i razdjelnice, a razlika je u tome što na jednom od prozora imaju rupice za punjenje. Treći tip su kivete s promjenjivom debljinom sloja. One mogu zakretati vanjski dio ćelije i tako mijenjati razmak između prozorskih površina, a samim time i debljinu sloja.

Važna stvar u izboru kiveta je i materijal od kojeg su izrađeni prozori. Najjeftiniji je natrijev klorid (NaCl) (slika 12.), no koriste se i brojni drugi (tablica 1.).

Najbitnije je da materijal od kojih je izrađena kiveta ne apsorbira propuštenu zraku, jer u tom slučaju ne dobijemo valjani spektar. Također, vrlo je bitno i da prozorski materijal ne reagira s uzorkom [8].

Slika 12. Kiveta od natrijeva klorida.

Tablica 1. Neki od optičkih materijala korištenih u transmisijskom mjerenju.

MATERIJAL PROZORA	KORISNO PODRUČJE (cm ⁻¹)	INDEKS REFRAKCIJE	SVOJSTVA
NaCl	40000-600	1,5	Topiv u vodi, slabo topiv u alkoholu, niske cijene, dobra otpornost na mehanički i toplinski šok, jednostavan za poliranje.
KBr	43500-400	1,5	Topiv u vodi i alkoholu, slabo topivu u eteru, higroskopan, dobra otpornost na mehanički i toplinski udar.
CaF ₂	77000-900	1,4	Netopiv u vodi, odupire se kiselinama i bazama, ne magli se, koristan za visokotlačni rad.
BaF ₂	66666-800	1,5	Netopiv u vodi, topiv u kiselinama i NH ₄ Cl, ne magli se, osjetljiv na toplinske i mehaničke udarce.
KCl	33000-400	1,5	Slična svojstva kao za NaCl, ali manje topiv, higroskopan.
CsBr	42000-250	1,7	Topiv u vodi i kiselinama, higroskopan.

Slika 13. Kalijev bromid (KBr).

Glavne metode koje se koriste za ispitivanje krutih uzoraka su: alkalno halogeni diskovi-pastile, suspenzije u ulju, te filmovi.

Izrada pastila uključuje miješanje čvrstog uzorka sa suhim alkalnim halogenidom u prahu. Najčešće korišteni alkalni halogenid je kalijev bromid (KBr). Uzorak se samelje i izmješa u tarioniku s praškom KBr (slika 13., slika 14.), zatim se postavi u hidrauličku prešu. Ovako dobivena pastila ne smije biti predebela ili pretanka, pretanke pastile su krhke i teško je s njima raditi, a predebele pastile propuštaju premalo zračenja [8].

Slika 14. Aparatura za dobivanje pastila.

Suspenzija u ulju uključuje mljevenje uzorka i miješanje s jednom do dvije kapi parafinskog ulja. Za pripremanje suspenzije potrebne su dvije matirane staklene pločice. Na staklene pločice se stavi parafinsko ulje, u njega se doda tvar koja se istražuje, te se protrlja između pločica. Nastala suspenzija se prenosi na prozor rastavljive kivete, te se postavi u IR spektrometar.

Filmovi se mogu napraviti ili razrijeđivanjem u otapalu ili lijevanjem iz taline. Uzorak se otopi u odgovarajućem otapalu. Otopina se izlije na staklenu ili metalnu ploču i pri visokoj temperaturi otapalo ispari tako da nam ostaje suhi film.

Plinski uzorci se stavljaju u plinske kivete. Zbog niskih gustoća plinova, debljina sloja je znatno veća nego u kivetama za tekućine. Cilindar kivete je od stakla ili mjedi s uobičajenim izborom prozora [8].

Iako je transmisijska metoda pogodna mjerna metoda za veliki broj različitih uzoraka, ipak dolazi do određenih problema ako je uzorak težak za mjerenje, npr. ako je predebeo. U tom slučaju mogu se primjeniti mjerne metode razvijene u novije vrijeme. To su npr. prigušena totalna refleksija, eng. *attenuated total reflectance* (ATR), poznata i pod nazivom interna refleksijska spektroskopija (IRS), te difuzna refleksija.

2.7. ATR spektrometrija

Prigušena totalna refleksija (ATR) je reflektivna metoda koja daje IR spektar površine tvari, te može dati valjane spektre uzoraka koji su predebeli ili koji prejako apsorbiraju zračenje. IR svjetlost je potpuno reflektirana kroz unutrašnjost refleksijskog elementa, do stražnje površine koja je u dodiru s uzorkom.

Slika 15. Prolaz zrake kroz kristal i odbijanje na granici faza.

Ako svjetlost dosegne do granice koja razdvaja dva medija, put svjetlosti se može opisati Snellovim zakonom (slika 15.).

 $n_1 * \sin \Theta = n_2 * \sin \phi \qquad (12)$

- $\boldsymbol{\Theta}-$ upadni kut
- ϕ refrakcijski kut
- n_1 refrakcijski indeks medija 1 (kristal)
- n₂ refrakcijski indeks medija 2 (uzorak)

Slika 16. Refleksija i refrakcija zraka. Refrakcija je promjena smijera zrake (vala) zbog promjene brzine širenja. Refleksija je odbijanje valova na granici dvaju sredstava.

Lom svjetlosti se odvija na granici faza gdje se medij 1 dodiruje s medijem 2. Totalna refleksija (slika 16. pr.d) dogodit će se kada je upadni kut zračenja koje pada na graničnu površinu veći od kritičnog kuta (slika 16. pr.c) [9].

Dubinu prodiranja vala u uzorak možemo opisati Harrickovom aproksimacijom.

$$dp = \frac{\lambda 1}{2\pi (\sin^2 \Theta - n^2 s p)^{1/2}}$$
(13)

dp – dubina prodora

 λI – valna duljina zrake u optički gušćem mediju

 θ – upadni kut

 n_{sp} – omjer između refrakcijskog indeksa kristala i uzorka

Slika 17. Dubina prodiranja vala.

Dubina prodiranja (slika 17.) ovisi o nekoliko parametara: upadnom kutu, refrakcijskom indeksu i valnoj duljini svjetlosti. Ukoliko su poznati svi parametri, uvrste se u Harrickovu aproksimaciju (13) i dobije se dubina prodiranja.

Upadni kut: određuje se dizajnom ATR alata kojima je upadni kut uglavnom konstantan, no naravno postoje oni kojima kut varira. Za određivanje organskih tvari uglavnom se koristi kut upada od 45°, a ukoliko je kut upada npr. 60° spektri će biti slabijeg intenziteta zbog smanjene dubine prodora u površinu uzorka.

Refrakcijski indeks ATR kristala: što je veći indeks refrakcije, manja je dubina prodiranja u uzorak.

Valna duljina svjetla: što je duža valna duljina svjetla (što je manji valni broj), veća je dubina prodiranja u uzorak [9].

Možemo usporediti transmisijsko i ATR mjerenje na troslojnom filmu (slika 18).

Slika 18. ATR spektar troslojnog filma

Mogućnost prodiranja zrake u površinu, može biti velika prednost (npr. u kemiji). Premazi na tabletama i tanki polimerni filmovi samo su neki slučajevi u kojima ATR spektroskopija daje informacije koje teško možemo dobiti drugim metodama.

Kod ATR mjerenja, bitan je izbor pogodnog kristala. U obzir moramo uzeti tvrdoću uzorka, željenu dubinu prodiranja i opseg spektra. Broj refleksija koje dobijemo, ovisit će upravo o tipu kristala, dimenzijama, te upadnom kutu infracrvenih zraka.

Osim odabira pogodnog tipa ATR kristala, moramo razmotriti veličinu kristala zbog broja mogućih refleksija. Direktna je veza između broja refleksija ATR kristala i intenziteta rezultantnog spektra. Što je veći broj refleksija prepoznatljivije su vrpce i bolji je signal. Signal se može poboljšati i ako produžimo vrijeme mjerenja [9].

Možemo izabrati između nekoliko ATR jedinica.

U horizontalnom ATR-u (eng. *horizontal ATR* - HATR) kristal postavimo horizontalno. HART alati često su korišteni u rutinskim mjerenjima kada uzorak ima veliku propusnu moć. HATR s jednom refleksijom koristi mali ATR kristal tako da se može dobiti samo jedna refleksija i koristi se za analizu malih uzoraka. Postoji i vertikalni ATR (VATR) u koji se uzorak postavlja vertikalno [9].

2.8. Difuzna refleksija

Kod difuzne refleksije (slika 19.) upadna svjetlost dolazi na površinu uzorka i reflektira se u mnogo različitih smjerova. Svjetlost se reflektira na dva načina. Jedan dio upadne svjetlosti reflektira se direktno s površine uzorka, drugi dio prodire u uzorak, djelomično se apsorbira, te se vraća na površinu procesima raspršenja u unutrašnjosti.

Difuzna refleksija se često koristi kod heterogenih uzoraka ili prašaka i krutina koje imaju grubu površinu. Difuzna refleksija koristi se u MIR i NIR spektroskopiji.

Slika 19. Difuzna refleksija.

Tipični uzorci su: prašci, papir, polimeri, čvrsti uzorci sa grubom površinom. Uzorci se ne mjere izravno. Prašci se npr. pomiješaju sa KBr ili KCl prahom [9].

3. Eksperimentalni dio

FTIR spektri snimljeni su na PerkinElmer, Spectrum One spektrometru (slika 20.).

Slika 20. PerkinElmer, Spectrum One.

Svi uzorci snimljeni su ATR metodom, a jedan dio uzoraka snimljen je transmisijskom metodom. Uzorke nije bilo potrebno prethodno pripremati.

Mjerno područje za ATR metodu je između 4000 cm⁻¹ i 650 cm⁻¹, a za transmisijsku metodu je između 4000 cm⁻¹ i 400 cm⁻¹ sa spektralnom rezolucijom od 4 cm⁻¹. Da bi se povećao odnos signala prema šumu svaki uzorak snimljen je četiri puta.

Ispitivani materijali su:

- Crna guma
- A4 papir
- Papir iz CD kutije, bijela strana
- Papir iz CD kutije, plava strana
- Ukrasna vrećica
- Poliamid 66 (PA 66)
- Poliamid 12 (PA 12)
- Komercijalni polietilen (PE)
- Plastična vrećica
- Čep s boce
- Nescafe 3u1
- Vrećica
- Šuškava vrećica
- Polietilen niske gustoće, (eng. low density polyethylene) LDPE
- Film polietilena niske gustoće debljine 55 μm (LDPE 55)
- Debeli film polietilena niske gustoće
- Polietilen visoke gustoće (eng. high density polyethylene) HDPE
- Polietilenska vrećica (PE vrećica)

- Polietilenski vosak (PE vosak)
- Polietilenska folija debljine 25 μm (PE 25)
- Polietilenska folija debljine 40 μm (PE 40)
- Polietilenska folija debljine 50 μm (PE 50)
- Polietilenska folija debljine 70 μm (PE 70)
- Polietilenska folija debljine 25 μm (PE 25), transmisijska metoda
- Polietilenska folija debljine 40 µm (PE 40), transmisijska metoda
- Polietilenska folija debljine 50 µm (PE 50), transmisijska metoda
- Polietilenska folija debljine 70 µm (PE 70), transmisijska metoda
- Polietilenska folija debljine 1000 µm (PE 1000), transmisijska metoda
- Kruta ambalaža 2
- Kruta ambalaža 3
- Poli(etlen-tereftalat) boca, PET boca
- Poli(etlen-tereftalat) folija, PET folija
- CD verbatim
- Komercijalni poli(kaprolakton), PCL
- Tehnički polilaktid, PLA
- Pleksiglas
- Božićna vrećica
- Mekana CD kutija
- Kutija od jagoda
- Polipropilenska folija debljine 20 μm (PP 20)
- Polipropilenska folija debljine 30 μm (PP 30)
- Polipropilenska folija debljine 500 μm (PP 500)
- Polipropilenska folija debljine 20 µm (PP 20), transmisijska metoda
- Polipropilenska folija debljine 30 µm (PP 30), transmisijska metoda
- Polipropilenska folija debljine 500 µm (PP 500), transmisijska metoda
- CD kutija, crni dio
- CD kutija, prozirni dio
- Poliuretan, PUR
- Folija s Ketchupa
- Uvez knjige
- Prozirna folija s CD kutije
- Kruta ambalaža 4

4. Rezultati i rasprava

Jedan od kriterija za uspješno snimanje FTIR-ATR-om je primjena dostatnog pritiska, kako bi se postigao bliski kontakt između uzorka i kristala.

Kako bi se odredilo od kojeg materijala je izrađen pojedinačni uzorak, njegov FTIR spektar uspoređuje se s već poznatim spektrima.

Slika 21. ATR-FTIR spektar crne gume.

valni broj (cm ⁻¹)	transmitancija
3299	0,5272
2916	0,2632
2849	0,3088
1640	0,2906
1538	0,2853

Slika 22. Ponavljajući dio strukture poliizoprena.

ATR-om kao mjernom metodom dobiju se informacije o materijalu do dubine od nekoliko µm u površinu uzorka. Crna guma, u svom sastavu sadrži čađu. Kako možemo vidjeti sa spektra na slici 21., bazna linija se sve više spušta prema manjim valnim brojevima i zaključujemo da je čađa apsorbirana preko cijelog mjernog područja.

Na spektru (slika 21., tablica 2.) vidimo dvije izražene vrpce na 2916 cm⁻¹ i 2849 cm⁻¹ koje su karakteristične za CH_3 i CH_2 istezanje. Guma se dobiva iz prirodnog ili sintetskog kaučuka koji je po svojoj strukturi poliizopren (slika 22.) [10].

Slika 23. ATR-FTIR spektar A4 papira.

Tablica 3.	Vrpce A4 papira.	
-	1 1	

valni broj cm ⁻¹	transmitancija
3332	0,8529
2900	0,8966
1424	0,8162
1052	0,6806
1028	0,6558
871	0,7782

Slika 24. Ponavljajući dio strukture celuloze.

U slučaju spektra A4 papira (slika 23., tablica 3.) izražene su vrpce na: 3332 cm⁻¹, koje su karakteristične za O-H istezanje, zatim na 2900 cm⁻¹ je C-H istezanje, na 1052 cm⁻¹ je C-O vibracija piranoznog prstena [11] i na oko 1028 cm⁻¹ je C-O istezanje [12]. Ove vrpce karakteristične su za celulozu. Vrpce pri 1424 cm⁻¹ i 871 cm⁻¹ odgovaraju vrpcama kalcijeva karbonata (CaCO₃).

Papir je heterogen materijal izrađen većinom od celuloze (slika 24.) i hemiceluloze, te različitih veziva. Dodaju mu se tinta, boja i druge tvari, ovisno o primjeni. Jedan od takvih dodataka je i kalcijev karbonat (CaCO₃).

Kalcijev karbonat jedan je od najčešće korištenih dodatnih tvari u industriji plastike. Najčešće se koristi jer je jeftin i time snizuje cijenu proizvoda, te kako bi se poboljšala morfološka, mehanička i termička svojstva određenog proizvoda.

Slika 25. IR spektar kalcijeva karbonata.

Sa spektra kalcijeva karbonata (slika 25.) vidi se da su najintenzivnije vrpce one oko 1450 cm⁻¹ i 875 cm⁻¹ i odgovaraju -CO₃ asimetričnom istezanju i -CO₃ deformaciji, te široka vrpca oko 350 cm⁻¹ koju nismo identificirali [13].

Slika 26. ATR-FTIR spektar papira iz CD kutije, bijela strana.

valni broj (cm ⁻¹)	transmitancija
1383	0,1345
1156	0,8230
1109	0,8646
1083	0,8438
1029	0,8348
969	0,8874
871	0,1562
760	0,8729
712	0,5395

Tablica	4.	Vrpce	papira	iz	CD	kutije,	bijela	strana.
---------	----	-------	--------	----	----	---------	--------	---------

Slika 27. Papir iz CD kutije, bijela strana.

Usporedi li se spektar bijele strane papira iz CD kutije (slika 26., tablica 4.) sa spektrom bijelog A4 papira (slika 23.) jasno se vidi da su oni različiti. Spektar papira iz CD kutije ima dvije vrpce velikog intenziteta no različite širine, pri 1383 cm⁻¹ i 871 cm⁻¹.

Općenito, širina vrpci određena je brojem kemijskih okruženja koja su povezana s međumolekulskim interakcijama. Ako je strukturna skupina okružena velikim brojem drugih strukturnih skupina koje utječu na tu strukturnu skupinu na različite načine doći će do stvaranja više različitih veza, a vrpca će biti široka. No ako u blizini nema drugih skupina s kojima bi mogle stvoriti vezu ili ih ima vrlo malo vrpca će biti uska [14]. Sa slike 27. na kojoj je prikazan papir iz CD kutije vidljivo je da on sadrži boju. Budući da ATR–FTIR metodom dobivamo spektar gornje površine tvari, može se predpostaviti da je u ovom slučaju snimljen spektar boje.

Slika 28. ATR-FTIR spektar papira iz CD kutije, plava strana.

valni broj (cm ⁻¹)	transmitancija
2926	0,7143
2855	0,8047
2084	0,5359
1582	0,8395
1361	0,5148
1334	0,5121
1236	0,5579
1168	0,5356
870	0,3746
755	0,7895
712	0,6050

Tablica 5. Vrpce papira iz CD kutije, plava strana.

Slika 29. Papir iz CD kutije, plava strana.

Usporedi li se plava strana papira iz CD kutije (slika 28., tablica 5.) sa spektrom bijelog A4 papira (slika 23.) jasno se vidi da su oni različiti. Prisutne su vrpce velikog intenziteta pri 2084 cm⁻¹ i 870 cm⁻¹, te široke vrpce između 1500-1000 cm⁻¹.

Sa slike 29. na kojoj je prikazan papir iz CD kutije vidljivo je da on sadrži boju. Budući da ATR–FTIR metodom dobivamo spektar gornje površine tvari, može se predpostaviti da je u ovom slučaju snimljen spektar boje.

Slika 30. ATR-FTIR spektar ukrasne vrećice.

valni broj (cm ⁻¹)	transmitancija
3295	0,8872
2930	0,8954
2857	0,9015
1632	0,8313
1535	0,8377
1462	0,8814
1416	0,8928
1371	0,8996
1261	0,8829

Tablica 6. Vrpce ukrasne vrećice.

Slika 31. Ukrasna vrećica.

Slika 32. Ponavljajući dio strukture poliamida 66.

ATR–FTIR spektrometrom dobiven spektar (slika 30., tablica 6.) u slučaju ukrasne vrećice (slika 31.) daje vrpce pri: 3295 cm⁻¹ gdje se odvija N-H istezanje; zatim pri 2930 cm⁻¹ gdje je CH₂ asimetrično istezanje; pri 2857 cm⁻¹ je CH₂ istezanje, pri 1632 cm⁻¹ je amidna I vrpca; te pri 1535 cm⁻¹ je N-H uvijanje [15]. Ovakvo ponašanje uzorka karakteristično je za poliamid 66, a kemijska formula je (C₁₂H₂₂N₂O₂)_n (slika 32.).

Slika 33. ATR-FTIR spektar PA 66.

valni broj (cm ⁻¹)	transmitancija
3295	0,8790
2930	0,8732
2857	0,9015
1739	0,7924
1631	0,7598
1534	0,7784
1463	0,8403
1416	0,8370
1366	0,7802
1272	0,8561
1217	0,7859
1202	0,8047

Tablica 7. Vrpce PA 66.

ATR-FTIR spektrometrom dobiven spektar (slika 33., tablica 7.) daje vrpce pri: 3295 cm⁻¹ gdje se odvija N-H istezanje; zatim pri 2930 cm⁻¹ gdje je CH₂ asimetrično istezanje; pri 2857 cm⁻¹ je CH₂ istezanje, pri 1631 cm⁻¹ je amidna I vrpca; pri 1463 cm⁻¹ je CH₂ simetrična strižna deformacija, te pri 1534 cm⁻¹ je N-H uvijanje, pri 1272 cm⁻¹ je C-N istezanje [15]. Kao i u prethodnom primjeru radi se o PA 66.

Slika 34. Amidna I i II vrpca poliamida 12 (PA 12).

Istraživanjem vibracijskih spektara amida pronađene su njihove karakteristične vrpce. Za sve amide karakteristična je apsorpcija vrpci u području karbonilne skupine (C=O), poznata kao amidna I vrpca. Kod primarnih amida u čvrstom stanju amidna I vrpca opaža se oko 1650 cm⁻¹, kod sekundarnih amida u čvrstom stanju amidna I vrpca nalazi se oko 1640 cm⁻¹ i kod tercijarnih amida u čvrstom stanju amidna I vrpca je između 1680 cm⁻¹ i 1630 cm⁻¹. Može se zaključiti da se amidna I vrpca amida u čvrstom stanju proteže od oko 1630 cm⁻¹ do 1680 cm⁻¹ kao što je vidljivo na slici 33.

Amidna II vrpca obično je uzrokovana NH₂ deformacijom i ima upola manji intenzitet od prve amidne vrpce. U nekim slučajevima javlja se već u području I amidne vrpce, između 1655 cm⁻¹ i 1620 cm⁻¹, dok sekundarni aciklički amidi imaju amidnu II vrpcu u području između 1570 cm⁻¹ i 1515 cm⁻¹, što odgovara amidnoj II vrpci PA 12 na slici 34 [16].

Slika 35. ATR-FTIR spektar PA 12.

Tablica 8. Vrpce PA 12.

valni broj(cm ⁻¹)	transmitancija
3290	0,8300
3093	0,9451
2918	0,4923
2849	0,5537
1634	0,4337
1556	0,5532
1465	0,6790
1368	0,8057
1269	0,7806
1244	0,7764
946	0,9112
721	0,6365

Slika 36. Ponavljajući dio strukture PA 12.

ATR-FTIR spektrometrom dobiven spektar (slika 35., tablica 8.) ima izražene vrpce pri: 3290 cm⁻¹ gdje se nalazi N-H istezanje, pri 2918 cm⁻¹ je CH₂ asimetrično istezanje, pri 2849 cm⁻¹ je simetrično CH₂ istezanje, pri 1634 cm⁻¹ je amidna I vrpca s C=O istezanjem, pri 1556 cm⁻¹ je amidna II vrpca s C=O strižnom vibracijom, pri 1465 cm⁻¹ je CH₂ simetrična strižna deformacija, pri 1368 cm⁻¹ je CH₂ uvijanje, i pri 1269 cm⁻¹ je C-N istezanje [17]. Ovakve vrpce karakteristične su za PA 12. Ponavljajuća struktura PA 12 vidljiva je na slici 36.

Slika 37. ATR-FTIR spektar komercijalnog polietilena.

valni broj (cm ⁻¹)	transmitancija	Q
3394	0,9641	
3187	0,9720	NI 12
2916	0,2875	CH ₃
2848	0,3343	
1739	0,8752	Slika 38. Oleamid
1646	0,9008	
1463	0,6962	[]
1366	0,8989	
1217	0,9094	
719	0,6474	11

Tablica 9. Vrpce komercijalnog polietilena.

Slika 39. Ponavljajuća struktura polietilena (PE).

Polietilen (PE) ima jednostavnu strukturu izgrađenu od ponavljajućih jedinica CH_2 . U ovom slučaju sa slike 37. i iz tablice 9. uočavamo vrpce pri 3394 cm⁻¹ i 3187 cm⁻¹ koje odgovaraju oleamidu (slika 38.). Oleamid pripada alifatskim amidima i služi kao klizno sredstvo, odnosno osigurava skliskost materijala [18].

Izražene su i vrpce pri 2916 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju, koje su karakteristične za polietilen (PE), (slika 39.) [19].

Vrpce pri: 1739 cm⁻¹, 1646 cm⁻¹, 1366 cm⁻¹i 1217 cm⁻¹ odgovaraju dodatku koji nismo identificirali. Predpostavljamo da je riječ o antiblokirajućem sredstvu koje je po strukturi masni amid (ima dugački ugljikovodični lanac i primarnu amidnu skupinu), ali ni u jednom atlasu nismo pronašli odgovarajuću strukturu.

Slika 40. ATR-FTIR spektar plastične vrećice.

valni broj (cm ⁻¹)	transmitancija
2915	0,2798
2848	0,3055
1463	0,7030
1379	0,9349
719	0,6455

Tablica 10.	Vrpce	plastične	vrećice.
-------------	-------	-----------	----------

41. Plastična vrećica.

ATR-FTIR metodom dobiven spektar (slika 40., tablica 10.) plastične vrećice (slika 41.) ima izražene vrpce pri 2915 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [19]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

Slika 42. ATR-FTIR spektar čepa s boce.

Tablica 11.	Vrpce	čepa s	boce.
-------------	-------	--------	-------

valni broj (cm ⁻¹)	transmitancija
2915	0,5438
2848	0,5686
1463	0,7836
719	0,7198

Slika 43. Čep s boce.

ATR-FTIR metodom dobiven spektar (slika 42., tablica 11.) čepa s boce (slika 43.) ima izražene vrpce pri 2915 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [19]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

Slika 44. ATR-FTIR spektar Nescafe 3u1.

Tablica 12.	Vrpce Nescafe	3u1.
-------------	---------------	------

valni broj (cm ⁻¹)	transmitancija
2916	0,5653
2848	0,5937
1740	0,9580
1463	0,7836
1367	0,9523
1217	0,9584
719	0,7624

Slika 45. Nescafe 3u1.

ATR–FTIR metodom dobiven spektar (slika 44., tablica 12.) unutarnjeg filma Nescafe 3u1 (slika 45.) ima izražene vrpce pri 2916 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [19]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

Vrpce pri: 1740 cm⁻¹, 1367 cm⁻¹ i 1217 cm⁻¹ odgovaraju dodatku koji nismo identificirali. Predpostavljamo da je riječ o antiblokirajućem sredstvu koje je po strukturi masni amid (ima dugački ugljikovodični lanac i primarnu amidnu skupinu), ali ni u jednom atlasu nismo pronašli odgovarajuću strukturu.

Slika 46. ATR-FTIR spektar vrećice.

Tablica 13.	Vrpce za vrećicu.

valni broj cm ⁻¹	transmitancija
2916	0,2654
2848	0,3123
1739	0,9438
1463	0,6935
1377	0,9225
1217	0,9440
719	0,6325

Slika 47. Vrećica

ATR–FTIR metodom dobiven spektar (slika 46., tablica 13.) vrećice (slika 47.) ima izražene vrpce pri 2916 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [19]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

Vrpce pri: 1739 cm⁻¹, 1377 cm⁻¹ i 1217 cm⁻¹ odgovaraju dodatku koji nismo identificirali. Predpostavljamo da je riječ o antiblokirajućem sredstvu koje je po strukturi masni amid (ima dugački ugljikovodični lanac i primarnu amidnu skupinu), ali ni u jednom atlasu nismo pronašli odgovarajuću strukturu.

Slika 48. ATR-FTIR spektar šuškave vrećice.

	Tablica 1	4. Vrpce	e šuškave	vrećice.
--	-----------	----------	-----------	----------

valni broj cm ⁻¹	transmitancija
2915	0,8309
2848	0,8353
1462	0,8866
875	0,9199
718	0,8435

Slika 49. Šuškava vrećica.

ATR–FTIR metodom dobiven spektar (slika 48., tablica 14.) šuškave vrećice (slika 49.) ima izražene vrpce pri 2915 cm⁻¹, 2848 cm⁻¹, 1462 cm⁻¹ i 718 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE. No vrpce pri 1462 cm⁻¹ i 875 cm⁻¹ nisu karakteristične za PE, nego odgovaraju vrpcama kalcijeva karbonata (CaCO₃), koji se dodaje kako bi se modificirala mehanička svojstva materijala. Vrpca pri 1462 cm⁻¹ karakteristična je za -CO₃ asimetrično istezanje, a vrpca pri 875 cm⁻¹ za -CO₃ deformaciju [19].

Slika 50. ATR-FTIR spektar LDPE.

valna duljina (cm ⁻¹)	transmitancija
3400	0,9492
3200	0,9808
2916	0,2975
2848	0,3421
1646	0,8437
1463	0,7358
1377	0,9686
719	0,6839

Kao što je već poznato polietilen se sastoji od lanca ponavljajućih jednica CH₂. Molekule PE imaju ravnu strukturu uz određeni broj bočnih lanaca. Sadržaj kristalne faze ovisi upravo o razgranatosti PE, što je veća razgranatost manji je stupanj kristaliničnosti, odnosono manja je gustoća. Polietilen je jedna od najviše korištenih plastičnih masa i prema gustoći strukture razlikujemo LDPE, odnosno polietilen niske gustoće, HDPE, odnosno polietilen visoke gustoće i druge [20].

Na slici 50. (tablica 15.) prikazan je spektar LDPE. Vrpce pri 3400 cm⁻¹ i 3200 cm⁻¹ odgovaraju kliznom sredstvu oleamidu, vrpce pri 2916 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹ odgovraju nesimetričnom istezanju CH₃, simetričnom istezanju CH₂, CH₂ uvijanju i CH₂ njihanju. Prisutna je i vrpca pri 1377 cm⁻¹ koja odgovara slaboj simetričnoj deformaciji CH₃ karakterističnoj za LDPE [21].

Slika 51. ATR-FTIR spektar LDPE filma debljine 55µm.

valna duljina(cm ⁻¹)	transmitancija
3400	0,9492
3200	0,9808
2916	0,2975
2848	0,3421
1646	0,8437
1463	0,7358
1377	0,9686
719	0,6839

Tablica 16. Vrpce za LDPE filma debljine 55 µm.

Na slici 51. (tablica 16.) prikazan je spektar LDPE debljine 55 μ m. Vrpce pri 3400 cm⁻¹ i 3200 cm⁻¹ odgovaraju kliznom sredstvu, oleamidu. Vrpce pri 2916 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹ odgovraju nesimetričnom istezanju CH₃, simetričnom istezanju CH₂, CH₂ uvijanju i CH₂ njihanju [21]. Vrpca pri 1646 cm⁻¹ je dodatak koji nismo identificirali. Predpostavljamo da je riječ o antiblokirajućem sredstvu koje je po strukturi masni amid (ima dugački ugljikovodični lanac i primarnu amidnu skupinu), ali ni u jednom atlasu nismo pronašli odgovarajuću strukturu.

Slika 52. ATR-FTIR spektar debelog filma LDPE.

valna duljina (cm ⁻¹)	transmitancija
3370	0,9320
3194	0,9348
2916	0,2790
2848	0,3228
1646	0,9087
1463	0,6752
1377	0,9686
719	0,6135

Tablica 17. Vrpce debelog filma LDPE.

ATR-FTIR metodom dobiven spektar (slika 52., tablica 17.) debelog filma LDPE ima vrpce pri 3370 cm⁻¹ i 3194 cm⁻¹ koje odgovaraju kliznom sredstvu oleamidu. Vrpce pri: 2916 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹, 1377 cm⁻¹ i 719 cm⁻¹ svojstvene su: nesimetričnom istezanju CH₃, simetričnom istezanju CH₂, uvijanju CH₂, slaboj deformaciji CH₃ i CH₂ njihanju [21].

Slika 53. ATR-FTIR spektar HDPE.

Tablica 18. Vrpce HDPE.

valni broj cm ⁻¹	transmitancija
2915	0,2926
2848	0,3197
1463	0,6899
719	0,6233

ATR–FTIR metodom dobiven spektar (slika 53., tablica 18.) HDPE ima izražene vrpce pri 2915 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, C-H istezanju, C-C istezanju i C-C uvijanju [22]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o HDPE.

Slika 54. ATR-FTIR spektar PE vrečice.

valni broj (cm ⁻¹)	transmitancija
3394	0,9826
3188	0,9843
2915	0,2894
2848	0,2977
1739	0,8555
1646	0,9494
1463	0,6946
1366	0,8867
1217	0,8950
718	0,6323

Tablica 19. Vrpce PE vrečice.

ATR–FTIR metodom dobiven spektar (slika 54., tablica 19.) PE vrećice ima izražene vrpce pri 3394 cm⁻¹, 3188 cm⁻¹ koje odgovaraju kliznom sredstvu oleamidu, vrpce pri: 2915 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 718 cm⁻¹ odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [23]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

Vrpce pri: 1739 cm⁻¹, 1646 cm⁻¹, 1366 cm⁻¹ i 1217 cm⁻¹ odgovaraju dodatku koji nismo identificirali. Predpostavljamo da je riječ o antiblokirajućem sredstvu koje je po strukturi masni amid (ima dugački ugljikovodični lanac i primarnu amidnu skupinu), ali ni u jednom atlasu nismo pronašli odgovarajuću strukturu.

Slika 55. ATR-FTIR spektar PE voska.

Tablica 20. Vrpce PE voska.

valni broj (cm ⁻¹)	transmitancija
2916	0,4827
2848	0,5142
1463	0,7760
719	0,7212

ATR–FTIR metodom dobiven spektar (slika 55., tablica 20.) PE voska ima izražene vrpce pri 2916 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [23]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o vosku na bazi PE.

Slika 56. ATR-FTIR spektar PE folije debljine 25 µm.

Tablica 21.	Vrpce PE	folije	debljine	25	μm.
-------------	----------	--------	----------	----	-----

valni broj (cm ⁻¹)	transmitancija
2916	0,3138
2849	0,3453
1463	0,7225
719	0,6668

ATR–FTIR metodom dobiven spektar (slika 56., tablica 21.) PE folije debljine 25 μ m ima izražene vrpce pri 2916 cm⁻¹, 2849 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [23]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

Slika 57. ATR-FTIR spektar PE folije debljine 40 µm.

Tablica 22. Vrpce PE folije debljine 40 µm.

valni broj (cm ⁻¹)	transmitancija
2916	0,2640
2848	0,2916
1463	0,7048
719	0,6335

ATR–FTIR metodom dobiven spektar (slika 57., tablica 22.) PE folije debljine 40 μ m ima izražene vrpce pri 2916 cm⁻¹, 2848 cm⁻¹, 1463 cm⁻¹ i 719 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [23]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

Slika 58. ATR-FTIR spektar PE folije debljine 50 µm.

Tablica 23. Vrpce PE folije debljine 50 µm.

valni broj (cm ⁻¹)	transmitancija
2916	0,2636
2848	0,3070
1472	0,7069
718	0,6571

ATR–FTIR metodom dobiven spektar (slika 58., tablica 23.) PE folije debljine 50 μ m ima izražene vrpce pri 2916 cm⁻¹, 2848 cm⁻¹, 1472 cm⁻¹ i 718 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [23]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

Slika 59. ATR-FTIR spektar PE folije debljine 70 µm.

valni broj (cm ⁻¹)	transmitancija
2915	0,2886
2849	0,3202
1472	0,7297
718	0,6652

ATR–FTIR metodom dobiven spektar (slika 59., tablica 24.) PE folije debljine 70 μ m ima izražene vrpce pri 2915 cm⁻¹, 2849 cm⁻¹, 1472 cm⁻¹ i 718 cm⁻¹. Vrpce odgovaraju CH₃ istezanju, CH₂ istezanju, CH₂ uvijanju i CH₂ njihanju [23]. Usporedbom s već dobivenim spektrima i tablicama možemo zaključiti da se radi o PE.

B)

Slika 60. A) Shema nastanka spektralne interferencije.

B) Spektar PE folija debljine 25 µm, transmisijska metoda.

Tablica 25. Vrpce PE folije debljine 25 µm, transmisijska metoda.

valni broj (cm ⁻¹)	transmitancija
2929	0,0000
2918	0,0001
2849	0,0007
1472	0,0894
730	0,2818

Transmisijski spektar PE folije debljine 25 μ m (slika 60. B, tablica 25.) razlikuje se od spektara dobivenih ATR metodom. Apsorbirane vrpce su velikog inenziteta i širine pa se vrijednosti ne mogu precizno očitati. To se događa jer je uzorak predebeo.

A)

Ako IR zračenje pada na takav predebeo uzorak, neke zrake će se reflektirati, te će pri određenoj valnoj duljini doći do konstruktivne ili destruktivne interferencije (slika 60. A) [24]. Na spektru se tada može primjetiti sinusoidalna promjena kao što se i vidi na spektru u području između 2400 cm⁻¹ i 450 cm⁻¹. Usporedbom ovih spektara dobivenih transmisijskom metodom sa spektrom istog uzorka dobivenog ATR metodom (slika 56.) primjećuju se prednosti ATR metode. Budući da su uzorci deblji, bolji spektri se dobiju ATR metodom.

Slika 61. Spektar PE folije debljine 40 µm, transmisijska metoda.

valni broj (cm ⁻¹)	transmitancija
2913	0,0001
2857	0,0005
2660	0,5709
2637	0,5717
1464	0,0168
1368	0,5807
730	0,0892

Tablica 26. Spektar PE folije debljine 40 μm , transmisijska metoda.

Transmisijski spektar PE folije debljine 40 μ m (slika 61., tablica 26.) razlikuje se od spektara dobivenih ATR metodom. Apsorbirane vrpce su velikog inenziteta i širine pa se vrijednosti ne mogu precizno očitati. To se događa jer je uzorak predebeo [24].

Slika 62. Spektar PE folije debljine 50 µm, transmisijska.

Tablica 27.	Spektar PE	folije	debljine 50) um,	transmisijska metoda.
	The second secon	· J ·		, , ,	Juni Juni Juni Juni Juni Juni Juni Juni

valni broj (cm ⁻¹)	transmitancija
2929	0,0000
2909	0,0000
2858	0,0004
1464	0,0121
730	0,0867

Transmisijski spektar PE folije debljine 50 μ m (slika 62., tablica 27.) razlikuje se od spektara dobivenih ATR metodom. Apsorbirane vrpce su velikog inenziteta i širine pa se vrijednosti ne mogu precizno očitati. To se događa jer je uzorak predebeo [24].

Slika 63. Spektar PE folija debljine 70 µm, transmisijska metoda.

valni broj (cm ⁻¹)	transmitancija
2933	0,0000
2665	0,5486
2638	0,5556
1465	0,0024
1377	0,4269
720	0,0536

Tablica 28. Spektar PE folije debljine 70 μ m, transmisijska metoda.

Transmisijski spektar PE folije debljine 70 μ m (slika 63., tablica 28.) razlikuje se od spektara dobivenih ATR metodom. Apsorbirane vrpce su velikog inenziteta i širine pa se vrijednosti ne mogu precizno očitati. To se događa jer je uzorak predebeo [24].

Slika 64. Spektar PE folije debljine 1000 µm, transmisijska metoda.

valni broj (cm ⁻¹)	transmitancija
3644	0,0409
3604	0,0154
3040	0,0000
2629	0,0000
2327	0,0185
2150	0,2021
2019	0,0610
1897	0,1350
1818	0,3223
1729	0,2703
1644	0,1560
1587	0,1343
1475	0,0000
1351	0,0000
966	0,2008
889	0,0911
729	0,0000

Tablica 29. Spektar PE folije debljine 1000 µm, transmisijska metoda.

Transmisijski spektar PE folije debljine 1000 μ m (slika 64., tablica 29.) razlikuje se od spektara dobivenih ATR metodom. Apsorbirane vrpce su velikog inenziteta i širine pa se vrijednosti ne mogu precizno očitati. To se događa jer je uzorak predebeo [24].

Slika 65. ATR-FTIR spektar krute ambalaže 2.

valni broj (cm ⁻¹)	transmitancija
2956	0,9049
1713	0,3592
1409	0,6944
1238	0,3143
1091	0,3240
1016	0,4281
723	0,2747

Tablica 30. Vrpce krute ambalaže 2.

Slika 66. Kruta ambalaža 2.

67. Ponavljajći dio strukture poli(etilen-tereftalata).

Karakteristične vrpce za poli(etilen-tereftalat) (PET) koje se mogu vidjeti nakon ATR-FTIR spektroskopije (slika 65. Tablica 30.) krute ambalaže 2 (slika 66.) nalaze se pri 2956 cm⁻¹ gdje je C-H istezanje na aromatskom prstenu, pri 1713 cm⁻¹ je C=O istezanje, pri 1409 cm⁻¹ je istezanje aromatskog prstena, pri 1238 cm⁻¹ je istezanje -COO, pri 1091 cm⁻¹ je C-H istezanje, pri 1016 cm⁻¹ i 723 cm⁻¹ nalaze se C-H istezanje i C=H uvijanje [25].

Poli(etilen-tereftalat) ili PET (slika 67.) je polimerni materijal koji se upotrebljava za izradu plastične ambalaže. Kao materijal PET je lagan, nelomljiv i otporan na mehanička oštećenja, stoga mu je primjena vrlo raširena.

Slika 68. ATR-FTIR spektar krute ambalaže 3.

valna duljina (cm ⁻¹)	transmitancija
2956	0,9049
1713	0,3336
1409	0,6499
1238	0,2842
1091	0,2942
1016	0,4032
723	0,2429

Tablica 31. Vrpce krute ambalaže 3.

Slika 69. Kruta ambalaža 3.

Karakteristične vrpce za PET koje se mogu vidjeti nakon ATR-FTIR spektroskopije (slika 68. Tablica 31.) krute ambalaže 3 (slika 69.) nalaze se pri 2956 cm⁻¹ gdje je C-H istezanje na aromatskom prstenu, pri 1713 cm⁻¹ C=O istezanje, pri 1409 cm⁻¹ je istezanje aromatskog prstena, pri 1238 cm⁻¹ je istezanje -COO, pri 1091 cm⁻¹ je C-H istezanje, pri 1016 cm⁻¹ i 723 cm⁻¹ nalaze se C-H istezanje i C=H uvijanje [25].

Slika 70. ATR-FTIR spektar PET boce.

Tablica 32. Vrpce PET boce.

valni broj (cm ⁻¹)	transmitancija	
2963	0,9219	
1714	0,6282	
1408	0,8213	
1338	0,8160	
1240	0,6125	1
1094	0,5979	14
1017	0,6562	
723	0,4995	

Slika 71. PET boca.

Karakteristične vrpce za PET koje se mogu vidjeti nakon ATR-FTIR spektroskopije (slika 70. Tablica 32.) PET boce (slika 71.) nalaze se pri 2963 cm⁻¹ gdje je CH₂ istezanje na aromatskom prstenu, pri 1714 cm⁻¹ C=O istezanje, pri 1408 cm⁻¹ je istezanje aromatskog prstena, pri 1338 cm⁻¹ i 1240 cm⁻¹ je istezanje -COO, pri 1017 cm⁻¹ je C-H istezanje, pri 723 cm⁻¹ nalazi se C=H uvijanje [25].

Slika 72. ATR-FTIR spektar PET folije.

Tablica 33.	Vrpce PET	folije.
	1	

valni broj (cm ⁻¹)	transmitancija
2971	0,9481
1717	0,7458
1366	0,8600
1342	0,8698
1231	0,7514
1094	0,8024
872	0,8385
722	0,7418

Karakteristične vrpce za PET koje se mogu vidjeti nakon ATR-FTIR spektroskopije (slika 72. Tablica 33.) PET folije nalaze se pri 2971 cm⁻¹ gdje je CH₂ istezanje na aromatskom prstenu, pri 1717 cm⁻¹ C=O istezanje, 1342 cm⁻¹ je CH₂ uvijanje, 1231 cm⁻¹ je –COO istezanje, pri 722 cm⁻¹ nalazi se C=H uvijanje [25].

Slika 73. ATR-FTIR spektar CD verbatima.

valni broj (cm ⁻¹)	transmitancija		
2969	0,8028		
1769	0,2852		
1504	0,3989		
1219	0,1296		
1187	0,0561		
1159	0,0445		
1080	0,2936		

Slika 74. CD verbatim.

Slika 75. Ponavljajući dio strukture polikarbonata dobivenog polimerizacijom bisfenola A.

ATR–FTIR metodom dobiven spektar (slika 73., tablica 34.) CD verbatima (slika 74.) ima izražene vrpce pri: 2969 cm⁻¹ koja odgovara C-H deformaciji, pri 1769 cm⁻¹ je deformacija C=O, pri 1504 cm⁻¹ je C=C vibracija, između 1219 cm⁻¹ i 1159 cm⁻¹ je asimetrična deformacija O-C-O, pri 1080 cm⁻¹ je CH₃ vibracija [26]. Usporedbom s već dobivenim spektrima i tablicama može se zaključiti da se radi o polikarbonatu (PC) dobivenom polimerizacijom bisfenola A.

Na slici 75. je ponavljajući dio strukture polikarbonata dobivenog polimerizacijom bisfenola A.

Slika 76. ATR-FTIR spektar polikaprolaktona (PCL).

Tablica 35. Vrpce PCL.

valni broj (cm ⁻¹)	transmitancija
2944	0,7526
2866	0,8435
1722	0,1734
1471	0,8116
1419	0,7994
1365	0,7063
1294	0,6783
1239	0,4838
1163	0,2941
1107	0,6407
1045	0,6078
961	0,6792
710	0,8548

Slika 77. Ponavljajući dio strukture PCL.

ATR-FTIR metodom dobiven spektar (slika 76., tablica 53.) ima izražene vrpce na: 2944 cm⁻¹ gdje se nalazi asimetrično istezanje CH₂, 2866 cm⁻¹ je simetrično istezanje CH₂, na 1722 cm⁻¹ nalazi se istezanje u C=O, pri 1294 cm⁻¹ je C-O i C-C istezanje u kristaliničnoj fazi, pri 1239 cm⁻¹ je asimetrično C-O-C istezanje, a pri 1163 cm⁻¹ je C-O i C-C istezanje u amorfnoj fazi [27]. Usporedbom s već dobivenim spektrima može se zaključiti da se radi o polikaprolaktonu. Polikaprolakton (PCL) (slika 77.) je polukristalinični poliester. Poznat je po svojoj biodegradibilnosti.

Slika 78. ATR-FTIR spektar polimliječne kiseline (PLA).

valni broj (cm ¹)	transmitancija
2997	0,9209
2924	0,8580
2853	0,9028
1751	0,3757
1455	0,7481
1359	0,7566
1181	0,3721
1130	0,4697
1083	0,3111
1043	0,4641
871	0,7966
756	0,7562
689	0,8136

Tablica 36.	Vrp	ce I	PLA tehnički.

Slika 79. Ponavljajući dio strukture polimliječne kiseline.

ATR-FTIR metodom dobiven spektar (slika 78., tablica 36.) ima izražene vrpce na: 2997 cm⁻¹, 2924 cm⁻¹, koje odgovaraju CH₃ asimetričnom istezanju i CH₃ simetričnom istezanju [29], 2853 cm⁻¹ gdje se nalazi C-H istezanje, pri 1751 cm⁻¹ je C=O istezanje, na 1455 cm⁻¹ je CH₃ istezanje, pri 1359 cm⁻¹ je C-H asimetrična deformacija, pri 1181 cm⁻¹ je C-O-C asimetrično istezanje, na 1130 cm⁻¹ je CH₃ istezanje pri 1083 cm⁻¹ je C-O-C simetrično istezanje, pri 1043 cm⁻¹ je C-CH₃ istezanje [29]. Usporedbom s već dobivenim spektrima može se zaključiti da se radi o polimliječnoj kiselini. Zove se još i polilaktid.

Polimliječna kiselina (PLA) (slika 79.), je biorazgradivi polimer dobiven iz obnovljivih izvora kao što je kukuruzni škrob.

Slika 80. ATR-FTIR spektar pleksiglasa.

valni broj (cm ⁻¹)	transmitancija
2951	0,8111
1723	0,2014
1480	0,7792
1191	0,4476
1143	0,2197
1064	0,7498
987	0,6731
966	0,7025

Slika 81. Ponavljajući dio strukture poli(metil-metakrilata).

U ovom primjeru dobiven je spektar (slika 80., tablica 37.) pleksiglasa ili poli(metilmetakrilata) (PMMA) (slika 81.). ATR-FTIR metodom dobiven spektar ima izražene vrpce na: 2951 cm⁻¹ gdje je C-H istezanje, pri 1723 cm⁻¹ je C=O istezanje, pri 1480 cm⁻¹ je CH₃ istezanje, pri 1191 cm⁻¹ je –OCH₃ istezanje, pri 1064 cm⁻¹ je C-O-C istezanje, pri 966 cm⁻¹ je C-O-C deformacija [30].

Slika 82. ATR-FTIR spektar božićne vrećice.

Tablica 38.	Vrpce za	božićnu	vrećicu.
-------------	----------	---------	----------

valni broj cm ⁻¹	transmitancija
2950	0,9061
2917	0,8870
2868	0,9180
2838	0,9191
1455	0,9226
1376	0,9035
998	0,9461
973	0,9444

Slika 83. Božićna vrećica.

Slika 84. Ponavljajući dio strukture polipropilena.

ATR-FTIR metodom dobiven spektar (slika 82. Tablica 38.) za uzorak božićna vrećica (slika 83.), apsorbira vrpcu pri 2950 cm⁻¹ i 2917 cm⁻¹ što odgovara CH₃ asimetričnom istezanju i CH₃ simetričnom istezanju, pri 2868 cm⁻¹ je CH₂ asimetrično istezanje, pri 2838 cm⁻¹ je CH₂ simetrično istezanje, na 1455 cm⁻¹ je CH₂ asimetrično uvijanje, dok je na 1376 cm⁻¹ CH₃ simetrično uvijanje [31].

Usporedbom ovog spektra s već poznatim spektrima može se zaključiti da je riječ o polipropilenu (PP). Na slici 84. nalazi se ponavljajući dio strukture polipropilena.

Slika 85. ATR-FTIR spektar mekane CD kutije.

valna duljina(cm ⁻¹)	transmitancija
2951	0,6058
2917	0,5212
2868	0,7162
2838	0,7133
1455	0,7160
1376	0,6194
1167	0,8737
998	0,8710

Tablica 39.	Vrpce	mekane	CD	kutije.
-------------	-------	--------	----	---------

ATR-FTIR metodom dobiven spektar (slika 85. Tablica 39.) za uzorak mekana CD kutija, apsorbira vrpcu pri 2951 cm⁻¹ i 2917 cm⁻¹ što odgovara CH₃ asimetričnom istezanju i CH₃ simetričnom istezanju, pri 2868 cm⁻¹ je CH₂ asimetrično istezanje, pri 2838 cm⁻¹ je CH₂ simetrično istezanje, na 1455 cm⁻¹ je CH₂ asimetrično uvijanje, dok je na 1376 cm⁻¹ CH₃ simetrično uvijanje [31]. Usporedbom ovog spektra s već poznatim spektrima može se zaključiti da je riječ o polipropilenu (PP).

Slika 86. ATR-FTIR spektar kutije od jagoda.

valni broj (cm ⁻¹)	transmitancija
2950	0,6222
2917	0,4253
2867	0,7286
2849	0,7085
1456	0,7314
1376	0,6153
1261	0,8829
998	0,8548
973	0,8520
899	0,9140

Tablica 40. Vrpce za kutiju od jagoda.

Slika 87. Kutija od jagoda.

ATR-FTIR metodom dobiven spektar (slika 86. Tablica 40.) za uzorak kutija od jagoda (slika 87.), apsorbira vrpcu pri 2950 cm⁻¹ i 2917 cm⁻¹ što odgovara CH₃ asimetričnom istezanju i CH₃ simetričnom istezanju, pri 2867 cm⁻¹ je CH₂ asimetrično istezanje, pri 2849 cm⁻¹ je CH₂ simetrično istezanje, na 1456 cm⁻¹ je CH₂ asimetrično uvijanje, dok je na 1376 cm⁻¹ CH₃ simetrično uvijanje [31].

Slika 88. ATR-FTIR spektar PP folije debljine 20 μ m.

valni broj (cm ⁻¹)	transmitancija
2950	0,9562
2918	0,9435
2867	0,9687
2839	0,9688
1455	0,9592
1376	0,9418
1167	0,9850
973	0,9805
899	0,9921

Tablica 41. Vrpce PP folije debljine 20 µm.

ATR-FTIR metodom dobiven spektar (slika 88. Tablica 41.) za uzorak PP folija debljine 20 μ m, apsorbira vrpcu pri 2950 cm⁻¹ i 2918 cm⁻¹ što odgovara CH₃ asimetričnom istezanju i CH₃ simetričnom istezanju, pri 2867 cm⁻¹ je CH₂ asimetrično istezanje, pri 2839 cm⁻¹ je CH₂ simetrično istezanje, na 1455 cm⁻¹ je CH₂ asimetrično uvijanje, dok je na 1376 cm⁻¹ CH₃ simetrično uvijanje [31].

Slika 89. ATR-FTIR spektar PP folije debljine 30 µm.

0,9692

valni broj (cm ⁻¹)	tansmitancija
2950	0,8884
2917	0,8543
2867	0,9211
2839	0,9227
1456	0,9076
1375	0,8606
1167	0,9711
973	0,9631

841

Tablica 42. Vrpce PP folije debljine 30 µm.

ATR-FTIR metodom dobiven spektar (slika 89. Tablica 42.) za uzorak PP folija debljine 30 μ m, apsorbira vrpcu pri 2950 cm⁻¹ i 2917 cm⁻¹ što odgovara CH₃ asimetričnom istezanju i CH₃ simetričnom istezanju, pri 2867 cm⁻¹ je CH₂ asimetrično istezanje, pri 2839 cm⁻¹ je CH₂ simetrično istezanje, na 1456 cm⁻¹ je CH₂ asimetrično uvijanje, dok je na 1375 cm⁻¹ CH₃ simetrično uvijanje [31].

Slika 90. ATR-FTIR spektar PP folije debljine 500 µm.

valni broj (cm ⁻¹)	transmitancija
2951	0,6827
2917	0,5159
2868	0,7688
2850	0,7425
1748	0,9432
1456	0,7602
1376	0,6856
1167	0,9059
973	0,9050
841	0,9199

Tablica 43. Vrpce PP folije debljine 500 µm.

ATR-FTIR metodom dobiven spektar (slika 90. Tablica 43.) za uzorak PP folija debljine 500 μ m, apsorbira vrpcu pri 2951 cm⁻¹ i 2917 cm⁻¹ što odgovara CH₃ asimetričnom istezanju i CH₃ simetričnom istezanju, pri 2868 cm⁻¹ je CH₂ asimetrično istezanje, pri 2850 cm⁻¹ je CH₂ simetrično istezanje, na 1456 cm⁻¹ je CH₂ asimetrično uvijanje, dok je na 1376 cm⁻¹ CH₃ simetrično uvijanje [31].

Slika 91. Transmisijski spektar PP folije debljine 20 µm.

valni broj (cm ⁻¹)	transmitancija
2950	0,9562
2918	0,9435
2867	0,9687
2839	0,9688
1455	0,9592
1376	0,9418
1167	0,9850
998	0,9833
973	0,9805
899	0,9921
840	0,9823

Tablica 44. Vrpce PP folije debljine 20 µm.

Transmisijski spektar PP folije debljine 20 μ m (slika 91., tablica 44.) razlikuje se od spektara dobivenih ATR metodom. Neke apsorbirane vrpce su velikog inenziteta i širine pa se vrijednosti ne mogu precizno očitati. To se događa jer je uzorak predebeo.

Kada je IR svjetlost propuštena kroz uzorak dolazi do refleksije jednog dijela zraka koje mogu interferirati s drugim, upadnim zrakama, te se na spektru pojavljuje sinusoidalna promjena [32]. Na spektru se to može uočiti na području između 2500 cm⁻¹ i 1400 cm⁻¹.

Slika 92. Transmisijski spektar PP folije debljine 30 µm.

valni broj (cm ⁻¹)	transmitancija
2949	0,0002
2914	0,0001
2880	0,0065
2839	0,0017
2722	0,6040
1455	0,0229
1377	0,0135
1304	0,5894
1167	0,2966
998	0,3201
973	0,2968
841	0,3598

Tablica 45. Vrpce PP folije debljine 30 µm.

Transmisijski spektar PP folije debljine 30 μ m (slika 92., tablica 45.) razlikuje se od spektara dobivenih ATR metodom. Neke apsorbirane vrpce su velikog inenziteta i širine pa se vrijednosti ne mogu precizno očitati. To se događa jer je uzorak predebeo [32].

Slika 93. Transmisijski spektar PP folije debljine 500 µm.

valni broj (cm ⁻¹)	transmitancija
3836	0,2876
3345	0,2571
2987	0,0000
2795	0,0000
2428	0,1702
1833	0,5010
459	0,1342

Tablica 46. Vrpce za PP folije debljine 500 µm.

Transmisijski spektar PP folije debljine 500 μ m (slika 93., tablica 46.) razlikuje se od spektara dobivenih ATR metodom. Apsorbirane vrpce su velikog inenziteta i širine pa se vrijednosti ne mogu precizno očitati. To se događa jer je uzorak predebeo [32].

Slika 94. ATR-FTIR spektar CD kutije, crni dio.

valni broj cm ⁻¹	transmitancija
3026	0,8423
2850	0,8547
1601	0,8483
1493	0,7448
1450	0,8889
749	0,6670
692	0,7474

Tablica 47. Vrpce CD kutije, crni dio.

Slika 95. CD kutija.

Slika 96. Struktura polistirena.

ATR-FTIR metodom dobiven spektar (slika 94., tablica 47.) crnog dijela CD kutije (slika 95.) pokazuje apsorpciju vrpci pri 3026 cm⁻¹ i 2850 cm⁻¹gdje se javlja aromatsko C-H istezanje; pri 1601 cm⁻¹ i 1493 cm⁻¹ je aromatsko C=C istezanje; te na 749 cm⁻¹ i 692 cm⁻¹ javlja se deformacijsko vibriranje benzenskog prstena [33]. Ovi rezultati upućuju na to da je crni dio kutije CD-a izrađen od polistirena.

Polistiren (PS) je polimer koji se sastoji od $-CH_2-CH(C_6H_5)$ - ponavljajućih jedinica (slika 96.). Na centralni atom ugljika vezana je fenilna grupa (aromatski prsten benzena).

Slika 97. ATR-FTIR spektar CD kutije, prozirni dio.

valni broj (cm ⁻¹)	transmitancija
3026	0,7972
2921	0,7473
2850	0,8569
1601	0,8262
1493	0,6537
1450	0,8889
754	0,5606
692	0,7474

Tablica 48. Vrpce CD kutije, prozirni dio.

Slika 98. CD kutija.

ATR-FTIR metodom dobiven spektar (slika 97., tablica 48.) prozirnog dijela CD kutije (slika 98.) pokazuje apsorpciju vrpci pri 3026 cm⁻¹ i 2850 cm⁻¹gdje se javlja aromatsko C-H istezanje; pri 1601 cm⁻¹ i 1493 cm⁻¹ je aromatsko C=C istezanje; te na 754 cm⁻¹ i 692 cm⁻¹ javlja se deformacijsko vibriranje benzenskog prstena [33]. Ovi rezultati upućuju na to da je prozirni dio CD kutije izrađen od polistirena.

Slika 99. ATR-FTIR spektar poliuretana (PUR).

Tablica 49. Vrpce PUR.

valni broj (cm ⁻¹)	transmitancija
3324	0,9131
2939	0,7298
2797	0,8665
1732	0,7563
1703	0,7174
1597	0,8370
1531	0,6263
1414	0,7728
1369	0,7719
1310	0,7585
1220	0,5521
1103	0,3090
816	0,7957
771	0,7749

Slika 100. Ponavljajući dio strukture poliuretana.

ATR-FTIR spektar poliuretana (PUR) (slika 99., tablica 49.) ima izražene vrpce na 3324 cm⁻¹, koja pripada N-H istezanju. Zatim na 2939 cm⁻¹ koja odgovara C-H istezanju na aromatskom prstenu, pri 1703 cm⁻¹ je C=O istezanje, pri 1597 cm⁻¹ je deformacija aromatskog prstena, na 1531 cm⁻¹ je N-H deformacija, na 1220 cm⁻¹ nalazi se C-N istezanje i na 1103 cm⁻¹ je C-O istezanje [34]. Usporedbom ovog spektra s već poznatim spektrima može se zaključiti da je riječ o poliuretanu. Na slici 100. nalazi se ponavljajući dio strukture poliuretana.

Slika 101. ATR-FTIR spektar folije s Ketchupa.

valni broj (cm ⁻¹)	transmitancija
2919	0,8198
2852	0,8868
1736	0,7677
1427	0,7873
1372	0,8707
1330	0,8288
1237	0,6331
965	0,7485
698	0,7294

Tablica 50.	Vrpce	folije s	Ketchupa.
-------------	-------	----------	-----------

Slika 102. Folija s Ketchupa.

Slika 103. Struktura poli(vinil-klorida).

U slučaju folije s Ketchupa ATR–FTIR metodom pronađene su apsorpcijske vrpce (slika 101., tablica 50.) pri 2919 cm⁻¹ i 2852 cm⁻¹, što odgovara simetričnom C-H istezanju, pri 1736 cm⁻¹ je C-H istezanje, pri 1427 cm⁻¹ nalazimo CH₂ uvijanje, pri 1330 cm⁻¹ je C-H deformacija izvan ravnine, pri 1237 cm⁻¹ je C-H deformacije u ravnini i pri 698 cm⁻¹ je istezanje C-Cl. Ovi rezultati ukazuju na to da je folija s Ketchupa (slika 102.) izrađena od PVC-a [35].

Poli(vinil-klorid) ili PVC je polimer koji u svojoj strukturi sadrži makromolekule s ponavljanjem jedinica –CH₂-CHCl (slika 103.)

Slika 104. ATR-FTIR spektar uveza knjige.

valni broj cm ⁻¹	transmitancija
2963	0,9263
2915	0,8993
2852	0,9310
1732	0,9522
1427	0,8638
1328	0,8786
1248	0,8271
966	0,8390
698	0,7294

Tablica 51. Vrpce uveza knjige.

Slika 105. Uvez knjige.

ATR-FTIR metodom dobiven spektar (slika 104., tablica 51.) za uvez knjige (slika 105.) ima vrpce pri 2963 cm⁻¹, 2915 cm⁻¹ i 2852 cm⁻¹, što odgovara simetričnom C-H istezanju, pri 1732 cm⁻¹ je C-H istezanje, pri 1427 cm⁻¹ nalazimo CH₂ uvijanje, pri 1328 cm⁻¹ je C-H deformacija izvan ravnine, pri 1248 cm⁻¹ je C-H deformacija u ravnini i pri 698 cm⁻¹ je istezanje C-Cl [35]. Ovi rezultati ukazuju na to da je uvez knjige izrađen od PVC-a.

Slika 106. ATR-FTIR spektar prozirne folije s CD kutije.

valni broj (cm ⁻¹)	transmitancija
2962	0,9387
2951	0,9122
1426	0,8780
1329	0,8950
1252	0,8480
1196	0,9101
1097	0,9059
964	0,8588
834	0,9232
686	0,8438

Tablica 52. Vrpce prozirne folije s CD kutije.

ATR–FTIR metodom dobiven spektar (slika 106., tablica 52.) za foliju s CD kutije ima vrpce pri 2962 cm⁻¹ i 2915 cm⁻¹, što odgovara simetričnom C-H istezanju, pri 1426 cm⁻¹ nalazimo CH₂ uvijanje, pri 1329 cm⁻¹ je C-H deformacija izvan ravnine, pri 1252 cm⁻¹ je C-H deformacija u ravnini, pri 1097 cm⁻¹ je okomito istezanje lanca [35]. Ovi rezultati ukazuju na to da je prozirna folija s CD kutije izrađena od PVC-a.

Slika 107. ATR-FTIR spektar krute ambalaže 4

valni broj (cm ⁻¹)	transmitancija
2968	0,9255
2915	0,8910
2850	0,9331
1732	0,9345
1426	0,8082
1253	0,7582
1196	0,8683
1097	0,8626
964	0,7864
684	0,7724

Slika 108. Kruta ambalaža 4

ATR-FTIR metodom dobiven spektar (slika 107., tablica 53.) krute ambalaže 4 (slika 108.) ima vrpce pri 2968 cm⁻¹, 2915 cm⁻¹ i 2850 cm⁻¹, što odgovara simetričnom C-H istezanju, pri 1732 cm⁻¹ je C-H istezanje, pri 1426 cm⁻¹ nalazimo CH₂ uvijanje, pri 1253 cm⁻¹ je C-H deformacija u ravnini, 1097 cm⁻¹ je okomito istezanje lanca i pri 684 cm⁻¹ je istezanje C-Cl [35].

Iz ovih podataka možemo zaključiti da se radi o PVC-u.

Slika 109. Spektri svih uzoraka papira dobiveni ATR-FTIR metodom.

Slika 110. Spektri svih uzoraka PA dobiveni ATR-FTIR metodom.

Slika 111. Spektri svih uzoraka PE dobiveni ART-FTIR metodom.

Slika 112. Spektri svih uzoraka PE dobiveni transmisijskom metodom.

Slika 113. Spektri svih uzoraka PP dobiveni ATR-FTIR metodom.

Slika 114. Spektri svih uzoraka PP dobiveni transmisijskom metodom.

Slika115. Spektri svih uzoraka PVC-a dobiveni ATR-FTIR metodom.

5. Zaključak

ATR i transmisijskom metodom snimljeni su spektri različitih ambalažnih materijala. U spektru svakog od njih bilo je moguće odrediti karakteristične skupine koje se nalaze u strukturi materijala usporedbom s već postojećim spektrima ili iz tablica za određivanje strukture organskih spojeva spektroskopskom metodom. Iako je bio uključen veliki broj uzoraka, materijali od kojih je izrađeno najviše plastične ambalaže su: PE, PP i PVC.

Popis simbola

- v frekvencija (HZ)
- c brzina svjetlosti, iznosi 299,8 (m/s)
- E energija (J)
- λ valna duljina (nm)
- F sila(N)
- *h* Planckova konstanta (J*s)
- $B(\tilde{v})$ Fourierova transformacija
- *v* vibracijski kvantni broj, v=0,1,2,3...
- Θ slučajni kut
- ϕ refrakcijski kut
- n_1 refrakcijski indeks medija 1
- n₂ refrakcijski indeks medija 2
- np refrakcijski indeks kristala
- n_{sp} omjer između refrakcijskog indeksa kristala i uzorka
- N broj refleksija
- l duljina kristala
- n(v) indeks loma

6. Literatura

- 1. Gunzler, H., Gremlich, H.U., Uvod u infracrvenu spektroskopiju, Školska knjiga, Zagreb (2006) 14-15
- Gunzler, H., Gremlich, H.U., Uvod u infracrvenu spektroskopiju, Školska knjiga, Zagreb (2006) 13
- 3. F. Vatansever, M.R. Hamblin, Far infrared radiation (FIR): its biological effects and medical application, Photonic Laser Med. 4 (2012), 255-266
- 4. Gunzler, H., Gremlich, H.U., Uvod u infracrvenu spektroskopiju, Školska knjiga, Zagreb (2006) 15-39
- 5. R.Silverstein, Spectroscopy-Chemistry NMR FTIR MS, 25-31, 72-79
- 6. Gunzler, H., Gremlich, H.U., Uvod u infracrvenu spektroskopiju, Školska knjiga, Zagreb (2006) 53-59
- Gunzler, H., Gremlich, H.U., Uvod u infracrvenu spektroskopiju, Školska knjiga, Zagreb (2006) 130-135
- 8. B. Stuart, Infrared spectroscopy: fundamentals and applications, Wiley (2004) 18-24
- 9. Gunzler, H., Gremlich, H.U., Uvod u infracrvenu spektroskopiju, Školska knjiga, Zagreb (2006) 101-107
- 10. http://www.shimadzu.com/an/ftir/support/faq/5.html (pristup 5.7.2015.)
- 11. D.Ciolacu, F.Ciolacu, V.I.Popa: Amorphous cellulose-structure and characterization, Cellulose Chem Technology, 45 (2011) 13-21
- D.Romanzini, H.L.Ornaghi, S.C.Amico, A.J.Zattera, Preparation and Characterization of ramine-glass fiber rainforced polymer matrix hybrid composites, Materials Research 15 (2012) 415-420
- S.Abdolmahammadi, S.Siyamak, N.A.Ibrahim, W.M.Z.W.Yunus, M.Z.A.Rahman, S.Azizi, A.Fatehi, Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend of Calcium Carbonate Nanoparticles, International Juornal of Molecular Science, 13 (2012) 4508-4522
- 14. <u>http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Vibrational_Spectroscopy/Infrared Spectroscopy/Infrared%3A_Interpretation</u> (pristup 12.7.2015.)
- 15. <u>http://www.nanoscalereslett.com/content/7/1/182</u> (pristup 4.7.2015.)
- 16. <u>ftp://prelog.chem.pmf.hr/pub/POAK/Praktikum%20anorganske%20k%201%20i%2</u> <u>02/IR_skripta.pdf</u> (pristp 4.7.2015)
- 17. J.Han, Z.Cao, W.Gao, Remarkable sorption properties of polyamide 12 microscopes form a broad-spectrum antibacterial (triclosan) in water, Journal of Materials Chemistry, 5 (2013) 1-14
- 18. <u>http://www.shimadzu.com/an/spectro/ftir/irtracer/irtracer_5.html</u>
- 19. S.Krimm, C.Y.Liang, G.B.B.M. Sutherland, Infrared spectra od high polymers.II. Polyethylene, The journal of chemical physic, 25 (1956) 549-555
- 20. H.Wang, S.J.Chen, J.Zhang, Surface treatment of LLDPE and LDPE blends by nitric acid, sulfuric acid and chromatic acid etching, Colloid Polym Sci 287 (2009) 541-548
- 21. <u>http://be.convdocs.org/docs/index-92696.html?page=3</u> (pristup 4.7.2015.)

- 22. A.Sadighzdh, P.A.Asiabi, A.Ramazani, M.Ghoranneviss, A.S.Elahi, Characterization of Gamma Irradiated Low and High Density Polyethylene Using the FTIR ond DSC Technique, Polymer International, 49 (2000) 1555-1560
- 23. P.C.S. Simon, Tablice za određivanje strukture organskih spojeva spektroskopskom metodom, SKTH/Kemija u industriji, Zagreb (1982) 5-15
- 24. Gunzler, H., Gremlich, H.U., Uvod u infracrvenu spektroskopiju, Školska knjiga, Zagreb, (2006) 215-218
- Z. Chen, J.N. Hay, M.J. Jenkins, FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization, European Polymer Journal, 48, (2012) 1586-1610.
- 26. A.M Parshini, V.A.Gunyakov, V.Y.Zyryanov, V.F.Shabanov, Domain Structures in Nematic Liquis Crystals on a Polycarbonate Surface, International Jornal of Molekular Science. 14 (2013) 16303-16320
- 27. T. Elzein, M. Nasser-Eddine, C. Delaite, S.Bistac, P. Dumas, FTIR study of polycaprolactone chain organization at interfaces, Journal of Colloid and Interface Science, 237(2004) 381-387
- 28. R.A.Auras, L-T.Lim, S.E.M.Selke, H.Tsuji, Poly(lactic-acid): Synthesis, Structure, Properties, Processing and Application, Whiley (2011) 101-103
- H.Kaczmarek, I.V.Kwiatkowska, Preparation and characteriazation of interpretating network based on polyacrylates and poly(lactic-acid), eXpress Polymer Letters, 6 (2012) 78-94
- 30. F. James Boerio and S. Wirasate, Measurements of the Chemical Characteristics of Polymers and Rubbersby Vibrational Spectroscopy, Handbook of vibrational spectroscopy, Volume 3, Wiley (2010), 10
- 31. L.Barbes, C.Radulescus, C.Stihi, ATR-FTIR spectrometry characterization of polymeric materials, Romanic Reports in Physics, 66 (2014) 765-777
- 32. <u>http://cvilaseroptics.com/support/Technical-Library/Optical-Coatings</u> (pristup 14.7.2015).
- 33. K. Kanippan, S. Latha, Certain Investigations of the Formulation and Characterization of Polystyrene/ Poly(methyl metachrylate) Blends, International Journal of ChemTech Research, 3 (2011) 708-717.
- 34. S.M. Clift, J.Grimminger, K. Muha, New Polyisocyanurate Catalysts for Rigid Polyurethane Foams, Air Products and Chemicals, 112 (1994) 10-15
- 35. R.R. Stromberg, S. Straus, B.G. Achhammer, Infrared Spectra of Thermally Degraded Poly(Vinyl Chloride), Journal of Research of theNational Bureau of Standards, 60 (1958) 149-152.

Životopis

Ime i Prezime	Anita Perešin
Rođena	18. svibnja 1992. u Zagrebu, Hrvatska
Obrazovanje	2008. – 2011. Opća gimnazija Novska
	2011. – Preddiplomski sveučilišni studij
	Ekoinženjerstvo Fakulteta kemijskog
	inženjerstva i tehnologije
Jezici	engleski, njemački